quarta-feira, 12 de março de 2014

Partículas de matéria escura podem ter gerado raios X

Os raios X de um comprimento de onda específico emanados dos núcleos de galáxias próximas e de aglomerados de galáxias poderiam ser sinais de partículas de matéria escura decaindo no espaço, reportaram duas equipes independentes.

fração de raios X emanados da área central da galáxia de Andrômeda

© NASA/CXC/SAO/Chandra (fração de raios X emanados da área central da galáxia de Andrômeda)

Se essa interpretação estiver correta, então a matéria escura poderia consistir de estranhas partículas chamadas de neutrinos estéreis que pesam cerca de 1/100 de um elétron. Contudo, alguns pesquisadores são cépticos.

Por décadas, os astrônomos e os astrofísicos pensaram que alguma parte da misteriosa matéria escura precisava fornecer a gravidade necessária para manter galáxias individuais se afastando. De fato, o atual modelo padrão da cosmologia indica que uma galáxia típica se forma dentro de um vasto aglomerado, ou halo de matéria escura, cuja a gravidade mantém as estrelas juntas, impedindo que elas saiam vagando pelo espaço. Contudo, os cientistas não sabem o que é matéria escura, já que elas nunca foram detectadas por outro modo, a não ser pelo seu efeito na gravidade.

Agora, duas equipes reportaram os possíveis sinais das partículas da matéria escura revelando-a de outra maneira, ou seja, por um decaimento muito lendo dos prótons normais. Ambos os grupos basearam seus estudos em dados obtidos por um dos observatórios espaciais de maior sucesso, o X-ray Multi-Mirror Misson, ou XMM-Newton, da ESA, que foi lançado em Dezembro de 1999 e ainda adquiri dados importantes para o progresso da astronomia. Esra Bulbul, uma astrofísica no Harvard-Smithsonian Center for Astrophysics em Cambridge, Massachusetts, e seus colegas descobriram raios X de uma energia muito específica, de 3,5 keV (quiloelétron volts), brilhando de 73 aglomerados de galáxias, incluindo o Aglomerado Perseus. O grupo de Harvard, também utilizou os dados do observatório de raios X Chandra da NASA, lançado em Julho de 1999.

O estudo está num artigo submetido para o The Astrophysical Journal.

Fonte: Science

Detectado objeto com a aproximação mais rápida do Universo

A maior parte do Universo está fugindo de nós, pois ele está expandindo, afastando a maior parte das outras galáxias.

ilustração de jato emitido no centro da galáxia M87

© NASA (ilustração de jato emitido no centro da galáxia M87)

A luz de galáxias distantes viaja em nossa direção por esse espaço em expansão, que estica sua luz até comprimentos de onda mais longos, ou mais vermelhos. Como resultado, o espectro da maioria das galáxias apresenta um desvio para o vermelho.
Agora astrônomos descobriram acidentalmente o maior desvio para o azul já visto, em uma estrela que um buraco negro gigante pode ter lançado em nossa direção.
Em pequenas distâncias, a gravidade reverteu a expansão do Universo, então modestos desvios para o azul são comuns.
Nem o Sistema Solar e nem a galáxia estão se expandindo. Nem mesmo o Grupo Local, o conjunto de aproximadamente 75 galáxias que inclui a Via Láctea, está em expansão. Na verdade, o maior membro do Grupo Local, a Galáxia de Andrômeda, está vindo em nossa direção: ela tem um desvio para o azul de 300 km/s.
Mas astrônomos identificaram um objeto muito além das fronteiras do Grupo Local, com um desvio para o azul de 1.026 km/s, superando em muito o recorde anterior de 780 km/s estabelecido por uma estrela na Galáxia de Andrômeda. “É sempre divertido fazer essas descobertas”, declara Nelson Caldwell, astrônomo do Centro de Astrofísica Harvard-Smithsonian, que realizou não apenas esta descoberta, mas também a anterior. “E foi totalmente acidental!”
Astrônomos já tinham registrado velocidades maiores quando jatos ou explosões atiravam detritos em nossa direção, mas eles nunca viram o corpo principal de uma estrela, aglomerado estelar ou galáxia exibir um desvio tão extremo para o azul.
Caldwell e seus colegas estavam medindo desvios Doppler de aglomerados estelares ao redor da M87, uma galáxia elíptica gigante localizada no centro do Aglomerado de Virgem, a 54 milhões de anos-luz da Terra.
Ao contrário do Grupo Local, que só tem duas galáxias gigantes, Andrômeda e nossa própria Via Láctea, o aglomerado de Virgem tem dezenas de grandes galáxias. A M87 tem um número enorme de aglomerados estelares muito próximos uns dos outros, chamados de “globulares”.
Enquanto a Via Láctea tem aproximadamente 160 aglomerados globulares conhecidos, a M87 tem cerca de 10 mil. Além disso, o centro da M87 tem um buraco negro que faz o da Via Láctea parecer minúsculo, pesando entre seis e sete bilhões de massas solares, mais de mil vezes as quatro milhões de massas solares do buraco negro que ocupa o centro da Via Láctea.
Em 2005, astrônomos relataram a descoberta de uma “estrela em hipervelocidade” que o buraco negro central da Via Láctea havia arremessado para fora. De acordo com uma ideia proposta há duas décadas, quando um sistema estelar binário chega perto o bastante de um buraco negro, uma estrela cai dentro dele, perdendo uma grande quantidade de energia; para conservar energia, a outra estrela se afasta em alta velocidade.
Um cenário diferente, envolvendo três corpos estelares, pode explicar o que a equipe de Caldwell chamou de “primeiro aglomerado globular em hipervelocidade”.
Se o buraco negro da M87 realmente consistir de dois buracos negros orbitando um ao outro, eles teriam a capacidade de arremessar um aglomerado estelar que se aproximasse demais. A gravidade do aglomerado faz os dois buracos negros se aproximarem um pouco mais um do outro, fazendo com que percam energia orbital que é transferida para o aglomerado estelar. Se esse aglomerado se afastar em nossa direção, ele poderia adquirir um grande desvio para o azul mesmo que a galáxia que o aremessou tenha um desvio para o vermelho de 1.307km/s.

