Mostrando postagens com marcador Blazar. Mostrar todas as postagens
Mostrando postagens com marcador Blazar. Mostrar todas as postagens

domingo, 23 de julho de 2023

Novas descobertas no blazar Markarian 421

O Universo contém muitos e poderosos buracos negros supermassivos que criam fortes jatos de partículas altamente energéticas, produzindo fontes de brilho extremo na vastidão do espaço.

© NASA (ilustração da estrutura do jato de um buraco negro)

Esta ilustração mostra a estrutura do jato de um buraco negro. O jato é alimentado por um disco de acreção, mostrado na parte inferior da imagem, que orbita e cai no buraco negro ao longo do tempo. O jato é atravessado por campos magnéticos helicoidais, gerando raios X num choque originado no material que espirala em torno dos campos magnéticos helicoidais. A inserção mostra a frente de choque propriamente dita. Os raios X são gerados na região branca mais próxima da frente de choque, enquanto as emissões ópticas e de rádio devem ter origem em regiões mais turbulentas, mais afastadas do choque. Quando um desses jatos aponta diretamente para a Terra, o sistema que contém o buraco negro é caracterizado como blazar. 

Para compreender por que razão as partículas do jato se movem com grandes velocidades e energias, os cientistas voltam-se para o IXPE (Imaging X-ray Polarimetry Explorer) da NASA, que foi lançado em dezembro de 2021. O IXPE mede uma propriedade especial da luz de raios X chamada polarização, que tem a ver com a organização das ondas eletromagnéticas nas frequências de raios X. 

Esta semana, uma equipe internacional de astrofísicos divulgou novas descobertas do IXPE sobre um blazar chamado Markarian 421. Este blazar, localizado na direção da constelação da Ursa Maior, a cerca de 400 milhões de anos-luz da Terra, surpreendeu os cientistas com evidências de que, na parte do jato onde as partículas estão sendo aceleradas, o campo magnético tem uma estrutura helicoidal.

Jatos como o que irradia de Markarian 421 podem estender-se por milhões de anos-luz. São especialmente brilhantes porque, à medida que as partículas se aproximam da velocidade da luz, liberam uma enorme quantidade de energia e comportam-se de formas estranhas, conforme Einstein previu. Os jatos dos blazares são extra brilhantes porque, tal como a sirene de uma ambulância soa mais alto à medida que se aproxima, a luz apontada na nossa direção também parece mais brilhante. É por isso que os blazares podem ofuscar todas as estrelas das galáxias que habitam. 

Apesar de décadas de estudo, os cientistas ainda não compreendem totalmente os processos físicos que determinam a dinâmica e a emissão dos jatos dos blazares. Mas a inovadora polarimetria de raios X do IXPE, que mede a direção média do campo elétrico das ondas de luz, fornece uma visão sem precedentes destes alvos, da sua geometria física e da origem das suas emissões. 

Os modelos de prospecção para o fluxo típico dos poderosos jatos apresentam normalmente uma estrutura helicoidal em espiral, semelhante à forma como o DNA humano está organizado. Mas os cientistas não esperavam que a estrutura em hélice contivesse regiões de partículas sendo aceleradas por choques. 

O IXPE encontrou uma surpreendente variabilidade no ângulo de polarização durante três observações prolongadas de Markarian 421 em maio e junho de 2022. Mais estranho ainda é que as medições simultâneas no visível, no infravermelho e no rádio não mostraram qualquer alteração na estabilidade ou na estrutura, mesmo quando as emissões de raios X polarizados se desviaram. Isto significa que uma onda de choque pode estar se propagando ao longo de campos magnéticos em espiral no interior do jato. 

O conceito de uma onda de choque que acelera as partículas do jato é consistente com as teorias acerca de Markarian 501, um segundo blazar observado pelo IXPE que levou a um estudo publicado no final de 2022. Mas o blazar Markarian 421 mostra evidências mais claras de um campo magnético helicoidal contribuindo para o choque. 

Um artigo foi publicado na revista Nature Astronomy

Fonte: NASA

quarta-feira, 1 de março de 2023

A dança de buracos negros supermassivos

Um estudo a longo prazo com dados de quatro telescópios, desde o rádio a altas frequências, penetrou no núcleo da muito discutida galáxia ativa OJ 287, revelando mais detalhes sobre o seu interior.

© NASA / JPL-Caltech (galáxia OJ 287)

O painel da esquerda mostra uma imagem ultravioleta profunda de OJ 287 e do seu ambiente obtida com o telescópio Swift. Esta é uma das imagens ultravioleta (UV) mais profundas daquela parte do céu alguma vez tirada, combinando 560 exposições individuais. A fonte mais brilhante no campo é OJ 287. A região do buraco negro binário, propriamente dita, não pode ser resolvida na imagem UV. O painel da direita representa uma ilustração do núcleo de OJ 287, incluindo o disco de acreção, o jato e um segundo buraco negro em órbita do buraco negro primário que tem uma massa de 100 milhões de massas solares.

Os resultados da equipe internacional, liderada por Stefanie Komossa do Instituto Max Planck para Radioastronomia, reforçam as evidências de um buraco negro binário e colocam novamente o buraco negro primário na "balança". 

Os blazares são uma classe especial de galáxias ativas caracterizadas por uma atividade elevada e luminosidade extrema. Os "motores" destas galáxias são buracos negros escondidos dentro dos seus núcleos, milhões a bilhões de vezes mais massivos do que o nosso Sol. 

Estes "motores" foram alimentados ao longo da história do Universo, especialmente quando as galáxias colidiam. A fusão subsequente das galáxias criou buracos negros binários supermassivos. O estudo de tais pares de buracos negros revela muito sobre a evolução das galáxias e sobre o crescimento dos buracos negros. 

OJ 287 é uma das melhores candidatas a acolher um buraco negro binário supermassivo e compacto. Uma indicação disto são as explosões excepcionais de radiação produzidas por processos no centro da galáxia, que se repetem a cada 11 a 12 anos. Cada explosão consiste em dois picos separados por cerca de um ano. Estas explosões repetidas são tão notáveis que vários modelos binários diferentes foram propostos e discutidos na literatura com o intuito de os explicar. 

A equipe reviu agora o modelo anteriormente preferido, finalizando uma campanha de observação sistemática e sem precedentes. No processo, os pesquisadores também determinaram diretamente, e pela primeira vez, a massa do buraco negro primário. Com 100 milhões de massas solares, é provavelmente cerca de cem vezes menor do que se pensava. A nova estimativa da massa do buraco negro parece também explicar toda a história dos surtos de radiação de OJ 287, que foram agora mapeadas com grande detalhe. 

A galáxia OJ 287 está demasiado longe para os telescópios resolverem o núcleo compacto em torno dos buracos negros suspeitos. Contudo, uma vez que esta região domina o brilho de toda a galáxia, a radiação que emerge do núcleo é facilmente detectável na Terra e permite aos astrônomos reconstruir, com algumas limitações, os processos escondidos no interior do núcleo brilhante. 

A matéria de um disco que rodeia o buraco negro e que se desloca para dentro perde energia gravitacional sob a forma de radiação óptica e UV. Um jato lançado dos arredores do "motor" central acelera as partículas para longe. Este fluxo de matéria muitas vezes altamente relativista emite radiação intensa que vai desde o rádio até aos raios X e raios gama. 

OJ 287 é um excelente laboratório para estudar os processos físicos que reinam num dos ambientes astrofísicos mais extremos: discos e jatos de matéria nas imediações de um ou dois buracos negros supermassivos, estudado através do projeto MOMO (Multiwavelength Observations and Modelling of OJ 287). Consiste em observações de alta cadência de OJ 287 em mais de 14 frequências, desde o rádio até às altas energias com a duração de anos, e acompanhamentos dedicados em múltiplas instalações terrestres e espaciais quando o blazar se encontra em estados excepcionais. 

