Mostrando postagens com marcador Exoplanetas. Mostrar todas as postagens
Mostrando postagens com marcador Exoplanetas. Mostrar todas as postagens

sexta-feira, 8 de março de 2024

Revelado segredos sobre o nascimento de planetas em torno de estrelas

Numa série de estudos, astrônomos elucidou o processo complexo da formação planetária.

© ESO (disco de formação planetária MWC 758)

Estas imagens extraordinárias, captadas pelo Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), no Chile, representam um dos maiores rastreios de discos de formação planetária. 

O trabalho de pesquisa reúne observações de mais de 80 estrelas jovens que podem ter planetas se formando em seu redor, fornecendo uma enorme quantidade de dados e conhecimentos únicos sobre a forma como os planetas surgem em diferentes regiões da nossa Galáxia. 

Até à data, foram descobertos mais de 5.000 planetas em órbita de outras estrelas para além do Sol, muitas vezes em sistemas muito diferentes do nosso Sistema Solar. Para compreender onde e como surge esta diversidade, os astrônomos têm de observar os discos ricos em poeira e gás que envolvem as estrelas jovens, os berços da formação planetária.

Estes discos encontram-se mais facilmente nas enormes nuvens de gás onde as próprias estrelas estão se formando. Tal como os sistemas planetários já desenvolvidos, as novas imagens mostram a extraordinária diversidade dos discos de formação de planetas.

© ESO (discos de formação planetária em três nuvens da Via Láctea)

Estas imagens extraordinárias, captadas pelo Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), no Chile, representam um dos maiores rastreios de discos de formação planetária.

A equipe estudou um total de 86 estrelas em três regiões diferentes de formação estelar da Via Láctea: Touro e Camaleão I, ambas a cerca de 600 anos-luz de distância da Terra, e Órion, uma nuvem rica em gás a cerca de 1.600 anos-luz de nós, que é conhecida por ser o local de nascimento de várias estrelas mais massivas do que o Sol.

A equipe conseguiu retirar várias conclusões importantes do conjunto de dados obtido. Por exemplo, em Órion descobriu-se que as estrelas agrupadas em duas ou mais tinham menos probabilidade de possuir grandes discos de formação planetária. Este é um resultado significativo, dado que, ao contrário do nosso Sol, a maioria das estrelas da nossa Galáxia têm companheiras. O aspecto irregular dos discos nesta região sugere a possibilidade de existirem planetas massivos no seu interior, o que poderá dar origem à deformação e desalinhamento que são observados nestes discos. Embora os discos de formação planetária se possam estender por distâncias centenas de vezes superiores à distância entre a Terra e o Sol, a sua localização a várias centenas de anos-luz de nós faz com que nos pareçam pequenos pontinhos no céu noturno. 

Para observar os discos, a equipe utilizou o instrumento SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) instalado no VLT do ESO. O sistema de óptica adaptativa de última geração do SPHERE corrige os efeitos de turbulência da atmosfera terrestre, fornecendo imagens muito nítidas dos discos. Deste modo, foi possível obter imagens de discos em torno de estrelas com massas tão baixas como metade da massa do Sol, que são normalmente demasiado tênues para a maioria dos outros instrumentos atualmente disponíveis. Foram ainda obtidos dados adicionais para este estudo com o instrumento X-shooter do VLT, o que permitiu aos astrônomos determinar a idade e a massa das estrelas.

Por sua vez, o Atacama Large Millimeter/submillimeter Array (ALMA), ajudou a compreender melhor a quantidade de poeira que envolve algumas das estrelas. À medida que a tecnologia avança, a equipe espera observar ainda mais profundamente o centro dos sistemas de formação planetária. O enorme espelho de 39 metros do futuro Extremely Large Telescope (ELT) do ESO, por exemplo, permitirá estudar as regiões mais interiores em torno de estrelas jovens, onde poderão estar se formando planetas rochosos como o nosso. 

Por enquanto, estas imagens revolucionárias fornecem aos pesquisadores uma enorme quantidade de dados que ajudarão a desvendar os mistérios da formação planetária.

Este trabalho de pesquisa foi apresentado em três artigos científicos publicados no periódico Astronomy & Astrophysics

Fonte: ESO

sexta-feira, 2 de fevereiro de 2024

Encontrado vapor de água na atmosfera de um exoplaneta pequeno

Recorrendo ao telescópio espacial Hubble, os astrônomos observaram o menor exoplaneta onde foi detectado vapor de água na atmosfera.

© STScI (ilustração do exoplaneta GJ 9827d)

Com apenas cerca de duas vezes o diâmetro da Terra, o GJ 9827d pode ser um exemplo de potenciais planetas com atmosferas ricas em água em outros locais da nossa Galáxia.  O exoplaneta GJ 9827d foi descoberto pelo telescópio espacial Kepler da NASA em 2017. Completa uma órbita em torno de uma estrela anã vermelha a cada 6,2 dias. A estrela, GJ 9827, situa-se a 97 anos-luz da Terra, na direção da constelação de Peixes.

No entanto, ainda é muito cedo para dizer se o Hubble mediu espectroscopicamente uma pequena quantidade de vapor de água numa atmosfera "inchada" rica em hidrogênio, ou se a atmosfera do planeta é majoritariamente feita de água, deixada para trás depois de uma atmosfera primitiva de hidrogênio e hélio se ter evaporado sob a radiação estelar.

A certa altura, à medida que planetas menores são estudados, deve haver uma transição em que deixa de haver hidrogênio nestes pequenos mundos e passam a ter atmosferas mais parecidas com a de Vênus, que é dominada pelo dióxido de carbono. Dado que o planeta é tão quente como Vênus, com cerca de 400º C, seria definitivamente um mundo inóspito e vaporoso se a atmosfera fosse predominantemente de vapor de água. 

Atualmente, a equipe tem dois cenários. Um deles é que o planeta ainda está agarrado a uma atmosfera rica em hidrogênio e com água, o que faz dele um mini-Netuno. Em alternativa, poderá ser uma versão mais quente da lua de Júpiter, Europa, que tem duas vezes mais água do que a Terra sob a sua crosta. 

O planeta GJ 9827d pode ser metade água, metade rocha. E haveria muito vapor de água em cima de um corpo rochoso mais pequeno. Se o planeta tiver uma atmosfera residual rica em água, então deve ter sido formado mais longe da sua estrela hospedeira, onde a temperatura é fria e há água disponível sob a forma de gelo, do que na sua localização atual. Neste cenário, o planeta teria então migrado para mais perto da estrela e recebido mais radiação. O hidrogênio foi aquecido e escapou, ou está ainda escapando, da fraca gravidade do planeta.