“Esse é um objeto muito interessante”, declara Daniel Batcheldor, astrônomo do Instituto de Tecnologia da Flórida, que não tem afiliação com os pesquisadores. “Nós suspeitamos que, no passado, um buraco negro binário tenha existido no centro da M87, mas não achamos que exista um atualmente”.
Um buraco negro binário pode surgir após a colisão de duas grandes galáxias, cada uma com seus próprios buracos negros. Além disso, essas fusões galácticas explicariam o tamanho colossal da M87. Quando seu buraco negro central ainda tinha a forma de dois buracos negros supermassivos distintos, ele poderia ter expulsado o aglomerado estelar.
Mas Batcheldor declara que o objeto com desvio para o azul poderia ser uma galáxia-anã no lado distante da M87, mergulhando na galáxia, o que explicaria sua alta velocidade em nossa direção.
Observações adicionais serão fundamentais. “Para realmente determinar se o aglomerado foi ejetado da M87, nós precisamos saber sua distância”, explica Caldwell. O telescópio espacial Hubble pode vislumbrar as estrelas mais brilhantes do aglomerado, que revelarão sua distância. Se estiverem mais perto que a M87, o cenário de ejeção ganharia apoio.
Apesar de seu extremo desvio para o azul o objeto não nos atingirá, porque certamente tem algum movimento lateral. Mas seu futuro será solitário. “Esse objeto acabará saindo do Aglomerado de Virgem, e então ficará entre aglomerados galácticos”, observa Caldwell. “Se ele realmente tiver sido ejetado por algum mecanismo de buracos negros binários, então provavelmente devem haver mais alguns deles por lá. Com certeza nós vamos continuar procurando”.

Um artigo do trabalho foi enviado para o periódico The Astrophysical Journal Letters.

Fonte: Scientific American

terça-feira, 11 de março de 2014

No coração da Nebulosa da Roseta

No coração da Nebulosa da Roseta, localiza-se um brilhante aglomerado aberto de estrelas que ilumina a nebulosa.

Nebulosa da Roseta

© Don Goldman (Nebulosa da Roseta)

As estrelas da NGC 2244 se formaram do gás ao redor a poucos milhões de anos atrás. A imagem acima foi feita em Janeiro de 2014 usando múltiplas exposições e cores muito específicas oriundas do enxofre (vermelho), hidrogênio (verde) e oxigênio (azul), e captura a região central com detalhes impressionantes. Um vento quente das partículas flui para longe do aglomerado de estrelas e contribui para uma complexa mistura de filamentos de gás e poeira enquanto vagarosamente evacua o centro do aglomerado. O centro da nebulosa da Roseta mede cerca de 50 anos-luz de diâmetro, localiza-se a cerca de 4.500 ano-luz de distância, e é visível com binóculos quando apontados para a constelação do Unicórnio (Monoceros).

Fonte: NASA

segunda-feira, 10 de março de 2014

Matéria escura gera raios gama no centro galáctico?

O que está criando os raios gama no centro da nossa galáxia?

emissão de raios gama do centro galáctico

© Fermi Space Telescope (emissão de raios gama do centro galáctico)

Uma das respostas é que seja a elusiva matéria escura. Nos últimos anos o telescópio espacial Fermi da NASA tem imageado o centro da nossa galáxia em raios gama. Análises repetidas e detalhadas indicam que a região ao redor do centro galáctico parece ser muito brilhante para ser gerada somente pelas fontes de raios gama conhecidas. Uma imagem bruta da região do Centro Galáctico em raios gama é mostrada acima na esquerda, enquanto que a imagem da direita tem todas as fontes conhecidas subtraídas, deixando um excesso inesperado. Um modelo hipotético que parece se ajustar ao excesso envolve um tipo de matéria escura conhecida como WIMPs (Weakly Interacting Massive Particles), que pode estar colidindo com ela própria para criar os raios gama detectados. Essa hipótese é controversa, e os debates e investigações mais detalhadas estão a caminho. Encontrar a natureza da matéria escura é uma das grandes questões da ciência moderna, como previamente esse tipo incomum de matéria cosmologicamente pervasiva tem se mostrado somente através da gravitação.