Os surtos de OJ 287 podem ser explicados pelo modelo de um buraco negro binário, em particular pelo movimento do segundo buraco negro, de massa mais baixa, em órbita do buraco negro primário. Na sua órbita inclinada, perturba ou o jato ou o disco de matéria, provocando assim as explosões periódicas de OJ 287. 

As medições com o radiotelescópio de Effelsberg de 100 metros atribuem o surto mais recente diretamente ao jato. É como olhar para um foco luminoso que brilha mais do que tudo o que está por detrás dele. O modelo mais avançado que descreve os processos no centro de OJ 287 assumiu um buraco negro primário cem bilhões de vezes mais massivo do que o Sol.  De acordo com este modelo, o próximo surto teria tido lugar em outubro de 2022. Os dados reais não confirmaram esta previsão. Ao invés, graças à densa cobertura da campanha MOMO, os astrônomos descobriram este surto muito mais cedo, entre 2016 e 2017. 

Os pesquisadores reavaliaram então a massa do buraco negro primário. Ao que parece, o buraco negro é 100 vezes mais leve do que se pensava anteriormente. Como resultado, a órbita do buraco negro secundário em torno do buraco negro primário deveria oscilar muito menos. Este comportamento tem implicações diretas nas explosões previstas, que são agora consistentes tanto com medições histórias como recentes.

Os futuros observatórios espaciais poderão ser capazes de detectar ondas gravitacionais deste ou de sistemas binários semelhantes. Pode até ser possível resolver espacialmente os dois buracos negros em OJ 287 com uma grande rede de radiotelescópios, tal como o EHT (Event Horizon Telescope) ou o SKA (Square Kilometre Array), este ainda em construção. Esta seria a primeira detecção direta de um sistema íntimo constituído por dois buracos negros supermassivos no centro de uma galáxia. 

Foram publicados dois artigos científicos nos periódicos: Monthly Notices of the Royal Astronomical Society e The Astrophysical Journal

Fonte: Max Planck Institute for Radio Astronomy

quinta-feira, 21 de julho de 2022

Fábricas de neutrinos no espaço profundo

Altamente energéticos e difíceis de detectar, os neutrinos viajam bilhões de anos-luz antes de chegarem ao nosso planeta.

© Benjamin Amend (ilustração de um blazar)

Embora se saiba que estas partículas elementares provêm das profundezas do nosso Universo, a sua origem precisa é ainda desconhecida. Uma equipe internacional, liderada pela Universidade de Würzburg e pela Universidade de Genebra, está elucidando um aspeto deste mistério: pensa-se que os neutrinos nascem em blazares, núcleos galácticos alimentados por buracos negros supermassivos.

A atmosfera da Terra é continuamente bombardeada por raios cósmicos. Estes consistem em partículas eletricamente carregadas de energias até 10^20 eV (elétron-volt). Isto é um milhão de vezes mais do que a energia obtida no acelerador de partículas mais poderoso do mundo, o LHC (Large Hadron Collider) perto de Genebra.

De onde são originárias estas partículas extremamente energéticas, o que as dispara para o Universo com uma força tão tremenda? Estas questões há mais de um século que são dos maiores desafios da astrofísica. Os locais de nascimento dos raios cósmicos produzem neutrinos. Os neutrinos são partículas que quase não têm massa e dificilmente interagem com a matéria. Percorrem o Universo e podem viajar através de galáxias, planetas e do corpo humano quase sem deixar rasto. 

Os neutrinos astrofísicos são produzidos exclusivamente em processos que envolvem a aceleração dos raios cósmicos. É precisamente isto que faz destes neutrinos mensageiros únicos, abrindo o caminho para identificar fontes de raios cósmicos. Apesar da vasta quantidade de dados recolhidos, a associação de neutrinos altamente energéticos com as fontes astrofísicas de onde são originários tem sido um problema por resolver durante anos.

Foi em 2017 que pesquisadores trouxeram pela primeira vez um blazar (TXS 0506+056) para a discussão como uma suposta fonte de neutrinos na revista Science. Os blazares são núcleos galácticos ativos alimentados por buracos negros supermassivos que emitem muito mais radiação do que toda a sua galáxia. A publicação desencadeou um debate científico sobre se existe realmente uma ligação entre os blazares e os neutrinos altamente energéticos. 

Após este primeiro passo encorajador, em junho de 2021 o grupo de pesquisa iniciou um ambicioso projeto. Isto envolve a análise de vários sinais do Universo. O principal objetivo é esclarecer a origem dos neutrinos astrofísicos, possivelmente estabelecendo os blazares como a primeira fonte de neutrinos extragaláticos altamente energéticos com grande certeza. O projeto está mostrando agora o seu primeiro sucesso, relatando que os blazares podem ser associados com confiança aos neutrinos astrofísicos com um grau de certeza sem precedentes. 

O processo de acreção e a rotação do buraco negro levam à formação de jatos relativísticos, onde as partículas são aceleradas e emitem radiação até energias de trilhões de vezes a da luz visível! 

A descoberta da ligação entre estes objetos e os raios cósmicos pode ser a 'pedra de Roseta' da astrofísica de alta energia"! 

Para chegar a estes resultados, foram utilizados dados de neutrinos do Observatório de Neutrinos IceCube na Antártida, o detector de neutrinos mais sensível atualmente em funcionamento, e do BZCat, um dos catálogos mais precisos de blazares.

Foi elaborado um software capaz de estimar o quanto as distribuições destes objetos no céu se assemelham. Depois de lançar os dados várias vezes, descobriu-se que a associação aleatória só pode exceder a dos dados reais uma vez num milhão de tentativas! Isto é uma forte evidência de que as associações estão corretas. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: Université de Genève

sexta-feira, 27 de março de 2020

Onde há um, há mais cem

PSO J030947.49+271757.31 é o blazar mais distante observado até à data.


© NASA/JPL-Caltech/GSFC (ilustração de um blazar)

A luz que vemos começou a sua viagem quando o Universo tinha menos de um bilhão de anos, há quase 13 bilhões de anos. O blazar foi descoberto por uma equipe de pesquisadores liderada por Silvia Belladitta, estudante de doutoramento da Universidade de Insubria, que trabalha para o INAF (Instituto Nacional de Astrofísica) em Milão, Itália.

Embora houvesse a suspeita de que o objeto fosse distante, e as observações do telescópio espacial Swift (do qual o INAF é um dos principais contribuintes) mostrassem que o seu poder de raios X correspondia ao de outros blazares, foram as observações obtidas com o óptico MODS (Multi-Double Object Spectrographs) acoplado ao LBT (Large Binocular Telescope) que confirmaram que realmente quebrou o recorde de blazar mais distante do Universo conhecido.

Os blazares são das mais brilhantes classes de objetos chamados NGAs (Núcleos Galácticos Ativos) que são buracos negros supermassivos nos centros das galáxias. Estão ativos devido à presença de um disco ou esfera de gás ionizado ao seu redor que "alimenta" a emissão vista em muitos comprimentos de onda. Os blazares emitem poderosos jatos relativistas, brilhantes o suficiente para serem vistos em todo o Universo conhecido. O feixe de um blazar é visível apenas ao longo de uma estreita linha de visão.

Se a Terra não estiver nessa linha de visão, não seria facilmente reconhecível. Assim sendo, a detecção de objetos pode ser extremamente difícil e fortuita. Mais importante, porém, este blazar é um dos buracos negros supermassivos mais antigos e distantes não obscurecidos por poeira (ao contrário da maioria dos buracos negros supermassivos). Isto permite que os astrônomos estudem este objeto em todo o espectro eletromagnético e construam uma imagem completa das suas propriedades.

Os dados obtidos pelo LBT confirmaram que PSO J0309+27 está muito longe de nós, o desvio para o vermelho tem um valor recorde de 6,1, nunca medido anteriormente para um objeto semelhante.