A teoria alternativa é que o planeta se formou perto da estrela quente, com traços de água na sua atmosfera. Com o telescópio espacial Hubble foi observado o planeta durante 11 trânsitos - eventos no qual o planeta passa em frente da sua estrela - que foram espaçados ao longo de três anos. Durante os trânsitos, a luz da estrela é filtrada através da atmosfera do planeta e tem a impressão digital espectral das moléculas de água. 

Esta descoberta do Hubble abre a porta ao futuro estudo deste tipo de planetas pelo telescópio espacial James Webb da NASA. Ele pode ver muito mais com observações adicionais no infravermelho, incluindo moléculas de carbono como o monóxido de carbono, o dióxido de carbono e o metano. Quando tivermos um inventário total dos elementos de um planeta, podemos compará-los com a estrela que orbita e compreender como se formou.

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: Space Telescope Science Institute

Desvendando os mistérios da formação e evolução planetária

Um sistema solar recentemente descoberto, com seis exoplanetas confirmados e um possível sétimo, está melhorando o conhecimento sobre a formação e evolução planetária.

© UCI (ilustração da estrela anã TOI-1136)

Utilizando um arsenal de observatórios e instrumentos espalhados pelo mundo, uma equipe liderada por pesquisadores da Universidade da Califórnia em Irvine (UCI), compilou as medições mais precisas até à data das massas, propriedades orbitais e características atmosféricas dos exoplanetas.

Os resultados foram obtidos pelo TKS (TESS-Keck Survey), fornecendo uma descrição completa dos exoplanetas que orbitam TOI-1136, uma estrela anã a mais de 270 anos-luz da Terra. O estudo é um seguimento da observação inicial da estrela e dos exoplanetas feita pela equipe em 2019, utilizando dados do TESS (Transiting Exoplanet Survey Satellite) da NASA. Este projeto forneceu a primeira estimativa das massas dos exoplanetas através do registo das variações do tempo de trânsito (VTT), uma medida da atração gravitacional que os planetas em órbita exercem uns sobre os outros. 

Para o estudo mais recente, os astrônomos juntaram os dados do VTT a uma análise da velocidade radial da estrela. Utilizando o telescópio APF (Automated Planet Finder) do Observatório Lick, no Monte Hamilton, no estado norte-americano da Califórnia, e o instrumento HIRES (High-Resolution Echelle Spectrometer) do Observatório W.M. Keck, no Mauna Kea, Havaí, conseguiram detectar ligeiras variações no movimento estelar através do desvio para o vermelho e para o azul do efeito Doppler, possibilitando determinar leituras da massa planetária com uma precisão sem precedentes.

Para obter informação tão exata sobre os planetas deste sistema, a equipe construiu modelos computacionais usando centenas de medições de velocidade radial sobrepostas a dados do  VTT. 

Quando se compara planetas em sistemas solares diferentes, há muitas variáveis que podem diferir com base nas propriedades distintas das estrelas e nas suas localizações em partes diferentes da Galáxia. A observação de exoplanetas no mesmo sistema permite o estudo de planetas que passaram por uma história semelhante. 

Pelos padrões estelares, a estrela TOI-1136 é jovem, com apenas 700 milhões de anos, outra característica que tem atraído caçadores de exoplanetas. O magnetismo, as manchas estelares e as erupções são mais prevalentes e intensas durante esta fase do desenvolvimento de uma estrela, e a radiação resultante impacta e molda os planetas, afetando as suas atmosferas. 

Os exoplanetas confirmados de TOI-1136, TOI-1136 b a TOI-1136 g, estão classificados como "sub-Netunos". O exoplaneta menor tem mais do dobro do raio da Terra, e os outros têm até quatro vezes o raio da Terra, comparáveis aos tamanhos de Urano e Netuno. Segundo o estudo, todos estes planetas orbitam TOI-1136 em menos do que os 88 dias que Mercúrio leva a dar a volta ao nosso Sol.

Outra componente estranha deste sistema solar é a possível presença, ainda não confirmada, de um sétimo planeta. Os pesquisadores detectaram alguns indícios de outra força ressonante no sistema. Quando os planetas estão orbitando perto uns dos outros, podem atrair-se gravitacionalmente uns aos outros.

Os períodos orbitais destes planetas são espaçados de forma semelhante. Quando os exoplanetas estão em ressonância, os puxões são sempre na mesma direção. Isto pode ter um efeito desestabilizador ou, em casos especiais, pode servir para tornar as órbitas mais estáveis. 

Será que vamos encontrar um mundo de rocha fundida, um mundo de água ou um mundo de gelo, todos no mesmo sistema solar? 

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: University of California

quarta-feira, 17 de janeiro de 2024

A cauda do exoplaneta WASP-69b é surpreendentemente longa

Novos dados do Observatório W. M. Keck, em Maunakea, no Havaí, confirmam que o exoplaneta WASP-69b, conhecido pela sua atmosfera em fuga, está formando uma cauda semelhante à de um cometa que é ainda mais longa do que a observada anteriormente.

© Adam Makarenko (animação do exoplaneta WASP-69b e sua estrela)

Os cientistas estudaram no passado este planeta do tamanho de Júpiter, concentrando-se na sua atmosfera em fuga e observando apenas um pequeno rasto de hélio gasoso. Os novos dados do Observatório W. M. Keck revelam que a cauda tem pelo menos 560.000 quilômetros de comprimento, estendendo-se pelo menos sete vezes o raio do próprio planeta gigante.

Localizado a 160 anos-luz da Terra, WASP-69b está tão próximo de sua estrela que um ano neste mundo alienígena dura apenas 3,9 dias terrestres. A sua proximidade sujeita o planeta à radiação extrema da sua estrela hospedeira, provocando a combustão da atmosfera do gigante gasoso.

A equipe observou este fenômeno utilizando o instrumento NIRSPEC (Near-Infrared Spectrograph) do Observatório W. M. Keck para captar imagens nítidas de WASP-69b, que revelaram a sequência de eventos que mostram a sua cauda se esticando à medida que o planeta libera a sua atmosfera. As capacidades de alta resolução do instrumento NIRSPEC, forneceu uma sensibilidade extremamente elevada da estrutura de velocidade e da absorção total da atmosfera em fuga, que os fortes ventos estelares esculpiram numa longa e fina cauda. 

Embora o WASP-69b tenha apenas cerca de 30% da massa de Júpiter, é 10% maior devido ao calor extremo da sua estrela hospedeira, que faz com que a sua atmosfera se expanda antes de se libertar. A atmosfera que escapa produz então vento que interage violentamente com o vento da estrela hospedeira do planeta, formando a cauda de hélio de WASP-69b.

Estas caudas, semelhantes às dos cometas, são muito valiosas porque formam-se quando a atmosfera planetária em fuga choca com o vento estelar, o que faz com que o gás seja arrastado para trás. 