Fonte: NASA

sábado, 8 de março de 2014

Magnetismo explana o mistério dos discos de formação de planetas

Os astrônomos dizem que tempestades magnéticas no gás orbitando jovens estrelas podem explicar um mistério que tem persistido desde antes de 2006.

loops magnéticos carregam gás e poeira no disco de formação de planetas

© NASA/JPL-Caltech (loops magnéticos carregam gás e poeira no disco de formação de planetas)

Os pesquisadores, usaram o telescópio espacial Spitzer da NASA para estudar estrelas em desenvolvimento que tiveram um momento complicado para entender por que as estrelas emitem mais luz infravermelha do que o que era esperado. Os discos de formação de planetas, que circulam as jovens estrelas são aquecidos pela luz das estrelas e brilham na luz infravermelha, mas o Spitzer detectou uma luz infravermelha adicional vindo de uma fonte desconhecida.

Uma nova teoria, com base em modelos tridimensionais da formação de discos de planetas sugere a resposta: O gás e a poeira suspensa acima dos discos em gigantescos loops magnéticos como os vistos no Sol, absorvem a luz das estrelas e brilha intensamente na luz infravermelha.

“Se você pudesse de alguma maneira permanecer num desses discos de formação de planetas e olhar para a estrela no centro, através da atmosfera do disco, você poderia ver o que se pareceria com o pôr-do-Sol”, disse Neal Turner do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia.

Os novos modelos descrevem melhor como o material de formação de planetas ao redor das estrelas é agitado, forjando seu caminho para a geração de futuros planetas, asteroides e cometas.

Embora a ideia das atmosferas magnéticas nos discos de formação de planetas não seja nova, essa é a primeira vez que integraram isso ao mistério do excesso de luz infravermelha observado. De acordo com Turner e seus colegas, as atmosferas magnéticas são similares àquelas que ocorrem na superfície do nosso Sol, onde linhas do campo magnético em movimento geram tremendas proeminências solares em grandes loops.

As estrelas nascem a partir do colapso de pacotes de enormes nuvens de gás e poeira, em rotação à medida que eles mergulham sob a força da gravidade. À medida que a estrela cresce de tamanho, mais material cai da nuvem, e a rotação achata esse material num disco tubulento. No final, planetas se aglomeram na parte de fora desse material.

Na década de 1980, a missão Infrared Astronomical Satellite, um projeto conjunto que incluía a NASA, começou a encontrar mais luz infravermelha do que era esperado ao redor das estrelas jovens. Usando dados de outros telescópios, os astrônomos notaram a presença de discos empoeirados do material de formação de planetas. Mas eventualmente tem se tornado claro que os discos sozinhos não eram suficientes para gerar a luz infravermelha extra, especialmente no caso das estrelas com algumas vezes a massa do Sol.

Uma teoria introduziu a ideia de que ao invés de um disco, as estrelas eram circundadas por um gigantesco halo empoeirado, que interceptou a luz visível da estrela e irradiou novamente nos comprimentos de onda do infravermelho. Então, recentes observações feitas com telescópios baseados em Terra, sugerem que tanto um disco e um halo foram necessários. Finalmente, modelos computacionais tridimensionais da turbulência nos discos mostram que os discos devem ter uma superfície nebulosa, com camadas de gás de baixa densidade suportando campos magnéticos, similares as proeminências solares que suportam o campo magnético do Sol.

O novo trabalho junta todos esses pedaços calculando como a luz das estrelas cai através do disco e de sua atmosfera nebulosa. O resultado é que a atmosfera absorve e re-irradia uma quantidade suficiente de toda a luz infravermelha extra.

“O material interceptado pela luz da estrela não localiza-se no halo, e nem no disco tradicional, mas num disco de atmosfera suportado por campos magnéticos”, disse Turner. “Essas atmosferas magnetizadas foram previstas de se formarem à medida que o disco dirige gás para dentro se chocando com a estrela em crescimento”.

Nos próximos anos, os astrônomos testarão essas ideias sobre a estrutura dos discos atmosféricos usando gigantescos telescópios baseados em Terra de forma integrada como interferômetros. Um interferômetro combina e processa dados de múltiplos telescópios para mostrar detalhes mais nítidos do que um telescópio pode fazer sozinho. Os espectros do gás turbulento nos discos também virão do telescópio SOFIA da NASA, do Atacama Large Millimeter/submillimeter Array (ALMA), no Chile, e do telescópio espacial James Webb da NASA depois de seu lançamento em 2018.