O PSO J0309+27 provou ser, de momento, a fonte de rádio mais poderosa e persistente do Universo primordial, nos primeiros bilhões de anos desde a sua formação. Observações feitas pelo telescópio XRT a bordo do satélite Swift também tornaram possível estabelecer que, mesmo em raios X, o PSO J0309+27 é a fonte cósmica mais brilhante já observada a estas distâncias.

Belladitta ainda realça: "É extremamente importante observar um blazar, porque para cada fonte descoberta deste tipo, sabemos que devem existir cem semelhantes, mas orientadas de maneira diferente e, portanto, fracas demais para serem vistas diretamente."

A descoberta de PSO J0309+27 permite que os astrônomos quantifiquem, pela primeira vez, o número de NGAs com poderosos jatos relativistas presentes no Universo primordial. Os blazares nestas épocas iniciais representam as "sementes" de todos os buracos negros supermassivos que existem hoje no Universo.

"A partir destas novas observações do LBT, ainda em desenvolvimento, também estimamos que o mecanismo central que aciona PSO J0309+27 é um buraco negro com uma massa equivalente a cerca de de um bilhão de vezes a massa do nosso Sol. Graças à nossa descoberta, podemos dizer que já nos primeiros bilhões de anos do Universo, existia um grande número de buracos negros muito massivos que emitiam poderosos jatos relativistas. Este resultado impõe restrições rígidas aos modelos teóricos que tentam explicar a origem destes enormes buracos negros no nosso Universo," conclui Belladitta.

A descoberta foi publicada na revista Astronomy & Astrophysics Letters.

Fonte: Italian National Institute for Astrophysics

terça-feira, 21 de janeiro de 2020

Descoberto gás escaldante no halo da Via Láctea

Foi descoberto que o gás escondido no halo da Via Láctea atinge temperaturas muito mais quentes do que se pensava anteriormente e que tem uma composição química diferente da prevista, desafiando a nossa compreensão do nosso lar galáctico.


© ESA (ilustração do halo com elementos e suas abundâncias relativas)

Esta animação mostra a via Láctea (a pequena galáxia no centro da imagem) e o seu halo (a região gasosa estendida). Ilustra o halo em três tons diferentes: esmeralda, amarelo e verde. Todos estes se misturam ao longo do halo, e cada um representa gás de uma temperatura diferente. Aparecem pontos por todo o halo; estes representam elementos e a suas abundâncias relativas, conforme detectado pelo observatório de raios X XMM-Newton da ESA: nitrogênio (preto, 41 pontos), neônio (laranja/amarelo, 39 pontos), oxigênio (azul claro, 7 pontos) e ferro (vermelho, 1 ponto).

Um halo é uma vasta região de gás, estrelas e matéria escura invisível ao redor de uma galáxia. É um componente fundamental de uma galáxia, ligando-a a um espaço intergaláctico mais amplo e, portanto, pensa-se que desempenhe um papel importante na evolução galáctica.

Até agora, pensava-se que o halo de uma galáxia contivesse gás quente com a temperatura exata deste gás dependente da massa da galáxia.

No entanto, um novo estudo usando o observatório espacial de raios X XMM-Newton mostra agora que o halo da Via Láctea contém não apenas um, mas três componentes diferentes de gás quente, o mais quente destes sendo dez vezes mais quente do que se pensava anteriormente. É a primeira vez que múltiplos componentes de gás, estruturados desta maneira, são descobertos não apenas na Via Láctea, mas em qualquer galáxia.

"Pensávamos que as temperaturas do gás nos halos galácticos variavam entre dez mil e um milhão de graus, mas parece que parte do gás no halo da Via Láctea pode atingir 10 milhões de graus," disse Sanskriti Das, estudante na Universidade Estatal do Ohio, EUA, autor principal do novo estudo.

"Embora pensemos que o gás é aquecido a cerca de um milhão de graus quando uma galáxia se forma inicialmente, não temos a certeza de como este componente ficou tão quente. Pode ser devido aos ventos que emanam do disco de estrelas da Via Láctea."

O estudo usou uma combinação de dois instrumentos a bordo do XMM-Newton: o RGS (Reflection Grating Spectrometer) e o EPIC (European Photon Imaging Camera). O EPIC foi usado para estudar a luz emitida pelo halo e o RGS para estudar como o halo afeta e absorve luz que passa por ele.

Para estudar o halo da Via Láctea no que toca à sua absorção, Sanskriti e colegas observaram um objeto conhecido como blazar: o núcleo energético e muito ativo de uma galáxia distante que emite feixes intensos de luz. Tendo viajado quase cinco bilhões de anos-luz através do cosmos, a luz de raios X deste blazar também passou pelo halo da nossa Galáxia antes de atingir os detectores do XMM-Newton e, portanto, contém pistas sobre as propriedades desta região gasosa.

Ao contrário dos estudos anteriores do halo da Via Láctea em raios X, que normalmente duram um ou dois dias, a equipe realizou observações durante um período de três semanas, permitindo a detecção de sinais que geralmente são demasiado fracos para serem vistos.

O halo quente da Via Láctea também tem quantidades significativas de elementos mais pesados que o hélio, que geralmente são produzidos nas fases posteriores da vida de uma estrela. Isto indica que o halo recebeu material fabricado por certas estrelas durante as suas vidas e estágios finais, e que foi lançado para o espaço quando morreram.

"Até agora, os cientistas procuravam principalmente oxigênio, pois é abundante e, portanto, mais fácil de encontrar do que outros elementos," acrescentou Sanskriti. "O nosso estudo foi mais detalhado: analisamos não apenas o oxigênio, mas também o nitrogênio, o neônio e o ferro, e encontramos alguns resultados extremamente interessantes."

Os cientistas esperam que o halo contenha elementos em proporções semelhantes às vistas no Sol. No entanto, Sanskriti e colegas notaram menos ferro no halo do que o esperado, indicando que o halo foi enriquecido por estrelas moribundas massivas, e também menos oxigênio, provavelmente devido a este elemento ser absorvido por partículas poeirentas no halo.

O recém-descoberto componente de gás quente também tem implicações mais amplas que afetam a nossa compreensão geral do cosmos. A nossa Galáxia contém muito menos massa do que esperávamos: isto é conhecido como o "problema da matéria em falta", pois o que observamos não corresponde às previsões teóricas.

A partir do mapeamento a longo prazo do cosmos, a sonda Planck da ESA previu que pouco menos de 5% da massa do Universo deveria existir na forma de matéria ordinária, o tipo que compõe estrelas, galáxias, planetas e assim por diante. "No entanto, quando somamos tudo o que vemos, o nosso valor não chega nem perto desta previsão," salientou Fabrizio Nicastro, do Observatório Astronômico de Roma - INAF, Itália, e do Centro Harvard-Smithsonian para Astrofísica, EUA. "Então, onde está o resto? Há quem sugira que pode estar escondido nos halos extensos e massivos que rodeiam as galáxias, tornando a nossa descoberta realmente excitante."

Dado que este componente quente do halo da Via Láctea nunca tinha sido visto antes, pode ter sido negligenciado em análises anteriores; e, portanto, pode conter uma grande quantidade desta matéria "em falta".

"Estas observações fornecem novas ideias sobre a história térmica e química da Via Láctea e do seu halo e desafiam o nosso conhecimento de como as galáxias se formam e evoluem," disse Norbert Schartel, cientista do projeto XMM da ESA.

"O estudo analisou o halo ao longo de uma linha de visão, aquela em direção ao blazar, de modo que será extremamente empolgante ver pesquisas futuras expandirem esta descoberta."