O estudo direto da perda de massa atmosférica é fundamental para compreender exatamente como os planetas da nossa Galáxia evoluem ao longo do tempo juntamente com as suas estrelas. O WASP-69b está perdendo cerca de 1 massa terrestre por cada bilhão de anos, mas com uma massa total quase 90 vezes superior à da Terra, o planeta não corre o risco de perder toda a sua atmosfera durante a sua vida. 

A resiliência deste planeta num ambiente tão extremo e hostil permite estudar o processo de perda de massa atmosférica, o que ajuda a compreender como as estrelas podem provocar a evolução dos seus planetas.

O estudo foi publicado no periódico The Astrophysical Journal.

Fonte: W. M. Keck Observatory

Uma "cauda de gato" poeirenta no sistema Beta Pictoris

Beta Pictoris, um jovem sistema planetário situado a apenas 63 anos-luz de distância, continua intrigando os cientistas mesmo após décadas de estudo aprofundado.

© STScI (sistema estelar Beta Pictoris)

Possui o primeiro disco de poeira fotografado em torno de outra estrela, um disco de detritos produzido por colisões entre asteroides, cometas e planetesimais. Observações do telescópio espacial Hubble revelaram um segundo disco de detritos neste sistema, inclinado em relação ao disco mencionado anteriormente. 

Agora, astrônomos utilizaram o telescópio espacial James Webb para obter imagens do sistema Beta Pictoris (Beta Pic) e descobriu uma nova estrutura nunca antes vista. Com o auxílio dos instrumentos NIRCam (Near-Infrared Camera) e MIRI (Mid-Infrared Instrument) do Webb foi possível analisar a composição dos dois discos de detritos de Beta Pic. Os resultados excederam as expectativas, revelando um "ramo" de poeira fortemente inclinado, com o aspecto de uma cauda de gato, que se estende da parte sudoeste do disco de detritos secundário. 

Beta Pictoris é o disco de detritos que tem uma estrela muito brilhante e próxima e um ambiente circunstelar complexo com um disco multicomponente, exocometas e dois exoplanetas fotografados. Mesmo com o Webb, foi crucial observar Beta Pic em comprimentos de onda corretos; neste caso, o infravermelho médio para assim detectar a "cauda de gato", uma vez que esta só apareceu nos dados do MIRI. Os dados no infravermelho médio, obtidos pelo Webb, também revelaram diferenças de temperatura entre os dois discos de Beta Pic, o que provavelmente se deve a diferenças de composição.

Para explicar a temperatura mais quente no disco secundário, a equipe deduziu que a poeira pode ser um "material orgânico refratário" altamente poroso, semelhante à matéria encontrada nas superfícies dos cometas e asteroides do nosso Sistema Solar. Por exemplo, uma análise preliminar do material recolhido do asteroide Bennu pela missão OSIRIS-REx da NASA revelou que era muito escuro e rico em carbono, bastante semelhante ao que o MIRI detectou em Beta Pic. 

No entanto, uma grande questão permanece em aberto: o que poderia explicar a forma da cauda de gato, uma característica curvada única, diferente da que se vê em discos à volta de outras estrelas? Foram modelados vários cenários na tentativa de emular a "cauda de gato" e desvendar as suas origens. Embora sejam necessários mais estudos e testes, a equipe apresenta uma forte hipótese de que a "cauda de gato" é o resultado de um evento de produção de poeira que ocorreu há apenas cem anos.

O modelo preferido da equipe explica o ângulo acentuado da cauda em relação ao disco como uma simples ilusão de ótica. A nossa perspectiva, combinada com a forma curva da cauda, cria o seu ângulo observado quando, de fato, o arco de material apenas se afasta do disco com uma inclinação de cinco graus. Tendo em conta o brilho da cauda, estima-se que a quantidade de poeira no interior da "cauda de gato" é equivalente à de um grande asteroide do nosso cinturão principal, espalhado por 16 trilhões de quilômetros. 

Um recente evento de produção de poeira, no interior dos discos de detritos de Beta Pictoris, também poderia explicar uma extensão assimétrica recentemente observada do disco interno inclinado, como visto nos dados do MIRI e observado apenas no lado oposto da cauda. A recente produção de poeira por colisão também poderia explicar uma característica previamente detectada pelo ALMA (Atacama Large Millimeter/submillimeter Array) em 2014: um aglomerado de monóxido de carbono (CO) localizado perto da "cauda de gato".

Uma vez que a radiação da estrela deve decompor o CO em cerca de cem anos, esta concentração de gás ainda presente pode ser uma evidência persistente do mesmo evento. 

Fonte: Space Telescope Science Institute

terça-feira, 9 de janeiro de 2024

Uma atmosfera exoplanetária em mudança

Uma equipe internacional de astrônomos reuniu e reprocessou observações do exoplaneta WASP-121 b que foram recolhidas com o telescópio espacial Hubble nos anos de 2016, 2018 e 2019.

© ESA / M. Zamani (ilustração do exoplaneta WASP-121 b)

Estas observações proporcionaram um conjunto único de dados que permitiu não só analisar a atmosfera de WASP-121 b, mas também comparar o seu estado ao longo de vários anos. A equipe encontrou evidências claras de que as observações de WASP-121 b estavam variando no tempo. Usando técnicas sofisticadas de modelação, foi demonstrado que estas diferenças temporais podiam ser explicadas por padrões climáticos na atmosfera do exoplaneta. 

A observação de exoplanetas é um desafio, devido à distância a que se encontram da Terra e, na sua maioria, orbitarem estrelas que são muito maiores e mais brilhantes do que os próprios planetas. 

O WASP-121 b, também conhecido como Tylos, é um bem estudado "Júpiter quente" que orbita uma estrela situada a cerca de 880 anos-luz da Terra, completando uma órbita em apenas 30 horas. A proximidade extrema à estrela hospedeira significa que sofre bloqueio de marés (mostra sempre a mesma face à estrela, assim como a Lua faz com a Terra) e que o hemisfério diurno é muito quente, com temperaturas superiores a 3.000 K. 

A equipe combinou quatro conjuntos de observações de arquivo de WASP-121 b, todas obtidas com o instrumento WFC3 (Wide Field Camera 3) do Hubble. O conjunto completo de dados reunidos inclui observações de: WASP-121 b transitando em frente da sua estrela (registadas em junho de 2016); WASP-121 b transitando atrás da sua estrela, também conhecido como eclipse secundário (obtidas em novembro de 2016); e duas curvas de fase (que mostram a variação da luz recebida do sistema estrela-exoplaneta) de WASP-121 b (obtidas em março de 2018 e em fevereiro de 2019, respetivamente).

