quinta-feira, 22 de março de 2018

Oceanos de Marte formaram-se mais cedo devido às erupções vulcânicas

Um novo cenário que procura explicar como os oceanos putativos de Marte surgiram e desapareceram nos últimos 4 bilhões de anos acarreta que estes se formaram várias centenas de milhões de anos mais cedo e não eram tão profundos quanto se pensava.

oceanos Arabia e Deuteronilus

© UC Berkeley/R. Citron (oceanos Arabia e Deuteronilus)

A imagem acima mostra o possível aspeto do antigo oceano conhecido como Arabia (esquerda), quando se formou há 4 bilhões de anos em Marte, enquanto o oceano Deuteronilus, com cerca de 3,6 bilhões de anos, tinha uma costa menor. Ambos coexistiram com a gigantesca província vulcânica de Tharsis, localizado no lado oposto do planeta (não visível), o que poderá ter ajudado a suportar a existência de água líquida.

A proposta dos geofísicos da Universidade da Califórnia em Berkeley, EUA, liga a existência de oceanos no início da história de Marte com o aparecimento do maior sistema de vulcões do Sistema Solar, Tharsis, e destaca o papel fundamental desempenhado pelo aquecimento global ao permitir a existência de água líquida em Marte.

Aqueles que alegam que Marte nunca teve oceanos de água líquida geralmente apontam para o fato de que as estimativas do tamanho dos oceanos não lidam bem com as estimativas da quantidade de água que poderá estar escondida como pergelissolo subterrâneo e com as estimativas da quantidade de água perdida para o espaço. Estas são as opções principais, uma vez que as calotas polares não contêm água suficiente para preencher um oceano.

O novo modelo propõe que os oceanos se formaram antes ou ao mesmo tempo que a maior característica vulcânica de Marte, Tharsis, em vez de depois de Tharsis se ter formado há 3,7 bilhões de anos. Como Tharsis era menor naquela época, não distorcia o planeta tanto quanto mais tarde, em particular as planícies que cobrem a maior parte do hemisfério norte e que se presume serem o antigo fundo oceânico. A ausência de deformação crustal de Tharsis significa que os mares teriam sido menos profundos, contendo cerca de metade da água de estimativas anteriores.

É provável que Tharsis tenha expelido gases para a atmosfera, e que por sua vez estes produziram um aquecimento global ou efeito de estufa que permitiu com que a água líquida existisse no planeta, e também que as erupções vulcânicas criaram canais que permitiram que as águas subterrâneas alcançassem a superfície e preenchessem as planícies a norte.

O modelo também contesta outro argumento contra os oceanos: que as propostas linhas costeiras são muito irregulares, variando em altura até um quilômetro, quando deviam estar niveladas, como as linhas costeiras da Terra.

Esta irregularidade pode ser explicada se o primeiro oceano, de nome Arabia, começasse a ser formado há cerca de 4 bilhões de anos e existisse, de forma intermitente, durante os primeiros 20% do crescimento de Tharsis. O vulcão em crescimento teria abatido o solo e deformado a costa ao longo do tempo, o que poderá explicar as alturas irregulares no litoral de Arabia.

mapa atual de Marte

© UC Berkeley/R. Citron (mapa atual de Marte)

A imagem acima mostra um mapa atual de Marte, onde há uma possível linha costeira que pode ter sido esculpida por oceanos intermitentes há bilhões de anos atrás. Arabia (magenta), Deuteronilus (branco) e Isidis (ciano) são vistos no mapa. As linhas de contorno sólido representam o bojo de Tharsis (esquerda) e o bojo antipodal que criou (direita), e as linhas tracejadas indicam as depressões.

Da mesma forma, o litoral irregular de um oceano subsequente, chamado Deuteronilus, pode ser explicado caso se tenha formado durante os últimos 17% do crescimento de Tharsis, há cerca de 3,6 bilhões de anos atrás.

Tharsis, agora um complexo eruptivo com 5.000 km de diâmetro, contém alguns dos maiores vulcões do Sistema Solar e domina a topografia de Marte. A Terra, com o dobro do diâmetro e 10 vezes mais massiva, não possui uma característica dominante equivalente. O grosso de Tharsis cria uma protuberância no lado oposto do planeta e uma depressão a meio do caminho. Isto explica por que as estimativas do volume de água que as planícies ao norte podiam conter, com base na topografia de hoje, são o dobro das estimativas do novo estudo com base na topografia de há 4 bilhões de anos.

Michael Manga, professor de Ciências Planetárias e da Terra de UC Berkeley, que modela o fluxo de calor interno de Marte, como as plumas crescentes de rocha fundida que entram em erupção através de vulcões à superfície, tentou explicar as costas irregulares das planícies de Marte há 11 anos atrás com outra teoria. Ele e o ex-aluno Taylor Perron sugeriram que Tharsis, que na época se pensava ter originado em latitudes extremas ao norte, era tão massivo que fez com que o eixo de rotação de Marte se movesse vários milhares de quilômetros para sul, alterando as linhas costeiras.

No entanto, desde então outros mostraram que Tharsis teve origem apenas 20º acima do equador, derrubando esta teoria. Mas Manga e Robert Citron, estudante da UC Berkeley, tiveram outra ideia, a de que a costa pode ter sido esculpida à medida que Tharsis crescia, não depois. A nova teoria também pode explicar o corte de redes de vales por água líquida quase à mesma altura.

O próximo "lander" marciano da NASA, a missão InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), pode ajudar a elucidar o problema. Com lançamento previsto para maio, colocará um sismômetro à superfície para sondar o interior e talvez encontre remanescentes congelados deste antigo oceano, ou até água líquida.

Um artigo foi publicado na revista Nature.

Fonte: University of California

Nenhum comentário:

Postar um comentário