Fonte: ESA

quarta-feira, 5 de dezembro de 2018

Cientistas medem toda a luz estelar já produzida pelo Universo observável

A partir dos seus laboratórios, num planeta rochoso superado pela vastidão do espaço, cientistas da Universidade de Clemson conseguiram medir toda a luz estelar já produzida ao longo da história do Universo observável.

mapa do céu em raios gama

© NASA/LAT (mapa do céu em raios gama)

Este mapa construído através de observações pelo Large Area Telescope (LAT) do Fermi mostra como o céu em raios gama aparece em energias acima dos 10 bilhões eV (elétron-volt). O plano da Via Láctea percorre o meio da imagem. As cores mais brilhantes indicam fontes mais brilhantes de raios gama.

Os astrofísicos pensam que o nosso Universo, que tem cerca de 13,7 bilhões de anos, começou a formar as primeiras estrelas quando tinha algumas centenas de milhões de anos. Desde então, o Universo tornou-se numa verdadeira máquina de fazer estrelas. Existem agora aproximadamente 2 trilhões (2x1012) de galáxias e um septilhão (1x1024) de estrelas. Usando novos métodos de medição de luz estelar, o astrofísico Marco Ajello e a sua equipe analisaram dados do telescópio espacial de raios gama Fermi da NASA para determinar a história da formação estelar durante a maior parte do tempo de vida do Universo.

Colocar um número na quantidade de luz estelar já produzida tem várias variáveis que dificultam a quantificação em termos simples. Mas, de acordo com a nova medição, o número de fótons (partículas de luz visível) que escaparam para o espaço após serem emitidos pelas estrelas traduz-se em 4x1084!

Apesar deste número estupendamente grande, é interessante notar que, à exceção da luz que vem do nosso próprio Sol e da Galáxia, o resto da luz estelar que alcança a Terra é extremamente fraca, equivalente a uma lâmpada de 60 watts, vista em completa escuridão, a cerca de 4 km de distância. Isto porque o Universo é quase incompreensivelmente grande. É também por isso que o Universo é escuro à noite, além da luz da Lua, das estrelas visíveis do brilho fraco da Via Láctea.

O telescópio espacial de raios gama Fermi foi lançado em órbita no dia 11 de junho de 2008 e recentemente comemorou o seu 10.º aniversário. É um poderoso observatório que forneceu quantidades enormes de dados sobre raios gama (a forma mais energética de luz) e sobre a sua interação com a luz extragalática de fundo, que é uma névoa cósmica composta por toda a luz ultravioleta, visível e infravermelha emitida por estrelas ou poeira na sua vizinhança. Ajello e o colega de pós-doutoramento Vaidehi Paliya analisaram quase nove anos de dados referentes a sinais de raios gama de 739 blazares.

Os blazares são galáxias contendo buracos negros que são capazes de liberar jatos estreitamente colimados de partículas energéticas que saltam das suas galáxias e cruzam o cosmos quase à velocidade da luz. Quando um destes jatos está, fortuitamente, apontado diretamente para a Terra, é detectável mesmo quando tem uma origem muito distante. Os fótons de raios gama produzidos dentro dos jatos eventualmente colidem com a névoa cósmica, deixando uma impressão observável. Isso permitiu que a equipe de Ajello medisse a densidade do nevoeiro, não apenas num determinado local, mas também num determinado momento da história do Universo.

Ao medir o número de fótons absorvidos, os pesquisadores foram capazes de medir a espessura da névoa e medir também, em função do tempo, quanta luz havia em toda a faixa de comprimentos de onda.

Usando levantamentos galácticos, a história da formação estelar do Universo é estudada há décadas. Mas um obstáculo enfrentado por pesquisas anteriores era que algumas galáxias estavam muito distantes, ou eram muito fracas, para qualquer telescópio atual as detectar. Isto obrigou os cientistas a estimar a luz das estrelas produzida por estas galáxias distantes, em vez de a registar diretamente.

A equipe de Ajello conseguiu contornar isso usando os dados do LAT do Fermi para analisar a luz extragalática de fundo. A luz estelar que escapa das galáxias, incluindo as mais distantes, acaba eventualmente por se tornar parte da luz extragalática de fundo. Portanto, as medições precisas desta névoa cósmica, que só recentemente foram possíveis, eliminaram a necessidade de estimar as emissões de luz de galáxias ultradistantes.

Paliya realizou a análise de raios gama de todos os 739 blazares, cujos buracos negros são milhões a bilhões de vezes mais massivos que o nosso Sol.

Quando os raios gama altamente energéticos colidem com luz visível de baixa energia, transformam-se em pares de elétrons e pósitrons. Segundo a NASA, a capacidade do Fermi em detectar raios gama através de uma ampla gama de energias torna-o especialmente adequado para mapear a névoa cósmica. Estas interações de partículas ocorrem ao longo de distâncias cósmicas imensas, o que permitiu que o grupo de Ajello investigasse mais profundamente do que nunca a produtividade de formação estelar no Universo.

Os cientistas há muito tempo que tentam medir a luz extragalática de fundo. No entanto, fontes muito luminosas no plano da frente, como a luz zodiacal (que é luz espalhada pela poeira no Sistema Solar) tornavam esta medição muito complexa.

A formação estelar, que ocorre quando regiões densas de nuvens moleculares colapsam e formam estrelas, atingiu o pico há 11 bilhões de anos. Mas embora o nascimento de novas estrelas tenha diminuído desde então, nunca cessou. Por exemplo, na nossa Via Láctea nascem cerca de sete novas estrelas por ano.

A formação estelar é um grande ciclo cósmico de reciclagem de energia, matéria e metais. É o motor do Universo. Sem a evolução estelar, não teríamos os elementos fundamentais necessários para a existência da vida.

A compreensão da formação estelar também tem ramificações para outras áreas de estudo astronômico, incluindo pesquisas sobre a poeira cósmica, evolução galáctica e matéria escura. A análise da equipe irá fornecer missões futuras com uma diretriz para explorar os primeiros dias da evolução estelar, como o telescópio espacial James Webb, com lançamento previsto para 2021 e que vai permitir com que os cientistas busquem a formação de galáxias primordiais.

Um artigo foi publicado na revista Science.

Fonte: Clemson University

sexta-feira, 29 de junho de 2018

Decifrada a Pedra de Roseta dos núcleos galácticos ativos

Uma galáxia com pelo menos um buraco negro supermassivo ativo, denominada OJ 287, tem provocado muitas irritações e questões no passado.

ilustração da região central da galáxia ativa OJ 287 com um jato precessor

© MPIA/Axel M. Quetz (ilustração da região central da galáxia ativa OJ 287 com um jato precessor)

A imagem acima mostra que a precessão pode ou ser provocada por um buraco negro binário (inserção A) ou por um disco de acreção desalinhado (inserção B).

A radiação emitida por este objeto abrange uma ampla faixa, desde o rádio até às energias mais altas no regime TeV. A potencial periodicidade desta emissão óptica variável fez desta galáxia uma candidata a hospedar um buraco negro binário supermassivo no seu centro. O objeto foi assim rotulado como a "Pedra de Roseta" dos núcleos galácticos ativos, expressando a esperança de que pudesse ser um objeto prototípico e, uma vez decifrado, pudesse explicar as propriedades fundamentais dos buracos negros ativos em geral.

Agora, uma equipe internacional de astrônomos liderada por pesquisadores do Instituto Max Planck descobriu que o núcleo galáctico ativo de OJ 287 gera um jato ligeiramente precessor numa escala de tempo de aproximadamente 22 anos. A precessão observada do jato também poderá explicar a variabilidade na radiação da galáxia. Esta detecção resolve muitos enigmas de uma só vez e fornece uma chave para entender a variabilidade nos núcleos galácticos ativos.