Fonte: NASA

A primeira medição direta da rotação de um buraco negro

Utilizando o observatório de raios X Chandra da NASA e o XMM-Newton ESA astrônomos analisaram um buraco negro supermassivo localizado a 6 bilhões de anos-luz da Terra que está girando muito rapidamente.

quasar RX J1131

© Chandra/Hubble (quasar RX J1131)

Esta primeira medição direta da rotação de um buraco negro tão distante é um avanço importante para a compreensão de como os buracos negros crescem ao longo do tempo. Os buracos negros são definidos por apenas duas características simples: massa e rotação. Embora os astrônomos tenham sido capazes de medir as massas dos buracos negros de forma muito eficaz, determinar sua velocidade de rotação é algo muito mais difícil.

Na última década, os astrônomos têm buscado formas de estimar a rotação de buracos negros em distâncias superiores a vários bilhões de anos-luz observando a região em torno deles naquela época. No entanto, a determinação das rotações destes buracos negros remotos envolve vários percursos que dependem uns dos outros. A equipe de Rubens Reis, da Universidade de Michigan, conseguiu finalmente determinar de modo preciso da rotação do buraco negro que produz um quasar extremamente brilhante conhecido como RX J1131-1231 ou simplesmente RX J1131. Por causa do alinhamento fortuito, a distorção do espaço-tempo pelo campo gravitacional de uma galáxia elíptica gigante localizada entre o quasar e a Terra atua como uma lente gravitacional que amplia a luz do quasar.

A lente gravitacional, prevista por Albert Einstein, oferece uma rara oportunidade de estudar a região mais interna de quasares distantes, agindo como um telescópio natural e ampliando a luz dessas fontes. “Devido a esta lente gravitacional, fomos capazes de obter informações muito detalhadas sobre o espectro de raios X do RX J1131″, disse o co-autor Mark Reynolds, também de Michigan. “Por sua vez, isso nos permitiu obter um valor muito preciso para o quão rápido o buraco negro está girando.” Os resultados revelarem que o buraco negro está girando aproximadamente na metade da velocidade da luz, ou seja, 150 mil quilômetros por segundo.

Um artigo foi publicado na revista Nature.

Fonte: NASA

sexta-feira, 7 de março de 2014

Choque de cometas explica caroço de gás em torno de estrela jovem

Astrônomos anunciaram a descoberta de um caroço inesperado de monóxido de carbono gasoso no disco de poeira que circunda a estrela Beta Pictoris.

ilustração de Beta Pictoris

© Goddard Space Flight Center/F. Reddy (ilustração de Beta Pictoris)

A descoberta, feita com observações obtidas pelo Atacama Large Millimeter/submillimeter Array (ALMA) situado no norte do Chile, é surpreendente uma vez que se espera que tal gás seja rapidamente destruído pela radiação estelar. Algo, provavelmente colisões frequentes entre objetos pequenos e gelados, como cometas, faz com que o gás esteja sendo constantemente criado.

A Beta Pictoris, uma estrela próxima facilmente observável a olho nu no céu austral, já é tida como sendo o arquétipo dos sistemas planetários jovens. Sabe-se que abriga um planeta que orbita a estrela a uma distância de 1,2 bilhões de quilômetros e foi uma das primeiras estrelas que se descobriu rodeada por um enorme disco de poeira. Há muitas estrelas que se encontram envolvidas por nuvens de poeira em movimento, os chamados detritos de poeira. Trata-se dos restos de uma colisão em cascata de rochas em torno da estrela, um pouco como a destruição colisional da estação espacial que aparece no filme Gravity (mas a uma escala muito maior).
As novas observações do ALMA mostram que o disco está permeado de gás de monóxido de carbono. Paradoxalmente, a presença deste gás, tão prejudicial aos humanos na Terra, poderá indicar que o sistema planetário Beta Pictoris se tornará eventualmente passível de abrigar vida. O bombardeamento de cometas que os seus planetas sofrem atualmente está muito provavelmente fornecendo-lhes água indispensável à vida. Os cometas contêm gelos de monóxido de carbono, dióxido de carbono, amônia e metano, no entanto a sua componente majoritária é uma mistura de poeira e gelo de água.

ALMA image of carbon monoxide around Beta Pictoris (infographic)

© ESO/NASA (diagrama da concentração de monóxido de carbono em torno de Beta Pictoris)

