sexta-feira, 25 de julho de 2014

Um pulsar metamórfico

No final de Junho de 2013, um binário excepcional contendo uma estrela de nêutrons veloz e girante sofreu uma mudança dramática de comportamento, mudança esta nunca antes observada.

ilustração de um modelo do pulsar J1023

© Goddard Space Flight Center (ilustração de um modelo do pulsar J1023)

As imagens mostram um modelo do pulsar J1023 antes (topo) e depois (baixo) do seu feixe rádio (verde) ter desvanecido. Normalmente, o vento do pulsar repele a corrente de gás da companheira. Quando a corrente se sobrepõe, forma-se um disco de acreção e os jatos de raios gama (magenta) obscurecem o feixe de rádio.

De acordo com o telescópio espacial Fermi da NASA, o "farol" de rádio do pulsar desapareceu e, ao mesmo tempo, o sistema aumentou cinco vezes de brilho em raios gama, a forma mais poderosa de radiação electromagnética.

"É quase como se alguém tivesse carregado num botão, transformando o sistema de um estado de baixa energia para um de maior energia," afirma Benjamin Stappers, astrofísico da Universidade de Manchester, Inglaterra, que liderou o esforço internacional com o objetivo de compreender esta impressionante transformação. "A mudança parece refletir uma interação errática entre o pulsar e a sua companheira, o que nos dá uma oportunidade para explorar uma fase de transição rara na vida deste binário."

Um sistema binário é composto por duas estrelas que orbitam em torno do seu centro de massa comum. Este sistema em particular, conhecido como AY Sextantis, está localizado a cerca de 4.000 anos-luz na direção da constelação de Sextante. O par é constituído por um pulsar de 1,7 milissegundos, chamado PSR J1023+0038 (J1023) e por uma estrela que contém aproximadamente 1/5 da massa do Sol. As estrelas completam uma órbita em apenas 4,8 horas, o que as coloca tão próximas que o pulsar está gradualmente evaporando a sua companheira.

Quando uma estrela maciça colapsa e explode como supernova, o seu núcleo esmagado pode sobreviver como um remanescente compacto chamado estrela de nêutrons ou pulsar, um objeto que comprimi mais massa que o Sol numa esfera não muito maior que uma grande cidade. Estrelas de nêutrons jovens e isoladas giram dezenas de vezes por segundo e geram feixes de rádio, luz visível, raios X e raios gama que são observados como pulsos sempre que estes feixes ficam apontados para a Terra. Os pulsares também criam fluxos poderosos de partículas altamente energéticas que se movimentam quase à velocidade da luz. Todo este poder vem do campo magnético do pulsar, que gira muito rapidamente. Com o passar do tempo, à medida que os pulsares se "acalmam", estas emissões desvanecem.

Há mais de 30 anos atrás, os astrônomos descobriram outro tipo de pulsar, que roda em 10 milissegundos ou menos, atingindo velocidades de rotação até 716,67 Hz (43.000 rpm). Enquanto os pulsares jovens normalmente aparecem isolados, mais de metade dos pulsares de milissegundo são encontrados em sistemas binários, o que sugere uma explicação para a sua rápida rotação.

"Os astrônomos já suspeitavam que os pulsares de milissegundo eram alimentados pela transferência e acumulação de matéria das suas estrelas companheiras, por isso muitas vezes são chamados de pulsares reciclados," explica Anne Archibald, pesquisadora pós-doutorada do Instituto Holandês de Radioastronomia (ASTRON) em Dwingeloo, que descobriu o J1023 em 2007.

Durante a fase inicial de transferência de massa, o sistema poderia ser considerado um binário de raios X com baixa massa, em que uma estrela de nêutrons mais lenta emite pulsos de raios X à medida que o gás quente se desloca para a sua superfície. Bilhões de anos mais tarde, quando o fluxo de matéria chega ao fim, o sistema seria classificado como um pulsar de milissegundo acelerado e com emissões de rádio alimentadas por um campo magnético de rápida rotação.

Para melhor compreender a rotação e evolução orbital do J1023, o sistema tem sido monitorado regularmente no rádio, usando o telescópio Lovell no Reino Unido e o WSRT (Westerbork Synthesis Radio Telescope) na Holanda. Estas observações revelaram que o sinal de rádio do pulsar foi desligado e isso desencadeou a busca por uma mudança associada nas suas propriedades de raios gama.

Poucos meses antes, foi descoberto um sistema muito mais distante que alternava entre os estados de rádio e raios X num espaço de semanas. Localizado no M28, um aglomerado globular a cerca de 19.000 anos-luz de distância, um pulsar conhecido como PSR J1824-2452I sofreu uma erupção de raios X em Março e Abril de 2013. À medida que as emissões de raios X desvaneciam no início de Maio, emergia o feixe de rádio do pulsar.

Apesar do J1023 ter alcançado energias muito mais altas e estar consideravelmente mais perto, ambos os binários são muito parecidos. O que está acontecendo são os últimos suspiros caóticos dos processos de rotação destes pulsares.

No pulsar J1023, as estrelas estão muito mais próximas uma da outra, assim que uma corrente de gás flui da estrela companheira para o pulsar. A rápida rotação do pulsar e o seu intenso campo magnético são os responsáveis tanto do feixe de rádio como do poderoso vento do pulsar. Quando o feixe de rádio é detectável, o vento do pulsar retém a corrente de gás da companheira, impedindo-a de se aproximar. Mas de vez em quando a corrente ganha, aproximando-se do pulsar e estabelecendo um disco de acreção.

O gás no disco torna-se comprimido e quente, atingindo temperaturas suficientemente altas para emitir raios X. Em seguida, o material ao longo da orla interior do disco perde energia rapidamente e cai em direção ao pulsar. Quando atinge uma altitude de aproximadamente 80 km, os processos que envolvem a criação do feixe de rádio ou são desligados ou, mais provavelmente, obscurecidos.

A borda interna do disco provavelmente flutua consideravelmente a esta altitude. Certas partes podem acelerar para fora quase à velocidade da luz, formando jatos duplos de partículas disparados em direções opostas, um fenômeno mais tipicamente associado com a acreção de buracos negros. As ondas de choque dentro e ao longo da periferia destes jatos são provavelmente a fonte da brilhante emissão de raios gama detectada pelo Fermi.

A equipe relata que o J1023 é o primeiro exemplo, já observado, de um binário de raios gama de baixa massa, compacto e transeunte. Os pesquisadores esperam que o sistema sirva como um laboratório único para a compreensão de como os pulsares de milissegundo se formam e para estudar os detalhes de como a acreção ocorre em estrelas de nêutrons.

"Até agora, o Fermi aumentou o número de pulsares de raios gama conhecidos por cerca de 20 vezes e duplicou o número de pulsares de milissegundo dentro da nossa Galáxia," afirma Julie McEnery, cientista do projeto para a missão, do Centro de Voo Espacial Goddard da NASA em Greenbelt (EUA). "O Fermi continua sendo um motor incrível de descobertas de pulsares."

Os resultados foram publicados na edição de 20 de Julho da revista The Astrophysical Journal.

Fonte: NASA

Nenhum comentário:

Postar um comentário