Levamos muito tempo para decifrar os hieróglifos egípcios, as inscrições das pirâmides. Finalmente conseguimos com a ajuda da denominada Pedra de Roseta, encontrada em 1799. Esta estela foi inscrita com três versões do mesmo texto: uma em Egípcio Antigo usando hieróglifos, uma em escrita Demótica e a inferior em Grego Antigo. Percebendo que é o mesmo texto, os enigmáticos hieróglifos puderam ser decifrados e traduzidos com a ajuda da antiga língua grega. Esta descoberta abriu uma nova janela para entender a antiga cultura egípcia. Uma equipe de pesquisa decifrou agora o jato de uma galáxia que foi apelidada de Pedra de Roseta dos blazares. Os blazares são núcleos galácticos ativos onde um buraco negro supermassivo central está sendo alimentado.

A bem conhecida galáxia OJ 287, a uma distância de aproximadamente 3,5 bilhões de anos-luz, hospeda pelo menos um buraco negro supermassivo com a massa de milhões ou bilhões de sóis. O buraco negro supermassivo está ativo e produz um jato, uma corrente de plasma originária da região nuclear central na vizinhança do buraco negro. Este jato é observável no rádio. A galáxia é também um alvo na região do visível. As flutuações do brilho desta galáxia, no visível, são lendárias e têm sido observadas desde o final do século XIX, fornecendo uma das mais extensas curvas de luz da Astronomia.

No entanto, apesar de décadas de observações em rádio de muitas fontes de jatos e de muitos estudos sofisticados, os jatos permaneciam enigmáticos. Tradicionalmente, a origem das variações do brilho do jato, observadas no rádio, era atribuída ao mecanismo de alimentação do jato pelo sistema do buraco negro central. Por outro lado, as características móveis observadas nos jatos, chamadas nós, eram atribuídas a choques que viajam pelo jato. Os cientistas procuraram uma ligação entre os dois fenômenos, mas isso não podia ser feito de forma consistente até agora.

A equipe de pesquisa, liderada por Silke Britzen do Instituto Max Planck para Radioastronomia em Bonn, Alemanha, usou uma técnica de observação a fim de monitorar em detalhe o jato da OJ 287 perto do seu local de lançamento no buraco negro central. A técnica de radiointerferometria envolve radiotelescópios espalhados pelo globo com o objetivo de construir um monstruoso telescópio virtual com o diâmetro da Terra, capaz de observar detalhadamente os centros das galáxias e de observar jatos próximos do buraco negro central.

Considerando um grande conjunto de dados que abrangem um longo período de tempo, foi encontrado agora uma forte indicação de que ambos os fenômenos têm a mesma origem: ambos os tipos de observações podem ser explicados somente pelo movimento do jato. O jato, propriamente dito, está em precessão. Michal Zajacek, também do Instituto, responsável pela modelagem da precessão, afirma: "As variações de brilho resultam da precessão que induz uma variação do aumento Doppler quando o ângulo de visão do jato muda. Foi realmente surpreendente quando descobrimos que não só o jato tem precessão, como parece também seguir um movimento menor semelhante a uma nutação. O movimento combinado de precessão-nutação leva à variabilidade no rádio e também pode explicar algumas das erupções de luz."

Britzen e a sua equipe estão convencidos de que o cenário de precessão também pode explicar os 130 anos de erupções ópticas desta fonte mas, como sempre, são necessários mais dados e mais trabalho para uma confirmação final.

Permanece uma questão premente sobre a origem da precessão do jato. A precessão é um processo físico bem conhecido dos piões ou até da própria Terra. O eixo de rotação do nosso planeta não é estável, mas orbita no espaço com um período de 26.000 anos devido à influência gravitacional do Sol e da Lua. Para a precessão do jato na OJ 287, a equipe indicou dois cenários possíveis. "Ou temos um sistema com dois buracos negros supermassivos, com o disco que expele o jato forçado a oscilar devido aos efeitos de maré do buraco negro secundário, ou um único buraco negro que interage com um disco de acreção desalinhado," conclui Christian Fendt do Instituto Max Planck para Astronomia em Heidelberg.

De qualquer das maneiras, o jato da galáxia ativa OJ287 é um dos mais bem compreendidos até agora e certamente será usado para também decifrar outros jatos extragaláticos. Poderá até ajudar a desvendar ainda mais a atividade enigmática dos buracos negros supermassivos.

Os resultados foram publicados na revista científica Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

terça-feira, 31 de janeiro de 2017

Fermi descobre os blazares mais extremos até agora

O telescópio espacial de raios gama Fermi da NASA identificou os blazares de raios gama mais distantes, um tipo de galáxia cujas emissões intensas são abastecidas por buracos negros superdimensionados.

ilustração de um blazar

© CfA/M. Weiss (ilustração de um blazar)

A luz destes objetos distantes começou a sua viagem até nós quando o Universo tinha 1,4 bilhões de anos, ou quase 10% da sua idade atual.

"Apesar da sua juventude, estes blazares longínquos hospedam alguns dos buracos negros mais massivos que se conhecem," afirma Roopesh Ojha, astrônomo do Goddard Space Flight Center da NASA. "O fato de se terem desenvolvido tão cedo na história cósmica desafia as ideias atuais de como os buracos negros supermassivos se formam e crescem, e queremos encontrar mais destes objetos para nos ajudarem a entender melhor o processo."

Ojha apresentou os seus achados ontem, dia 30 de janeiro, na reunião da Sociedade Americana de Física em Washington.

Os blazares constituem aproximadamente metade das fontes de raios gama detetadas pelo instrumento LAT (Large Area Telescope) do Fermi. Os astrônomos pensam que as suas emissões altamente energéticas são alimentadas por matéria aquecida e dilacerada à medida que cai de um disco de acreção em direção a um buraco negro supermassivo com um milhão (ou mais) de vezes a massa do Sol. Uma pequena parte deste material em queda é redirecionado para um par de jatos de partículas, que explodem para fora em direções opostas quase à velocidade da luz. Os blazares são bastante brilhantes em todas as formas de luz, incluindo raios gama, a radiação mais energética, quando por acaso um dos jatos aponta quase diretamente na nossa direção.

Anteriormente, os blazares mais distantes detectados pelo Fermi emitiram a sua luz quando o Universo tinha cerca de 2,1 bilhões de anos. Observações prévias mostraram que os blazares mais distantes produzem a maior parte da sua luz em energias bem entre a gama detetada pelo LAT e pelos satélites de raios X atuais, o que tornou a sua descoberta extremamente difícil.

Então, em 2015, a equipe do Fermi divulgou um reprocessamento completo de todos os dados do LAT, a que chamou Passagem 8, inaugurando tantas melhorias que era como ter um novo instrumento. A sensibilidade melhorada do LAT, a energias mais baixas, aumentou as hipóteses de descobrir blazares mais distantes.

A equipe de pesquisa foi liderada por Vaidehi Paliya e Marco Ajello da Universidade de Clemson e Dario Gasparrini do Centro de Dados Científicos da Agência Espacial Italiana em Roma bem como Ojha. Eles começaram a procurar as fontes mais distantes num catálogo de 1,4 milhões de quasares, uma classe de galáxias intimamente relacionada com blazares. Dado que somente as fontes mais brilhantes podem ser detectadas a grandes distâncias cósmicas, eliminaram então todos menos os objetos mais brilhantes no rádio da lista. Com uma amostra final de aproximadamente 1.100 objetos, os cientistas examinaram então os dados do LAT, resultando na detecção de cinco novos blazares de raios gama.

  localização dos novos blazares

© NASA/Scott Wiessinger (localização dos novos blazares)

Em termos de desvio para o vermelho, os novos blazares variam de redshift 3,3 para 4,31, o que significa que a luz que agora detectamos começou a sua viagem até nós quando o Universo tinha entre 1,9 e 1,4 bilhões de anos, respetivamente.

"Assim que descobrimos estas fontes, recolhemos todos os dados de comprimento de onda disponíveis e derivamos propriedades como a massa do buraco negro, a luminosidade do disco de acreção e o poder dos jatos," realça Paliya.