No entanto, o monóxido de carbono é rápida e facilmente destruído pela radiação estelar, que dura apenas cerca de 100 anos no local onde se encontra no disco de Beta Pictoris. Observá-lo num disco com 20 milhões de anos de idade é realmente uma surpresa. A pergunta é então: de onde é que este gás vem e porque é que ainda lá se encontra?
“A não ser que estejamos observando Beta Pictoris num momento muito particular, o monóxido de carbono deve estar sendo continuamente criado” diz Bill Dent, um astrônomo do ESO trabalhando no Escritório do ALMA em Santiago, Chile, e autor principal do artigo científico. “A fonte mais abundante de monóxido de carbono num sistema estelar jovem é a colisão de objetos gelados, desde cometas a objetos maiores do tamanho de planetas”.
Mas a taxa de destruição tem que ser muito elevada: “Para que haja a quantidade de monóxido de carbono que estamos observando, a taxa de colisões tem de ser verdadeiramente espantosa; uma colisão de um cometa grande a cada cinco minutos”, diz Aki Roberge, astrônomo no Goddard Research Center da NASA, em Greenbelt, EUA e co-autor do artigo. “E para termos este número de colisões, terá que haver uma enorme concentração de cometas”.
O ALMA mostrou ainda outra surpresa, já que as observações revelaram não apenas o monóxido de carbono mas permitiram também mapear a sua localização no disco, devido à capacidade única do ALMA em medir simultaneamente posições e velocidades: o gás concentra-se num único caroço compacto. Esta concentração situa-se a 13 bilhões de quilômetros de distância da estrela, o que corresponde a cerca de três vezes a distância de Netuno ao Sol. A razão por que o gás se concentra neste pequeno caroço tão longe da estrela permanece um mistério.
“Este caroço de gás é uma importante pista sobre o que se passa nas regiões mais externas deste sistema planetário jovem”, diz Mark Wyatt, astrônomo da Universidade de Cambridge, RU, e co-autor do artigo. Mark explica que existem dois processos pelos quais este caroço se pode ter formado: “Ou a atração gravitacional de um planeta ainda não detectado, com massa semelhante à de Saturno, concentra as colisões cometárias nesta pequena região, ou o que estamos vendo são os resquícios de uma colisão catastrófica entre dois planetas gelados com massas semelhantes à de Marte”.
Ambas estas hipóteses dão aos astrônomos razões para esperar descobrir vários outros planetas em torno de Beta Pictoris. “Este monóxido de carbono é apenas o início, podem haver outras moléculas pré-orgânicas mais complexas libertadas por estes corpos gelados”, acrescenta Roberge.
Estão previstas mais observações com o ALMA, que ainda não alcançou sua capacidade máxima, para se continuar estudando este intrigante sistema planetário e consequentemente ajudar-nos a compreender quais as condições que existiam durante a formação do nosso Sistema Solar.

Os novos resultados foram publicados na revista Science.

Fonte: ESO

Hubble testemunha a desintegração de um asteroide

O telescópio espacial Hubble da NASA/ESA fotografou algo que nunca antes havia sido visto, um asteroide se partindo, que acabou se fragmentando em dezenas de pedaços menores.

fragmentação do asteroide P/2013 R3

© Hubble (fragmentação do asteroide P/2013 R3)

Embora cometas frágeis já foram observados se rompendo ao se aproximarem do Sol, nada como o rompimento do asteroide P/2013 R3 havia sido observado antes no cinturão de asteroides.

“Isso é uma rocha. Vê-la se partindo bem diante de nossos olhos é algo espetacular”, disse David Jewitt, da UCLA, EUA, que liderou a investigação astronômica forense.

O asteroide, designado P/2013 R3 foi notado primeiramente como um objeto incomum e nebuloso em 15 de Setembro de 2013 pelas exploradores do céu Catalina e Pan-STARRS. Observações feitas na sequência, em 1 de Outubro de 2013 com o telescópio Keck em Mauna Kea, no Havaí, revelaram três corpos se movendo envoltos num envelope empoeirado que tinha aproximadamente o diâmetro da Terra.

“O Keck nos mostrou que essa coisa se mostraria espetacular quando observada pelo Hubble”, disse Jewitt. Com a sua resolução superior, as observações feitas do espaço com o Hubble, mostraram que haviam na verdade dez objetos distintos, cada um deles com uma cauda parecida com a de um cometa. Os quatro maiores fragmentos tinham cerca de 200 metros de raio, mais ou menos, o dobro do comprimento de um campo de futebol.

Os dados adquiridos com o Hubble mostraram que os fragmentos estavam derivando para longe um dos outros a uma velocidade de 1,5 quilômetros por hora, mais lentamente do que a velocidade de um ser humano. O asteroide começou a se romper no começo do ano passado, mas as últimas imagens mostram que alguns pedaços continuam aparecendo.

“Isso é algo realmente bizarro de se observar, nós nunca vimos algo como isso antes”, disse a co-autora Jessica Agarwal do Max Planck Institute for Solar System Research na Alemanha. “O rompimento pode ter diversas causas, mas as observaçõe do Hubble são detalhadas o suficiente para que nós possamos apontar o processo responsável”.

A contínua descoberta de mais fragmentos sugere que seja pouco provável que o asteroide se desintegrou devido a uma colisão com outro asteroide, o que seria algo instantâneo e violento em comparação com o que está se observando. Alguns desses detritos teriam também uma velocidade maior do que aquela que tem se observado.

Também é pouco provável que o asteroide tenha se rompido devido à pressão do gelo interior que foi aquecido e vaporizou. O objeto é muito frio para que pedaços de gelo sublimem de forma significante, e tem sido mantido a uma distância aproximada de 480 milhões de quilômetros do Sol por quase toda a existência do Sistema Solar.