Os dados mostraram uma aparente variação nas zonas mais quentes do exoplaneta e diferenças na assinatura espectral (a composição química da atmosfera exoplanetária) indicativas de uma atmosfera em mudança. Em seguida, foram utilizados modelos computacionais, altamente sofisticados, para tentar compreender o comportamento observado da atmosfera do exoplaneta. Os modelos indicaram que os seus resultados podem ser explicados por padrões climáticos quase periódicos, especificamente ciclones gigantescos que são repetidamente criados e destruídos como resultado da enorme diferença de temperatura entre o lado sempre virado para a estrela e o lado em noite perpétua. Este resultado representa um avanço significativo na potencial observação de padrões climáticos em exoplanetas. 

O estudo do clima é vital para compreender a complexidade das atmosferas, especialmente na nossa procura por exoplanetas com condições habitáveis. Futuras observações com o Hubble e com outros telescópios potentes, incluindo o Webb, permitirão conhecer melhor os padrões climáticos em mundos distantes e, em última análise, possivelmente encontrar exoplanetas com climas e padrões meteorológicos estáveis a longo prazo.

Fonte: Space Telescope Science Institute

terça-feira, 2 de janeiro de 2024

Atmosfera exoplanetária com pouco carbono pode ser sinal de água

Cientistas do MIT (Massachusetts Institute of Technology), da Universidade de Birmingham e de várias outras instituições afirmam que a melhor hipótese de os astrônomos encontrarem água líquida, e mesmo vida em outros planetas, é procurar a ausência, e não a presença, de uma característica química nas suas atmosferas.


© MIT (ilustração de exoplanetas e suas atmosferas)

Os pesquisadores propõem que, se um planeta terrestre tiver substancialmente menos dióxido de carbono na sua atmosfera, em comparação com outros planetas do mesmo sistema, isso pode ser um sinal de água líquida na superfície desse planeta. Além disso, esta nova assinatura está ao alcance do telescópio espacial James Webb.

Embora os cientistas tenham proposto outros sinais de habitabilidade, essas características são difíceis, se não impossíveis, de medir com as tecnologias atuais. A equipe afirma que esta nova assinatura, de uma pequena quantidade de dióxido de carbono, é o único sinal de habitabilidade que pode ser detectado atualmente. O Santo Graal da ciência exoplanetária é a procura por mundos habitáveis e a presença de vida, mas todas as características de que se tem falado até agora estão fora do alcance dos observatórios mais recentes. 

Até agora, foram detectados mais de 5.200 exoplanetas. Com os telescópios atuais, os astrônomos podem medir diretamente a distância de um planeta à sua estrela e o tempo que demora a completar uma órbita. Essas medições podem ajudar os cientistas a inferir se um planeta está dentro de uma zona habitável. Mas ainda não há forma de confirmar diretamente se um planeta é realmente habitável, o que significa que existe água líquida à sua superfície.

No nosso Sistema Solar, é possível detectar a presença de oceanos líquidos observando "brilhos", ou seja, flashes de luz solar refletida por superfícies líquidas. Estes brilhos, ou reflexões especulares, foram observados, por exemplo, na maior lua de Saturno, Titã, o que ajudou a confirmar a existência de grandes lagos na lua. No entanto, a detecção de um brilho semelhante em planetas longínquos está fora do alcance das tecnologias atuais. 

Mas há outra característica habitável perto de casa que pode ser detectável em mundos distantes. Os planetas Vênus, Terra e Marte partilham semelhanças, na medida em que os três planetas são rochosos e habitam uma região relativamente temperada em torno do Sol. A Terra é o único planeta do trio que abriga atualmente água líquida. 

E a equipe notou outra distinção óbvia: a Terra tem muito menos dióxido de carbono na sua atmosfera. Assumindo que estes planetas foram criados de forma semelhante e, se agora vemos um planeta com muito menos carbono, este deve ter ido para algum lado. O único processo que poderia remover tanto carbono de uma atmosfera é um forte ciclo hidrológico envolvendo oceanos de água líquida. 

Os oceanos da Terra têm desempenhado um papel importante e sustentado na absorção do dióxido de carbono. Ao longo de centenas de milhões de anos, os oceanos absorveram uma enorme quantidade de dióxido de carbono, quase igual à quantidade que persiste atualmente na atmosfera de Vênus. Este efeito à escala planetária deixou a atmosfera da Terra significativamente mais pobre em dióxido de carbono do que a dos seus vizinhos planetários. Na Terra, grande parte do dióxido de carbono atmosférico foi capturado pela água do mar e em rochas sólidas ao longo de escalas de tempo geológicas, o que ajudou a regular o clima e a habitabilidade durante bilhões de anos. 

A equipa pensou que se fosse detectada uma redução semelhante de dióxido de carbono num planeta distante, em relação aos seus vizinhos, este seria um sinal confiável de oceanos líquidos e de vida à sua superfície.

O dióxido de carbono é um absorvente muito forte no infravermelho e pode ser facilmente detectado nas atmosferas dos exoplanetas. Um sinal de dióxido de carbono pode então revelar a presença de atmosferas de exoplanetas. Quando os astrônomos determinam que vários planetas de um sistema têm atmosferas, podem passar a medir o seu teor de dióxido de carbono, para ver se um planeta tem significativamente menos do que os outros. 

Mas as condições de habitabilidade não significam necessariamente que um planeta seja habitado. Para verificar se existe vida, a equipe propõe que a procura de outra característica na atmosfera de um planeta: o ozônio, uma molécula que é muito mais fácil de detectar do que o próprio oxigênio. Na Terra, observa-se que as plantas e alguns micróbios contribuem para a absorção de dióxido de carbono, embora não tanto como os oceanos. No entanto, como parte deste processo, as formas de vida emitem oxigênio, que reage com os fótons do Sol para se transformar em ozônio. Se a atmosfera de um planeta mostrar sinais de ozônio e de dióxido de carbono empobrecido, é provável que seja um mundo habitável e habitado. 

A equipe estima que o telescópio espacial James Webb seja capaz de medir o dióxido de carbono, e possivelmente o ozônio, em sistemas multiplanetários próximos, como TRAPPIST-1, um sistema de sete planetas que orbita uma estrela brilhante a apenas 40 anos-luz da Terra. 

Um artigo foi publicado na revista Nature Astronomy

Fonte: Massachusetts Institute of Technology

quinta-feira, 21 de dezembro de 2023

Descoberta de dois sistemas planetários em estrelas parecidas com o Sol

Um estudo revela a descoberta de dois novos sistemas planetários orbitando estrelas semelhantes ao nosso Sol, também conhecidas como análogas solares.

© L. Almeida (ilustração do sistema planetário TOI-1736)

O estudo foi liderado pelo Dr. Eder Martioli, pesquisador titular do Laboratório Nacional de Astrofísica (LNA/MCTI, Brasil) e pesquisador associado do IAP (Institut d'astrophysique de Paris), e pelo Dr. Guillaume Hébrard, pesquisador do IAP. 