Dois dos blazares possuem buracos negros com bilhões de massas solares ou mais. Todos os objetos possuem discos de acreção extremamente luminosos que emitem mais de 2 trilhões de vezes a energia liberada pelo nosso Sol. Isto significa que a matéria está continuamente caindo para o buraco negro, encurralada num disco e aquecida antes de fazer o mergulho final.

"A questão principal agora é saber como é que estes buracos negros gigantescos se formaram num Universo tão jovem," comenta Gasparrini. "Não sabemos quais os mecanismos que desencadearam o seu rápido desenvolvimento."

Entretanto, a equipe planeja continuar a busca profunda por exemplos adicionais.

"Pensamos que o Fermi detectou apenas a ponta do iceberg, os primeiros exemplos de uma população de galáxias que anteriormente não foi detectada em raios gama," conclui Ajello.

Um artigo científico que descreve os resultados foi submetido à revista The Astrophysical Journal Letters.

Fonte: Goddard Space Flight Center

terça-feira, 16 de agosto de 2016

Missão do Fermi expande a procura por matéria escura

A matéria escura, a misteriosa substância que constitui a maior parte do material do Universo, permanece tão evasiva como sempre.

Pequena Nuvem de Magalhães

© Hubble/DSS2 (Pequena Nuvem de Magalhães)

Embora experiências terrestres e espaciais tenham ainda de encontrar traços da matéria escura, os resultados estão ajudando os cientistas a descartar algumas das muitas possibilidades teóricas. Três estudos publicados no início deste ano, usando seis ou mais anos de dados do telescópio espacial de raios gama Fermi da NASA, ampliaram a missão de buscar matéria escura usando algumas abordagens novas.

A matéria escura não emite nem absorve luz, interage principalmente com o resto do Universo através da gravidade e, ainda assim, corresponde a cerca de 80% da matéria no Universo. Os astrônomos vêm os seus efeitos em todo o cosmos, e na rotação das galáxias, na distorção da luz que passa através de aglomerados de galáxias e em simulações do Universo jovem, que até exige a presença da matéria escura para a formação de galáxias.

Os principais candidatos para a matéria escura são classes diferentes de partículas hipotéticas. Os cientistas pensam que os raios gama, a forma mais energética de luz, pode ajudar a revelar a presença de alguns tipos de partículas propostas da matéria escura. Anteriormente, o Fermi procurou sinais de raios gama associados com a matéria escura no centro da nossa Galáxia e em pequenas galáxias anãs que a orbitam. Embora sem a descoberta de sinais convincentes, estes resultados eliminaram candidatos dentro de um intervalo de massas e taxas de interação, limitando ainda mais as possíveis características das partículas de matéria escura.

Entre os novos estudos, o cenário mais exótico investigado foi a possibilidade de a matéria escura consistir de partículas hipotéticas chamadas áxions ou outras partículas com propriedades semelhantes. Um aspeto interessante dos áxions é a capacidade de conversão em raios gama e vice-versa quando interagem com campos magnéticos fortes. Estas conversões deixariam para trás traços característicos, como falhas e "escadas" no espetro de uma fonte de raios gama brilhante.

Manuel Meyer da Universidade de Estocolmo liderou um estudo para procurar estes efeitos nos raios gama da NGC 1275, a galáxia central do aglomerado de galáxias de Perseu, localizado a aproximadamente 240 milhões de anos-luz de distância. Pensa-se que as emissões altamente energéticas da NGC 1275 estejam associadas com um buraco negro supermassivo no seu centro. Tal como em todos os aglomerados de galáxias, o aglomerado de Perseu tem gás quente envolvido com campos magnéticos, que permitem a transição entre raios gama e os áxions. Isto significa que alguns dos raios gama provenientes da NGC 1275 podem converter-se em áxions, e potencialmente de volta, enquanto viajam até nós.

A equipe de Meyer recolheu observações com o instrumento LAT (Large Area Telescope) do Fermi e procurou distorções previstas no sinal de raios gama. Os achados, publicados no dia 20 de abril na revista Physical Review Letters, exclui os áxions que poderiam ter constituído cerca de 4% da matéria escura.

Outra classe possível da matéria escura são as chamadas WIMPs (Weakly Interacting Massive Particles). Em algumas versões, as WIMPs que colidem ou se aniquilam mutuamente ou produzem uma partícula intermediária e de rápida decomposição. Ambos os cenários resultam em raios gama que podem ser detectados pelo LAT.

Regina Caputo da Universidade da Califórnia, em Santa Cruz, procurou estes sinais na Pequena Nuvem de Magalhães, localizada a cerca de 200.000 anos-luz de distância, a segunda maior galáxia que orbita a Via Láctea. Parte do encanto da Pequena Nuvem de Magalhães no que toca a uma investigação de matéria escura é que está relativamente perto de nós e a sua emissão de raios gama, que vem de fontes convencionais como formação estelar e pulsares, é bem compreendida. Mais importante ainda, os astrônomos têm medições de alta precisão da curva de rotação da Pequena Nuvem de Magalhães, que mostra como a sua velocidade de rotação muda com a distância ao centro e indica a quantidade de matéria escura presente. Num artigo publicado no dia 22 de março na revista Physical Review D, Caputo e colegas modelaram o teor de matéria escura da Pequena Nuvem de Magalhães, mostrando que possuía o suficiente para produzir sinais detectáveis de dois tipos de WIMPs.

blazares 

© NASA/Fermi (blazares)

Esta animação alterna entre duas imagens do céu em raios gama, visto pelo instrumento LAT do Fermi, uma usando os primeiros três meses de dados do LAT, a outra que mostra uma exposição acumulada de sete anos. A cor azul, que representa a menor quantidade de raios gama, inclui o fundo extragaláctico de raios gama (FER). Os blazares constituem a maior parte das fontes brilhantes aqui vistas (de vermelho a branco).

No terceiro estudo, pesquisadores liderados por Marco Ajello da Universidade de Clemson na Carolina do Sul, EUA, e por Mattia Di Mauro do Laboratório do Acelerador Nacional do SLAC na Califórnia, levaram a pesquisa numa direção diferente. Em vez de olhar para alvos astronômicos específicos, a equipe usou mais de 6,5 anos de dados do LAT para analisar o fundo de raios gama visto em todo o céu.

A natureza desta radiação, chamada fundo extragaláctico de raios gama, tem sido debatida desde que foi medida pela primeira vez pelo SAS-2 (Small Astronomy Satellite 2) da NASA na década de 1970. O Fermi mostrou que grande parte desta radiação tem origem em fontes não resolvidas de raios gama, particularmente galáxias chamadas blazares, galáxias alimentadas por material que cai em direção a buracos negros gigantescos. Os blazares constituem mais de metade do total das fontes de raios gama observadas pelo Fermi e compõem uma percentagem ainda maior num novo catálogo LAT dos raios gama mais energéticos.

Alguns modelos preveem que os raios gama do FER possam surgir de distantes interações com partículas de matéria escura, como a aniquilação ou decaimento dos WIMPs. Numa análise detalhada dos raios gama altamente energéticos do FER, publicada no dia 14 de abril na revista Physical Review Letters, Ajello e sua equipe mostram que os blazares e outras fontes discretas podem ser responsáveis pela quase totalidade desta emissão.

Apesar destes estudos mais recentes terem ficado de mãos vazias, a busca para encontrar matéria escura continua tanto no espaço como em experiências terrestres. Ao Fermi junta-se o instrumento AMS da NASA, um detector de partículas a bordo da Estação Espacial Internacional.

Fonte: SLAC National Accelerator Laboratory

domingo, 24 de abril de 2016

Telescópio de água apresenta oscilações de buracos negros

O High Altitude Water Cherenkov Observatory (HAWC) lançou seu primeiro mapa do céu, incluindo as primeiras medidas de quantas vezes os buracos negros piscam. Ele também captou pulsares, remanescentes de supernovas e outros objetos cósmicos bizarros.