Isso deixa como sugestão para a desintegração do asteroide o cenário em que devido a um efeito sutil da luz solar, a taxa de rotação do objeto aumentou vagarosamente com o tempo. Eventualmente, os pedaços foram rompidos devido a força centrífuga. A possibilidade do rompimento por esse fenômeno, conhecido como efeito YORP, tem sido discutida pelos cientistas por alguns anos, mas até o momento não havia sido observada. O efeito YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) ocorre quando a luz do Sol é absorvida pelo corpo e, em seguida, re-emitida na forma de calor. Quando a forma do corpo emissor não é perfeitamente regular, mais calor é emitido a partir de algumas regiões do que em outras. Isto cria um pequeno desequilíbrio que provoca um binário constante no corpo, alterando a sua velocidade de rotação.

Para o rompimento ocorrrer, o P/2013 R3 precisa ter uma fraca fratura interior, provavelmente resultante das numerosas e não destrutivas colisões que ele sofreu no passado com outros asteroides. A maioria dos pequenos asteroides que foram danificados severamente pelo caminho, criaram uma estrutura interna fraca. O P/2013 R3 é provavelmente o produto de uma colisão de um corpo ainda maior em algum momento no último bilhão de anos.

“Essa é a última coisa na fronteira das estranhas descobertas a respeito dos asteroides, incluindo o ativo asteroide P/2013 P5 que foi descoberto como tendo seis caudas”, disse Agarwal. “Isso indica que o Sol tem uma grande função na desintegração desses pequenos corpos do Sistema Solar, pressionando-os por meio da sua luz”.

Os detritos remanescentes do P/2013 R3 pesam 200.000 toneladas, e serão uma rica fonte de meteoroides no futuro. A maior parte deles, provavelmente cairá em direção ao Sol, mas uma pequena fração dos detritos pode um dia riscar nossos céus como meteoros.

Fonte: ESA

quinta-feira, 6 de março de 2014

A poeira estelar da NGC 1333

A NGC 1333 é vista na luz visível como uma nebulosa de reflexão, dominada por tonalidades azuladas características da luz estelar refletida pela poeira.

NGC 1333

© Al Howard (NGC 1333)

Ela está localizada a apenas 1.000 anos-luz de distância da Terra, na direção da constelação de Perseus, ela se posiciona na borda de uma grande nuvem molecular de formação de estrelas. Essa imagem com detalhes impressionantes se espalha por aproximadamente duas luas cheias no céu ou por cerca de 15 anos-luz, considerando a distância estimada da NGC 1333. Essa imagem mostra detalhes da região empoeirada juntamente com emissão vermelha contrastante dos objetos Herbig-Haro, jatos e ondas de choque de gás brilhante emanando de estrelas formadas recentemente. De fato, a NGC 1333 contém centenas de estrelas com menos de um milhão de anos de vida, a maior parte delas ocultas dos telescópios ópticos pela poeira estelar que permeia a região. O ambiente caótico pode ser similar àquele onde o Sol se formou a 4,5 bilhões de anos atrás.

Fonte: NASA

Glóbulos na Nebulosa da Galinha Fugitiva

Os ovos dessa galinha podem formar estrelas. A nebulosa de emissão mostrada abaixo, catalogada como IC 2944 ou Caldwell 100, é chamada de Nebulosa da Galinha Fugitiva, devido à forma parecida.

IC 2944

© Fred Vanderhaven (IC 2944)

A imagem acima, foi feita recentemente pelo observatório de Siding Spring na Austrália e apresentada em cores que possuem um significado científico. Observadas perto do centro da imagem, estão pequenas e escuras nuvens moleculares, ricas em poeira cósmica que obscurece a imagem. Chamados de Glóbulos de Thackeray em homenagem ao seu descobridor, esses “ovos” são locais potenciais para a condensação gravitacional de novas estrelas, embora seus destinos sejam incertos, já que eles estão sendo rapidamente erodidos pela intensa radiação de estrelas jovens próximas. Junto com porções de gás brilhante e regiões complexas de poeira de reflexão, essas estrelas massivas e energéticas são do aglomerado estelar aberto Collinder 249. Essa bela paisagem cósmica se espalha por cerca de 70 anos-luz na distância estimada da nebulosa de 6.000 anos-luz.

Fonte: NASA

Uma estrela pequena, um planeta pequeno… Pelo menos!

Um grupo de astrônomos do Reino Unido e do Chile relata a descoberta de oito novos planetas pequenos orbitando anãs vermelhas próximas, três das quais podem ser habitáveis.

ilustração de um dos exoplanetas em torno da anã vermelha

© Neil Cook (ilustração de um dos exoplanetas em torno da anã vermelha)

A partir deste resultado, os cientistas, liderados por Mikko Tuomi da Universidade de Hertfordshire, estimam que uma grande fração das anãs vermelhas, que constituem pelo menos 75% das estrelas no Universo, têm planetas de baixa massa.

Os pesquisadores descobriram os planetas através da análise de dados de arquivo de dois estudos planetários de alta precisão feitos com o instrumento UVES (Ultraviolet and Visual Echelle Spectrograph) e com o HARPS (High Accuracy Radial velocity Planet Searcher), ambos operados pelo Observatório Europeu do Sul (ESO) no Chile. Os dois instrumentos são usados para medir quanto uma estrela é afetada pela gravidade de um planeta em órbita.