As observações responsáveis pela detecção destes dois sistemas, denominados TOI-1736 e TOI-2141, foram realizadas com o telescópio espacial TESS da NASA e com o espectrógrafo SOPHIE instalado no telescópio de 1,93 metros do OHP (Observatoire de Haute-Provence) no sul da França. 

Sistemas planetários como estes não apenas ampliam o nosso conhecimento sobre a formação e evolução de planetas em torno de estrelas semelhantes ao Sol, mas também possibilitam medições mais precisas das propriedades físicas dos planetas, aproveitando a semelhança entre a estrela hospedeira e o nosso Sol. 

A descoberta do primeiro exoplaneta, 51 Pegasi b, em 1995, realizada com o mesmo telescópio de 1,93 m no OHP e que resultou no Prêmio Nobel da Física para os astrônomos Michel Mayor e Didier Queloz, marcou o início de uma revolução na nossa compreensão sobre a existência de sistemas planetários no Universo. 

Hoje, mais de 5.500 exoplanetas são conhecidos, e esta contagem cresce diariamente. A descoberta destes objetos oferece uma oportunidade para estudar a presença de planetas em torno das estrelas e a variedade de características físicas que podem ser encontradas em diferentes sistemas. Uma das lições aprendidas desde a descoberta do primeiro exoplaneta é que o Sistema Solar não é único e não abarca todos os tipos de planetas possíveis. Por exemplo, o planeta 51 Pegasi b é do tamanho de Júpiter, mas orbita bem mais próximo da sua estrela do que qualquer outro planeta no Sistema Solar, por isso é chamado de "Júpiter quente". Outros tipos de planetas comuns em sistemas exoplanetários são as super-Terras e os mini-Netunos, ambos sem equivalentes no nosso Sistema Solar. 

Outra descoberta importante é que a diversidade de tipos estelares, seja grande ou pequena, quente ou fria, não impede a formação de planetas. No entanto, o tipo de estrela pode influenciar na frequência de certos tipos de planetas. O trabalho desenvolvido pela equipe do Dr. Eder Martioli teve como objetivo principal estudar duas estrelas muito semelhantes ao Sol, nas quais foram detectados planetas do tipo mini-Netuno e super-Júpiter, ambos sem similares no Sistema Solar. Isto permitiu uma compreensão mais aprofundada da presença de planetas com diferentes características e de como estes corpos evoluem num ambiente semelhante ao do nosso Sol.

O primeiro sistema desta descoberta, TOI-2141, consiste de uma estrela situada a 250 anos-luz de distância, com um tamanho praticamente idêntico e uma idade ligeiramente mais avançada que a do nosso Sol. A sua composição química também revela uma escassez de elementos mais pesados em comparação com o Sol. A quantidade de elementos mais pesados é um importante fator para o processo de formação planetária.

O planeta TOI-2141 b foi detectado através do método de trânsito, no qual o planeta passa em frente à estrela, gerando pequenos eclipses periódicos que permitem a sua detecção pelo monitoramento das variações no brilho estelar. Este planeta possui um diâmetro três vezes maior que o da Terra e uma massa cerca de 24 vezes maior que a da Terra, sendo classificado como um mini-Netuno. Completa uma órbita em torno da estrela a cada 18,26 dias, mantendo-se a uma distância de apenas 13% da distância entre a Terra e o Sol. Devido à sua proximidade à estrela, estima-se que o planeta possua uma temperatura de cerca de 450 graus Celsius. A sua densidade sugere a presença de um núcleo rochoso e uma atmosfera com uma grande quantidade de vapor de água, porém, apenas na forma gasosa devido às altas temperaturas. 

Não foram identificados outros planetas neste sistema, mas a possibilidade de encontrar outros planetas menores ainda não pode ser descartada devido às limitações dos métodos de observação. 

O segundo sistema desta descoberta, TOI-1736, revelou-se um tanto exótico. A estrela principal está a uma distância de 290 anos-luz e é muito similar ao Sol, principalmente em termos de temperatura e idade, sendo apenas cerca de 15% maior que o Sol e com uma concentração ligeiramente maior de elementos químicos mais pesados. Observou-se que o sistema TOI-1736 possui uma estrela companheira, menor e mais fria, caracterizando-se, portanto, como um sistema estelar binário. No entanto, a estrela mais fria está distante o suficiente para não interferir no sistema planetário, que orbita apenas em torno da estrela principal. 

Foram detectados pelo menos dois planetas neste sistema.  O primeiro, TOI-1736 b, também é um mini-Netuno, com um diâmetro 2,5 vezes maior que o da Terra e uma massa 13 vezes superior à da Terra. Apresenta trânsitos e orbita a uma distância da estrela correspondente a apenas 7% da distância entre a Terra e o Sol, completando uma órbita a cada 7,1 dias. Devido a esta proximidade, o planeta recebe significativamente mais radiação da estrela, resultando numa temperatura estimada de 800 graus Celsius. O segundo planeta, TOI-1736 c, não apresenta trânsitos, porém possui uma massa 2.800 vezes maior que a da Terra, quase 9 vezes maior que Júpiter, o maior planeta do Sistema Solar. Com este tamanho, TOI-1736 c é classificado como um super-Júpiter e por pouco não se tornou uma estrela. Ele completa uma órbita a cada 570 dias. Localizado a apenas 30% a mais de distância do que a Terra está do Sol, este planeta encontra-se na chamada zona habitável da estrela TOI-1736.

Esta zona é definida como a região ao redor da estrela com temperatura adequada para permitir a existência de água líquida na superfície do planeta. TOI-1736 c é provavelmente um gigante gasoso, similar a Júpiter, portanto, não se espera que tenha uma superfície sólida como a da Terra. No entanto, se por acaso o planeta TOI-1736 c abrigar uma lua, este corpo sólido poderia ter uma atmosfera, potencialmente permitindo a presença de água líquida e, quem sabe, ser um mundo habitável. As observações de TOI-1736 revelaram indícios de um possível terceiro planeta em órbita mais distante, necessitando de monitoramento por um período prolongado para a sua confirmação. Assim, a equipe continua observando TOI-1736 com o espectrógrafo SOPHIE no OHP, na esperança de, em breve, obter mais informações sobre esta estrela tão semelhante ao Sol, mas com um sistema planetário tão diverso.

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Laboratório Nacional de Astrofísica

quinta-feira, 14 de dezembro de 2023

Dúvidas gigantescas sobre exoluas gigantes

Tal como se pode assumir que as estrelas da nossa Via Láctea têm planetas em órbita, as luas em torno destes exoplanetas não devem ser incomuns. Isto torna ainda mais difícil a sua detecção.