Markarian 421Markarian 501

© Nordic Optical Telescope/SDSS (Markarian 421 e Markarian 501)

A imagem acima mostra as galáxias Markarian 421 (esquerda) e Markarian 501 (direita) obtidas, respectivamente, pelo Nordic Optical Telescope e Sloan Digital Sky Survey (SDSS).

O HAWC está situado a 4.100 metros de altitude na Sierra Madre, no México, é composto por 300 tanques de água purificada e com sensores acoplados.

O seu objetivo é estudar as fontes de radiação mais energéticas do Universo e foi desenhado para ser sensível aos raios gama com energias entre os 0,1 e 100 Tev (teraelétron-volts). O limite máximo de energia corresponde a fótons com uma energia mais de 7 vezes superior à gerada pelas colisões mais violentas no Large Hadron Collider (LHC), no CERN. Até agora o fóton mais energético observado pelo HAWC tinha 60 TeV.

Mas o HAWC não observa os raios gama diretamente. Eles são filtrados de forma muito eficiente pela atmosfera. Em vez disso, o HAWC observa o resultado da sua colisão com átomos no topo da atmosfera terrestre. Estes eventos produzem uma chuva de partículas que frequentemente atinge a superfície. Os cientistas estimam a Terra é bombardeada por 20 mil destes chuveiros por segundo. À altitude do observatório, estes chuveiros podem ser observados com maior claridade pois percorreram ainda uma camada relativamente fina da atmosfera. As partículas atravessam os tanques e colidem com átomos das moléculas de água dando origem a pequenos flashes de luz azul, denominada radiação Cherenkov,  que são detectados por sensores. Com esta informação é possível calcular a energia do fóton de raios gama original e a posição da fonte no céu.

O observatório consegue observar dois terços da esfera celeste e funciona permanentemente; a presença do Sol não tem impacto na observação uma vez que não é uma fonte significativa de raios gama tão energéticos.

A imagem abaixo mostra o observatório HAWC próximo do vulcão Sierra Nevada, no México.

observatório HAWC

© HAWC Collaboration (observatório HAWC)

Uma análise do primeiro ano de observações do HAWC permitiu criar um mapa preliminar do céu nestas frequências. Nele foram detectadas 40 fontes de raios gama, 10 das quais desconhecidas dos até hoje. As restantes 30 foram identificadas com remanescentes de supernovas, pulsares e galáxias ativas.

Este mapa preliminar mostra as galáxias ativas Markarian 421, na Ursa Maior, e Markarian 501, em Hércules, situadas a centenas de milhões de anos-luz, e são classificadas como blazars, isto é, possuem buracos negros supermassivos nos seus núcleos. Foram observadas ejeções com a duração de apenas algumas horas em Markarian 501. Esta escala de tempo tão pequena implica que as mesmas tiveram origem numa região muito pequena, pouco maior do que o Sistema Solar até à órbita de Netuno, junto ao buraco negro. Os dados indicam também que tais ejeções são frequentes, ocorrendo entre 5 a 10 vezes num ano. As observações contínuas do HAWC durante os próximos anos permitirão caracterizar o comportamento destes objetos nesta região extrema de energias, contribuindo para uma melhor compreensão dos blazars.

Fonte: New Scientist

segunda-feira, 7 de março de 2016

Uma forte atividade óptica do blazar OJ287

O quasar OJ 287, situado a 3.5 mil milhões de anos-luz na direcção da constelação do Caranguejo, foi descoberto em meados dos anos 60 como uma fonte intensa de ondas de rádio.

ilustração de um quasar

© Caltech (ilustração de um quasar)

Um estudo subsequente de registos fotográficos desde 1887, mostrou que o objecto produz regularmente erupções durante as quais o seu brilho aparente atinge a magnitude 13, correspondente a uma magnitude absoluta de -27, ou uma luminosidade real 400 vezes superior à da Via Láctea inteira! Durante estas erupções o OJ287 pode ser observado com um telescópio de tamanho mediano, de 20 ou 25 cm de abertura.

Este tipo de erupções no espectro visível é invulgar entre os quasares e despertou o interesse dos astrónomos. Observações recentes indicam que o buraco negro super-maciço no centro do quasar é enorme, com uma massa estimada de 18 mil milhões de massas solares! Curiosamente, poderá não estar sozinho. As variações regulares no brilho sugerem que é orbitado por um outro buraco negro, mais pequeno, com “apenas” 100 milhões de massas solares, semelhante ao buraco negro central da Via Láctea, com uma periodicidade de 12 anos.

Observar visualmente estes objectos longínquos tem algo de mágico. Ao vê-los estamos a captar nas nossas retinas fotões que iniciaram a sua viagem de 3.5 mil milhões de anos pelo espaço inter-galáctico nas imediações do buraco negro central. É o mais próximo que conseguimos estar deles. No caso do OJ 287, a sua observação é bem simples pois é fácil de encontrar e está em erupção. Se quiser tentar, a sua viagem começa junto ao enxame de estrelas da Colmeia ou Messier 44.

Um quasar é composto por um buraco negro super-maciço e a sua região circundante, normalmente localizado no núcleo de uma galáxia. Quando um quasar está activo, o gás da galáxia (ou de outra galáxia durante uma colisão) é capturado pelo campo gravitacional do buraco negro e forma um disco de acreção em torno dele. O gás nesse disco orbita o buraco negro a alta velocidade e a fricção e o intenso campo electromagnético aquecem-no a temperaturas muito elevadas, provocando a emissão de radiação muito energética como raios gama, raios-X e raios ultravioleta.

Os quasares activos são os objectos mais luminosos do Universo. A radiação é emitida de forma particularmente intensa na direcção perpendicular ao disco. Nas outras direcções é absorvida por um toro de gás e poeiras na periferia do disco de acreção. De facto, crê-se que todas as galáxias activas têm quasares nos seus centros e que as suas diferenças de aspecto, quando observadas a partir da Terra, se devem ao facto de observarmos os seus quasares segundo diferentes perspectivas. Os quasares mais luminosos, como o OJ 287, são designados por blazars, e têm a particularidade do eixo perpendicular ao disco de acreção estar quase perfeitamente alinhado com a linha de visão da Terra e, por esse motivo, vemos o disco de acreção ultra-luminoso com uma obstrução mínima.

Fonte: Astronomical Observatory of the Jagiellonian University

segunda-feira, 16 de novembro de 2015

Encontrado ciclos de raios gama em galáxia ativa

Astrônomos usando os dados do telescópio espacial de raios gama Fermi da NASA detectaram pistas de mudanças periódicas no brilho de uma galáxia ativa, cujas emissões são abastecidas por um buraco negro gigante.

ciclo de raios gama do blazar PG 1553 113

© Goddard Space Flight Center/CI Lab (ciclo de raios gama do blazar PG 1553+113)

Se confirmada, a descoberta marcaria a primeira emissão cíclica de raios gama com anos de duração, já detectada de qualquer galáxia, o que forneceria novas ideias sobre os processos físicos que ocorrem nas proximidades de um buraco negro.

“Observando muitos anos de dados obtidos pelo Large Area Telescope (LAT) do Fermi, nós identificamos indicações de uma variação com aproximadamente dois longos anos de raios gama emitidos pela galáxia conhecida como PG 1553+113”, disse Stefano Ciprini, que coordenou a equipe do Fermi no Centro de Dados Científicos (ASDC) da Agência Espacial Italiana, em Roma. “Este sinal é sutil, e dura menos do que 4 ciclos; assim, do mesmo modo que é algo espetacular de se ver é algo que precisa de mais observações”.

Buracos negros supermassivos com uma massa de milhões de vezes a massa do Sol, localizam-se no núcleo da maioria das galáxias, incluindo a nossa Via Láctea. Em cerca de 1% dessas galáxias, o buraco negro monstruoso, irradia energia equivalente à bilhões de vezes a energia do Sol, emissões que podem variar em escala de tempo de minutos a anos. Portanto, estas galáxias são consideradas ativas.