À medida que um planeta invisível orbita uma estrela distante, a atração gravitacional entre os dois faz com que a estrela tenha um movimento oscilatório no espaço. Esta oscilação periódica é detectada através do estudo da luz da estrela. Ao combinar dados do UVES e do HARPS, a equipe foi capaz de detectar sinais demasiado fracos para serem vistos nos dados de um só instrumento.

Com esta técnica mais sensível foi possível descobrir oito exoplanetas, três dos quais encontram-se na chamada "zona habitável" das suas estrelas e são apenas um pouco mais maciços que a Terra. Os planetas nesta região, onde a temperatura é ideal para a existência de água líquida à sua superfície, são mais propensos a suportar vida.

Todos os planetas recém-descobertos orbitam anãs vermelhas entre 15 e 80 anos-luz do Sol, tornando-os relativamente próximos do Sistema Solar. Os oito planetas demoram entre duas semanas e nove anos a completar cada órbita, colocando-os a uma distância das suas estrelas entre 6 e 600 milhões de quilômetros (equivalente a entre 0,04 e 4 vezes a distância da Terra ao Sol).

"Nós estavamos apenas estudando os dados do UVES, e notamos uma variabilidade que não podia ser explicada por um ruído aleatório. Ao combinar essas observações com dados do HARPS, conseguimos detectar este tesouro espetacular de candidatos a planeta," disse Mikko Tuomi. "Estamos claramente estudando uma população altamente abundante de planetas de baixa massa, e podemos esperar encontrar muitos mais no futuro próximo, mesmo ao redor de estrelas muito mais próximas do Sol."

A equipe usou técnicas inovadoras de análise para sintetizar os sinais planetários nos dados. Em particular, aplicaram a regra de probabilidades condicionais de Bayes que permite responder à questão "Qual a probabilidade de uma determinada estrela ter planetas em órbita com base nos dados disponíveis?" Esta abordagem, em conjunto com uma técnica que permite aos pesquisadores filtrar ruído em excesso nas medições, tornou possível as detecções.

Hugh Jones, também da Universidade de Hertfordshire, afirma: "este novo resultado é algo já esperado, no sentido de que estudos de anãs vermelhas distantes com a missão Kepler indicam uma população significativa de planetas com pequenos raios. Por isso, é agradável ser capaz de confirmar isso com uma amostra de estrelas que estão entre as mais brilhantes da sua classe."

Estas descobertas acrescentam os oito novos exoplanetas ao total anterior de 17 já conhecidos em torno de estrelas de baixa massa. A equipe também pretende acompanhar outros dez sinais mais fracos.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

quarta-feira, 5 de março de 2014

Primeira luz do MUSE

Um novo instrumento chamado MUSE (Multi Unit Spectroscopy Explorer) foi recentemente instalado no Very Large Telescope (VLT) do ESO no Observatório do Paranal, no norte do Chile.

galáxia  NGC 4650A

© MUSE (galáxia  NGC 4650A)

O MUSE observou galáxias distantes, estrelas brilhantes e outros alvos de teste durante o primeiro período de observações bem sucedidas.

Dando sequência aos testes e da aceitação preliminar na Europa em 12 de setembro de 2013, o MUSE foi enviado para o Observatório do Paranal do ESO, no Chile. Foi montado novamente no campo base antes de ser cuidadosamente transportado até à sua nova casa, o VLT, onde está agora instalado no telescópio principal número 4. O MUSE é o mais recente da segunda geração de instrumentos para o VLT (os dois primeiros foram o X-shooter e o KMOS e o próximo será o SPHERE, que será instalado brevemente).
O líder da equipe e pesquisador principal do instrumento, Roland Bacon (Centre de Recherche Astrophysique de Lyon, França) diz: “Foi necessário muito trabalho por parte de muitas pessoas e durante muitos anos, mas finalmente conseguimos! Parece estranho que esta amálgama de óptica, mecânica e eletrônica de sete toneladas seja agora uma fantástica máquina do tempo para perscrutar o Universo primordial. Estamos muito orgulhosos deste feito, o MUSE permanecerá  um instrumento único nos anos vindouros”.
Os objetivos científicos do MUSE incluem investigar as épocas primordiais do Universo, de modo a estudar os mecanismos da formação de galáxias e os movimentos do material e as propriedades químicas de galáxias próximas. Este instrumento terá muitas outras aplicações, desde o estudo de planetas e satélites do Sistema Solar, passando pelas propriedades de regiões de formação estelar na Via Láctea até ao Universo longínquo.

nebulosa de Órion em vários comprimentos de onda

© MUSE (nebulosa de Órion em vários comprimentos de onda)