© L. Hustak (ilustração de uma exolua em torno de um exoplaneta)

Até agora, apenas dois dos mais de 5.300 exoplanetas conhecidos tinham luas. Nas observações dos planetas Kepler-1625b e Kepler-1708b efetuadas pelos telescópios espaciais Kepler e Hubble, foi descoberto pela primeira vez vestígios de tais luas. 

Um novo estudo levanta agora dúvidas sobre estas afirmações anteriores. Como referem cientistas do Instituto Max Planck e do Observatório Sonnenberg, ambos na Alemanha, as interpretações "apenas planetárias" das observações são mais conclusivas. Para a sua análise, os pesquisadores utilizaram o algoritmo Pandora, recentemente desenvolvido, que facilita e acelera a procura de exoluas. Também analisaram que tipo de exoluas podem ser encontradas, em princípio, nas modernas observações astronômicas espaciais. 

A resposta é bastante chocante. No nosso Sistema Solar, o fato de um planeta ser orbitado por uma ou mais luas é mais a regra do que a exceção: para além de Mercúrio e Vênus, todos os outros planetas têm companheiras deste tipo; no caso do gigante gasoso Saturno, foram encontrados 140 satélites naturais até à data. Por isso, os cientistas consideram provável que planetas em sistemas estelares distantes também tenham luas. 

Quando o algoritmo foi aplicado aos dados observacionais de Kepler-1625b e de Kepler-1708b, os resultados foram surpreendentes. O planeta Kepler-1625b, semelhante a Júpiter, fez manchetes há cinco anos. Pesquisadores da Universidade de Columbia, em Nova York, relataram fortes indícios da existência de uma lua gigante em órbita, que faria parecer pequenas todas as luas do Sistema Solar. Os cientistas tinham analisado dados do telescópio espacial Kepler da NASA, que observou mais de 100.000 estrelas durante a sua primeira missão, entre 2009 e 2013, e descobriu mais de 2.000 exoplanetas. Foram novamente encontradas pistas em observações posteriores com o telescópio espacial Hubble. E então, no ano passado, este extraordinário candidato a exolua ganhou companhia: outra lua gigante muito maior do que a Terra orbita o planeta Kepler-1708b, do tamanho de Júpiter.

As exoluas estão tão distantes que não as podemos ver diretamente, mesmo com os telescópios modernos mais potentes. Em vez disso, os telescópios registam as flutuações do brilho de estrelas distantes, cuja série temporal se designa por curva de luz. Se um exoplaneta passa em frente da sua estrela, a partir da perspectiva da Terra, escurece a estrela por uma pequena fração. Este evento chama-se trânsito e repete-se regularmente com o período orbital do planeta em torno da estrela. Uma exolua, acompanhando o planeta, teria um efeito de escurecimento semelhante. O seu vestígio na curva de luz não seria apenas significativamente mais fraco. Devido ao movimento da lua e do planeta em torno do seu centro mútuo de gravidade, este escurecimento adicional na curva de luz seguiria um padrão bastante complicado. E há outros efeitos a considerar, como os eclipses planeta-lua, as variações naturais de brilho da estrela e outras fontes de ruído geradas durante as medições telescópicas. 

Um algoritmo compara depois estas curvas de luz simuladas com a curva de luz observada e procura a melhor correspondência. No caso do planeta Kepler-1708b, descobriu-se agora que os cenários sem lua podem explicar os dados observacionais com a mesma exatidão que os cenários com lua. A probabilidade de uma lua em órbita do Kepler-1708b é claramente menor do que a registada anteriormente. Os dados não sugerem a existência de uma exolua em torno de Kepler-1708b. 

Os cientistas argumentam agora que a variação instantânea do brilho estelar ao longo do seu disco, um efeito conhecido como escurecimento do limbo estelar, tem um impacto crucial no sinal proposto da exolua. O limbo do disco solar, por exemplo, parece mais escuro do que o centro. As novas e extensas análises mostram também que os algoritmos de procura de exoluas produzem frequentemente falsos positivos. No caso de uma curva de luz como a de Kepler-1625b, a taxa de resultados falsos é provavelmente de cerca de 11%.

De acordo as análises, apenas as luas particularmente grandes que orbitam o seu planeta numa órbita larga são detectáveis utilizando a tecnologia atual. Comparadas com as luas familiares do nosso Sistema Solar, seriam todas esquisitas: pelo menos com o dobro do tamanho de Ganimedes, a maior lua do Sistema Solar e, portanto, quase tão grande como a Terra. As primeiras exoluas que serão descobertas em futuras observações, como as da missão PLATO, serão certamente muito incomuns.

Um artigo foi publicado na revista Nature Astronomy

Fonte: Max Planck Institute

sexta-feira, 8 de dezembro de 2023

Descoberto um exoplaneta demasiado grande para a sua estrela

Os pesquisadores da Universidade Estatal da Pensilvânia relatam a descoberta de um planeta demasiado massivo que sua estrela hospedeira.

© U. Pensilvânia (ilustração do exoplaneta LHS-3154 b)

O exoplaneta LHS-3154 b é 13 vezes mais massivo do que a Terra e está em órbita da estrela "ultrafria" LHS-3154, que por sua vez é nove vezes menos massiva do que o Sol. A razão de massa do planeta recém-descoberto com a sua estrela é mais de 100 vezes superior ao da Terra e do Sol. 

A descoberta revela o planeta mais massivo conhecido numa órbita próxima em torno de uma estrela anã ultrafria, as estrelas menos massivas e mais frias do Universo. A descoberta vai contra o que as teorias atuais preveem para a formação de planetas em torno de estrelas pequenas e marca a primeira vez que um planeta com uma massa tão elevada foi observado em órbita de uma estrela de massa tão baixa. 

O disco de formação planetária em torno da estrela de baixa massa LHS-3154 não deverá ter massa sólida suficiente para formar este planeta. Mas ele existe, por isso há necessidade de reexaminar a nossa compreensão de como os planetas e as estrelas se formam.

O planeta foi detectado usando o espectrógrafo HPF (Habitable Zone Planet Finder), que foi concebido para detectar planetas em órbita das estrelas mais frias localizados fora do Sistema Solar. Acoplado ao telescópio Hobby-Eberly do Observatório McDonald, EUA, o HPF fornece algumas das medições de maior precisão até à data de tais sinais infravermelhos de estrelas próximas.

O núcleo planetário pesado deste exoplaneta inferido pelas medições da equipe exigiria uma maior quantidade de material sólido no disco de formação planetária do que os modelos atuais preveem. A descoberta também levanta questões sobre os conhecimentos anteriores da formação de estrelas, uma vez que a massa de poeira e a relação poeira-gás do disco que rodeia estrelas como LHS-3154, quando eram jovens e recém-formadas, teriam de ser 10 vezes superiores ao que foi observado para formar um planeta tão massivo.

Um artigo foi escrito na revista Science.