Mais da metade das fontes de raios gama observadas pelo LAT do Fermi, são galáxias ativas, chamadas de blazars, como a PG 1553+113. À medida que a matéria cai em direção ao seu buraco negro supermassivo, algumas partículas subatômicas escapam numa velocidade próxima à velocidade da luz em um par de jatos apontados em direções opostas. O que faz um blazar tão brilhante é que um desses jatos de partículas podem estar diretamente apontados para nós.

“Em essência, nós estamos olhando diretamente para dentro do jato; logo, como o seu brilho varia se torna a nossa principal ferramenta para entender a estrutura do jato e o ambiente próximo do buraco negro”, disse Sara Cutini, uma astrofísica no ASDC.

Motivados pela possibilidade de mudanças regulares nos raios gama, os pesquisadores examinaram uma década de dados em múltiplos comprimentos de onda. Isso inclui observações ópticas de longo prazo do Observatório Tuorla na Finlândia, no Observatório Lick, na Califórnia, e Catalina Sky Survey, perto de Tucson, no Arizona, além de dados ópticos e de raios X da nave Swift, da NASA. A equipe também estudou observações feitas pelo Rádio Observatório de Owens Valley, perto de Bishop, na Califórnia, que tem observado a PG 1553+113 a cada poucas semanas, desde de 2008, como parte de um programa de monitoramento de blazars que suporta a missão Fermi.

“As variações cíclicas na luz visível e nas ondas de rádio são similares às que nós vimos nos raios gama de alta energia do Fermi”, disse Stefan Larsson, um pesquisador no Instituto Real de Tecnologia em Estocolmo, colaborador da equipe do ASDC. “O padrão sendo muito consistente através de uma grande variedade de comprimentos de onda é uma indicação que a periodicidade é real e não apenas uma flutuação nos dados de raios gama”. Se o ciclo de raios gama da PG 1553+113 for de fato real, os pesquisadores fizeram a previsão que podem registrar um pico novamente em 2017 e 2019, bem dentro do tempo de vida operacional do Fermi.

Os cientistas identificaram alguns cenários que poderiam gerar emissões periódicas, incluindo diferentes mecanismos que poderiam produzir uma variação de duração de anos no jato de partículas de alta energia, emanando do buraco negro. O cenário mais animador envolve a presença de um segundo buraco negro próximo, em órbita, e produzindo o jato que nós observamos. A força gravitacional do buraco negro vizinho iria periodicamente inclinar a parte interna desse disco de acreção do buraco negro companheiro, onde o gás colapsando em direção ao buraco negro se acumula e se aquece. O resultado seria uma vagarosa oscilação do jato, algo parecido com o que acontece com um irrigador de jardim, que poderia produzir mudanças cíclicas nos raios gama, que nós observamos.

A PG 1553+113, localiza-se na direção da constelação da Serpente, e sua luz leva cerca de 5 bilhões de anos para alcançar a Terra.

Fonte: Goddard Space Flight Center

quinta-feira, 16 de janeiro de 2014

Primeira medição em raios gama de lente gravitacional

Uma equipe internacional de astrônomos, usando observatório Fermi da NASA fez a primeira medição de raios gama de uma lente gravitacional.

lente gravitacional em raios gama

© Fermi/LAT (lente gravitacional em raios gama)

A lente gravitacional é uma espécie de telescópio natural formada quando um alinhamento cósmico raro permite que a gravidade de um objeto massivo distorça e amplifique a luz de uma fonte mais distante.
Essa conquista abre novos caminhos para a pesquisa, incluindo uma nova maneira de sondar as regiões de emissão próximo aos buracos negros supermassivos. Pode até ser possível encontrar outras lentes gravitacionais com dados do telescópio espacial de raios gama Fermi.
Em setembro de 2012, o Large Area Telescope (LAT) do Fermi detectou uma série de brilhantes explosões de raios gama de uma fonte conhecida como B0218+357, localizada 4,35 bilhões de anos-luz da Terra, na direção da constelação Triangulum.

lente gravitacional no óptico

© Hubble (lente gravitacional no óptico)

A fonte B0218+357 é classificada como blazar, um tipo de galáxia ativa conhecida por suas emissões intensas e comportamento imprevisível. No coração do blazar está um buraco negro gigante com uma massa milhões de bilhões de vezes a do Sol. Como a matéria espirala em direção ao buraco negro, alguns emana para fora jatos de partículas que viajam próximo da velocidade da luz em direções opostas.
Muito antes de a luz do B0218+357 chegar até nós, ele passa diretamente através de uma galáxia espiral na frente a cerca de 4 bilhões de anos-luz de distância.
A gravidade da galáxia distorce a luz em diferentes caminhos, por isso o blazar ao fundo é visto como imagem dupla. Com apenas um terço de um segundo de arco (menos de 0,0001 graus) entre eles, o B0218+357 detêm o recorde para a menor separação de qualquer sistema conhecido com influência da lente gravitacional.
Enquanto telescópios ópticos e radiotelescópios podem monitorar as imagens de blazars individuais, o LAT do Fermi não pode. Em vez disso, a equipe do Fermi explorou um efeito de "reprodução de atraso".
"Um caminho de luz é ligeiramente mais longo do que o outro, então quando nós detectamos explosões em uma imagem, podemos tentar pegá-las dias depois, quando elas repetirem em outra imagem", disse o membro da equipe Jeff Scargle, astrofísico do Centro de Pesquisa Ames da NASA, em Moffett Field, Califórnia.
Em setembro de 2012, quando a atividade da combustão do blazar tornou a fonte de raios gama mais brilhante do lado de fora de nossa própria galáxia, Teddy Cheung, astrofísico do Laboratório de Pesquisa Naval em Washington, percebeu que era uma oportunidade de ouro. Na reunião da Sociedade Astronômica Americana, em National Harbor, Maryland, Cheung disse que a equipe havia identificado três episódios de explosões mostrando atrasos de reprodução de 11,46 dias, com a evidência mais forte encontrada em uma sequência de explosões capturadas em uma semana de duração de observações do LAT. Curiosamente, o atraso de raios gama é de cerca de um dia a mais do que as observações de rádio denunciaram para este sistema. Os astrônomos não acham que os raios gama surgem das mesmas regiões que as ondas de rádio, de modo que essas emissões provavelmente se originam de diferentes caminhos, com diferentes atrasos e ampliações, ao atravessar através da lente.
"Ao longo de um dia, uma dessas explosões pode iluminar o blazar por 10 vezes em raios gama, mas apenas 10 por cento em luz visível e de rádio, que nos diz que a região emissora de raios gama é muito pequena em comparação com aquelas com menor emissão de energia", disse o membro da equipe Stefan Larsson, um astrofísico da Universidade de Estocolmo, na Suécia.
Como resultado, a gravidade de pequenas concentrações de matéria na galáxia sob influência da lente gravitacional pode desviar e ampliar os raios gama de forma mais significativa do que a luz de baixa energia. Dissociar os chamados efeitos de microlente representa um desafio para tomar vantagem adicional de observações de lentes de alta energia.
Os cientistas dizem que comparar observações de rádio e de raios gama de sistemas adicionais nestas condições pode ajudar a fornecer novas perpectivas sobre o funcionamento de jatos de buracos negros poderosos e estabelecer novas restrições sobre as quantidades cosmológicas importantes, como a constante de Hubble, que descreve a taxa de expansão do Universo.
O resultado mais emocionante seria a detecção de um atraso de reprodução em uma fonte de raios gama ainda não identificada como uma lente gravitacional em outros comprimentos de onda do LAT.
Um artigo descrevendo a pesquisa aparecerá em uma futura edição do The Astrophysical Journal Letters.

Fonte: NASA