Fonte: Leiden University

sábado, 2 de dezembro de 2023

Desvendando um raro sistema com seis planetas

O satélite CHEOPS (CHaracterising ExOPlanet Satellite) da ESA forneceu os dados cruciais para compreender um misterioso sistema exoplanetário intrigante.

© T. Roger (padrão geométrico criado com seis exoplanetas)

A estrela HD 110067 encontra-se a cerca de 100 anos-luz de distância, na direção da constelação setentrional de Cabeleira de Berenice. Em 2020, o TESS (Transiting Exoplanet Survey Satellite) da NASA detectou quedas no brilho da estrela que indicavam que os planetas estavam passando em frente à sua superfície. Uma análise preliminar revelou dois possíveis planetas. Um com um período orbital de 5,642 dias, e o outro com um período que ainda não era possível determinar. 

Dois anos mais tarde, o TESS voltou a observar a mesma estrela. A análise dos conjuntos de dados combinados excluiu a interpretação original, mas apresentou dois possíveis planetas diferentes. Embora estas detecções fossem muito mais certas do que as originais, havia muita coisa nos dados do TESS que ainda não fazia sentido. 

Foi confirmada também a existência de um terceiro planeta no sistema e notou-se a possibilidade de desvendar todo o sistema, porque era agora claro que os três planetas estavam em ressonância orbital. O planeta mais exterior demora 20,519 dias para completar uma órbita, o que é extremamente perto de 1,5 vezes o período orbital do planeta seguinte, com 13,673 dias. Este, por sua vez, é quase exatamente 1,5 vezes o período orbital do planeta interior, com 9,114 dias. A previsão de outras ressonâncias orbitais e a sua correspondência com os restantes dados incompreendidos permitiu à descoberta dos outros três planetas do sistema. 

A descoberta de sistemas orbitais ressonantes é extremamente importante, porque fornece informações sobre a formação e a evolução subsequente do sistema planetário. Os planetas em torno de estrelas tendem a formar-se em ressonância, mas podem ser facilmente perturbados. Por exemplo, um planeta muito massivo, um encontro próximo com uma estrela passageira, ou um evento de impacto gigante podem perturbar o equilíbrio. Como resultado, muitos dos sistemas multiplanetários conhecidos não estão em ressonância, mas parecem suficientemente próximos para poderem ter sido ressonantes em tempos. No entanto, os sistemas multiplanetários que preservam a sua ressonância são raros. 

Apenas cerca de um por cento de todos os sistemas permanecem em ressonância. É por isso que HD 110067 é especial e convida a um estudo mais aprofundado. Evidencia a configuração prístina de um sistema planetário que sobreviveu intocado. Dos apenas três sistemas ressonantes com seis planetas conhecidos, este é agora o segundo encontrado pelo CHEOPS, e em apenas três anos de operações. 

HD 110067 é o sistema mais brilhante conhecido com quatro ou mais planetas. Uma vez que estes planetas são todos do tamanho de um sub-Netuno, com atmosferas que são provavelmente alargadas, são candidatos ideais para o telescópio espacial James Webb, e os futuros telescópios ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) e PLATO (PLAnetary Transits and Oscillations of stars) da ESA, estudarem a composição das suas atmosferas.

Um artigo foi publicado na revista Nature

Fonte: Instituto de Astrofísica de Canarias

Esclarecendo a visão de mundos aquáticos distantes

Os cientistas simularam as condições que permitem a formação de céus nublados em exoplanetas ricos em água, um passo crucial para determinar de que forma a nebulosidade dificulta as observações dos telescópios terrestres e espaciais.

 © U. Johns Hopkins (dois exoplanetas orbitando sua estrela hospedeira)

A pesquisa fornece novas ferramentas para estudar a química atmosférica dos exoplanetas e ajudará os cientistas a modelar a forma como os exoplanetas com água se formam e evoluem, descobertas que poderão ajudar na procura de vida para além do nosso Sistema Solar.

Segundo os pesquisadores, o fato de a atmosfera de um planeta conter neblinas ou outras partículas tem uma influência marcante nas temperaturas globais, nos níveis de entrada da luz estelar e em outros fatores que podem dificultar ou promover a atividade biológica. 

As experiências foram realizadas numa câmara para determinar a quantidade de neblina que se pode formar em planetas aquáticos fora do Sistema Solar. A neblina é constituída por partículas sólidas suspensas em gás e altera a forma como a luz interage com este gás. Diferentes níveis e tipos de neblina podem afetar a forma como as partículas se espalham através de uma atmosfera, alterando a detecção de planetas distantes com telescópios.

Os cientistas estudam os exoplanetas com telescópios que observam a forma como a luz atravessa a sua atmosfera, detectando a forma como os gases atmosféricos absorvem diferentes tonalidades ou comprimentos de onda desta luz. Observações distorcidas podem levar a erros de cálculo das quantidades de substâncias importantes no ar, como a água e o metano, e do tipo e níveis de partículas na atmosfera. Tais interpretações errôneas podem prejudicar as conclusões sobre as temperaturas globais, a espessura de uma atmosfera e outras condições planetárias. 

A equipe criou duas misturas de gás contendo vapor de água e outros compostos que se supõe serem comuns em exoplanetas. Então, um feixe de luz ultravioleta foi emitido sobre estas misturas para simular a forma como a luz de uma estrela iniciaria as reações químicas que produzem as partículas de neblina. Depois foi medida a quantidade de luz que as partículas absorviam e refletiam para compreender como interagiam com a luz na atmosfera.

Os novos dados coincidiram com as assinaturas químicas de um exoplaneta bem estudado chamado GJ 1214 b com mais exatidão do que a pesquisa anterior, demonstrando que neblinas com diferentes propriedades ópticas podem levar a interpretações erradas da atmosfera de um planeta. As atmosferas exoplanetárias podem ser muito diferentes das do nosso Sistema Solar, sendo que há mais de 5.000 exoplanetas confirmados com diferentes químicas atmosféricas.

Um artigo foi publicado na revista Nature Astronomy

Fonte: Johns Hopkins University

sábado, 25 de novembro de 2023

Medindo o tamanho do exoplaneta mais próximo em trânsito

O telescópio espacial Hubble mediu o tamanho do exoplaneta mais próximo da Terra que passa pela face de uma estrela vizinha.

© STScI (ilustração do exoplaneta LTT 1445Ac)

Este alinhamento, chamado trânsito, abre a porta a estudos posteriores para ver que tipo de atmosfera, se é que existe, o mundo rochoso poderá ter. O pequeno planeta, LTT 1445Ac, foi descoberto pela primeira vez pelo TESS (Transiting Exoplanet Survey Satellite) da NASA em 2022. Mas a geometria do plano orbital do planeta em relação à sua estrela, vista da Terra, era incerta porque o TESS não tem a resolução óptica necessária. Isto significa que a detecção pode ter sido o chamado trânsito rasante, em que um planeta apenas atravessa uma pequena porção do disco da estrela hospedeira. Isto daria origem a um limite inferior impreciso do diâmetro do planeta.

© STScI (dois cenários do exoplaneta em trânsito)

Este diagrama compara dois cenários de como um exoplaneta do tamanho da Terra passa em frente da sua estrela hospedeira. O percurso inferior mostra o planeta apenas roçando a estrela. Estudar a luz de um trânsito deste tipo pode levar a uma estimativa incorreta do tamanho do planeta, fazendo-o parecer menor do que realmente é. O percurso superior mostra a geometria ótima, em que o planeta transita por todo o disco da estrela. A precisão do telescópio espacial Hubble pode distinguir entre estes dois cenários, produzindo uma medição precisa do diâmetro do planeta.

As observações do Hubble mostram que o planeta faz um trânsito normal por todo o disco da estrela, o que lhe dá um tamanho real de apenas 1,07 vezes o diâmetro da Terra. Isto significa que o planeta é um mundo rochoso, como a Terra, com aproximadamente a mesma gravidade à superfície. Mas, com uma temperatura à superfície de cerca de 260º C, é demasiado quente para a vida tal como a conhecemos. 

O planeta orbita a estrela LTT 1445A, que faz parte de um sistema triplo de três estrelas anãs vermelhas, a 22 anos-luz de distância, na direção da constelação de Erídano. A estrela tem dois outros planetas maiores que LTT 1445Ac. Um par íntimo de duas outras estrelas anãs, LTT 1445B e C, encontra-se a cerca de 4,8 bilhões de quilômetros de distância da estrela LTT 1445A, também resolvido pelo Hubble. O alinhamento das três estrelas e a órbita do par BC, vista de lado, sugerem que tudo no sistema é coplanar, incluindo os planetas conhecidos.

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: Harvard–Smithsonian Center for Astrophysics

segunda-feira, 20 de novembro de 2023

Qual a razão pela qual alguns exoplanetas estão encolhendo?

Alguns exoplanetas parecem estar perdendo as suas atmosferas e encolhendo.

© STScI (ilustração do exoplaneta TOI-421 b)

Num novo estudo realizado com dados do aposentado telescópio espacial Kepler da NASA, os astrônomos encontraram evidências de uma possível causa: os núcleos destes planetas estão empurrando as suas atmosferas de dentro para fora.

Os exoplanetas existem numa variedade de tamanhos, desde pequenos planetas rochosos a colossais gigantes gasosos. No meio estão as super-Terras rochosas e os maiores sub-Netunos com atmosferas inchadas. Mas há uma ausência conspícua, uma "lacuna de tamanho", de planetas que se situam entre 1,5 e 2 vezes o tamanho da Terra (ou entre super-Terras e sub-Netunos). 

Os cientistas já confirmaram a detecção de mais de 5.000 exoplanetas, mas há menos planetas do que se esperava com um diâmetro entre 1,5 e 2 vezes o da Terra. 

Os pesquisadores pensam que esta lacuna pode ser explicada pelo fato de certos sub-Netunos perderem a sua atmosfera ao longo do tempo. Esta perda aconteceria se o planeta não tivesse massa suficiente e, portanto, força gravitacional, para manter a sua atmosfera. Assim, os sub-Netunos que não são suficientemente massivos encolheriam até ao tamanho das super-Terras, deixando a lacuna entre os dois tamanhos de planetas. 

Mas a forma exata como estes planetas estão perdendo a sua atmosfera tem permanecido um mistério. Os cientistas chegaram a um consenso sobre dois mecanismos prováveis: um deles é chamado de perda de massa alimentada pelo núcleo; e o outro, fotoevaporação. 

O estudo descobriu novas evidências que apoiam o primeiro. A perda de massa impulsionada pelo núcleo ocorre quando a radiação emitida pelo núcleo quente de um planeta empurra a atmosfera para longe do planeta ao longo do tempo. A outra explicação principal para a lacuna planetária, a fotoevaporação, ocorre quando a atmosfera de um planeta é essencialmente soprada pela radiação quente da sua estrela hospedeira. Neste cenário, a radiação altamente energética da estrela atua como um secador de cabelo num cubo de gelo.

Embora se pense que a fotoevaporação ocorre durante os primeiros 100 milhões de anos de um planeta, a perda de massa alimentada pelo núcleo ocorre muito mais tarde, perto um bilhão de anos de vida de um planeta. 

Neste estudoforam utilizados dados do K2 da NASA, uma missão alargada do telescópio espacial Kepler, para observar os aglomerados estelares do Presépio e das Híades, que têm entre 600 milhões e 800 milhões de anos. 

Como se pensa que os planetas têm geralmente a mesma idade que a sua estrela hospedeira, os sub-Netunos deste sistema estariam para além da idade em que a fotoevaporação poderia ter tido lugar, mas não suficientemente velhos para terem sofrido uma perda de massa impulsionada pelo núcleo. Assim, ao verificar que haviam muitos sub-Netunos nos aglomerados do Presépio e das Híades (em comparação com estrelas mais velhas em outros aglomerados), poderia concluir que a fotoevaporação não tinha ocorrido. Neste caso, a perda de massa alimentada pelo núcleo seria a explicação mais provável para o que acontece aos sub-Netunos menos massivos ao longo do tempo. 

Ao observar os aglomerados do Presépio e das Híades, os pesquisadores descobriram que quase 100% das estrelas nestes aglomerados ainda têm um planeta sub-Netuno ou um candidato a planeta na sua órbita. 

A julgar pelo tamanho destes planetas, os pesquisadores pensam que eles mantiveram as suas atmosferas. Isto difere das outras estrelas mais antigas observadas pelo K2 (estrelas com mais de 800 milhões de anos), das quais apenas 25% têm sub-Netunos em órbita. 

A idade mais avançada destas estrelas está mais próxima do período de tempo em que se pensa que ocorre a perda de massa impulsionada pelo núcleo. A partir destas observações, a concluiu-se que a fotoevaporação não poderia ter ocorrido nos aglomerados do Presépio e das Híades. Se tivesse acontecido, teria ocorrido centenas de milhões de anos antes, e estes planetas teriam pouca ou nenhuma atmosfera. Isto deixa a perda de massa alimentada pelo núcleo como a principal explicação para o que provavelmente acontece com as atmosferas destes planetas. 

Mas a pesquisa está longe de estar concluída, e é possível que a compreensão atual da fotoevaporação e/ou da perda de massa alimentada pelo núcleo possa evoluir. As descobertas serão provavelmente postas à prova por estudos futuros antes que alguém possa declarar o mistério desta lacuna planetária resolvido de uma vez por todas.

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: Jet Propulsion Laboratory