Como ferramenta única e poderosa de descobertas, o MUSE utiliza 24 espectrógrafos que separam a luz nas suas componentes de cor, de modo a criar ao mesmo tempo imagens e espectros de regiões selecionadas do céu. O instrumento dá-nos imagens a três dimensões do Universo, onde a terceira dimensão corresponde a um espectro para cada pixel. Esta técnica, conhecida por espectroscopia de campo integral, permite aos astrônomos estudar simultaneamente as propriedades de diferentes partes de um objeto, tal como uma galáxia, para perceber como é que este gira e assim poder medir a sua massa. Permite igualmente determinar a composição química e outras propriedades físicas em diferentes partes do objeto. Esta técnica é utilizada há muitos anos, mas com o MUSE deu agora um salto em sensibilidade, eficiência e resolução. Uma maneira de descrever este fato é dizer que o MUSE combina simultaneamente imagens de alta resolução com espectroscopia.  Durante a análise subsequente os astrônomos podem assim deslocar-se pelos dados e estudar diferentes vistas do objeto a diferentes comprimentos de onda, tal como se sintoniza uma televisão para os diferentes canais a diferentes frequências.
O MUSE junta o potencial de descoberta de uma engenho para obter imagens às capacidades de medição de um espectrógrafo, ao  mesmo tempo que tira vantagem de uma qualidade de imagem muito melhorada obtida por óptica adaptativa.

O MUSE é o resultado de dez anos de concepçãp e desenvolvimento por parte do consórcio MUSE - liderado pelo Centre de Recherche Astrophysique de Lyon, França e as suas instituições parceiras Leibniz-Institut für Astrophysik Potsdam (AIP, Alemanha),  Institut für Astrophysik Göttingen (IAG, Alemanha), Institute for Astronomy ETH Zurich (Suíça), L'Institut de Recherche en Astrophysique et Planétologie (IRAP, França), Nederlandse Onderzoekschool voor de Astronomie (NOVA, Holanda) e o ESO.
Desde o início de 2014, Bacon e o resto da equipe de integração e gestão do MUSE no Paranal têm registrado a história do MUSE numa série de blogs, que podem ser seguidos neste link. A equipe apresentará os primeiros resultados do MUSE no Workshop 3D2014, que terá lugar brevemente no ESO, em Garching bei München, Alemanha.
“Uma musa é uma fonte de inspiração. E de fato, o MUSE inspirou-nos ao longo de muitos anos e continuará a fazê-lo no futuro”, diz Bacon numa entrada de blog sobre a primeira luz do instrumento. “Não tenho dúvidas de que o nosso MUSE saberá igualmente encantar os astrônomos de todo o mundo”.

Fonte: ESO

segunda-feira, 3 de março de 2014

Nebulosa produz estrelas gigantescas

O observatório espacial Herschel capturou a imagem de uma nebulosa que funciona como berçário de estrelas massivas.

nebulosa NGC 7538

© Herschel (nebulosa NGC 7538)

Denominada NGC 7538, a nebulosa está localizada a aproximadamente 9 mil anos-luz da Terra, e é considerada uma das poucas regiões de formação de estrelas massivas relativamente próximas de nós, o que permite aos astrônomos observar esse demorado processo em grandes detalhes.

Fábricas de estrelas como a NGC 7538 consistem principalmente de gás hidrogênio, mas também contêm pequenas quantidades de poeira cósmica. Foi através desse componente menor, porém crucial, que o observatório Herschel conseguiu registrar imagens dessas regiões de formação estelar, isso porque a poeira brilha intensamente nos comprimentos de onda infravermelha utilizados pelos cientistas.

Com massa total equivalente a 400 mil sóis, essa nebulosa é uma fábrica ativa a partir da qual estrelas ganham vida, especialmente aquelas gigantescas, com massa superior a oito vezes a do nosso Sol. Treze das estrelas em formação já contam com massas maiores do que 40 sóis, e são ainda extremamente frias, com temperaturas inferiores a –250ºC.

A equipe focalizou estrelas jovens do tipo OB através do Herschel, identificando 780 fontes densas e classificando 224 dessas. Foram isolados 13 aglomerados estelares com massas superiores a 40 M e temperaturas abaixo de 15 K. Eles variam em tamanho de 0,4 pc para 2,5 pc e têm densidades entre 3 × 103 cm–3 e 4 × 104 cm–3.

A NGC 7538 tem uma estrutura altamente filamentar, apresentando um grande anel devido a evacuação de material, que faz fronteira com muitas fontes frias.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: ESA

sábado, 1 de março de 2014

A nebulosa da Serpente: de sementes cósmicas às estrelas massivas

Novas imagens realizadas pelo telescópio Smithsonian's Submillimeter Array (SMA)  fornece a visão mais detalhada de berçários estelares dentro da nebulosa da Serpente.

nebulosa da Serpente

© SMA (nebulosa da Serpente)

Estas imagens oferecem novas perpectivas sobre como sementes cósmicas podem se transformar em estrelas massivas.

A nebulosa da Serpente é um alongamento com quase 100 anos-luz de comprimento, e está localizada a cerca de 11.700 anos-luz da Terra na direção da constelação Ophiuchus.

Em imagens do telescópio espacial Spitzer da NASA, que observa na luz infravermelha, a nebulosa da Serpente aparece como um cacho escuro sinuoso contra o fundo estrelado. Ela é um alvo promissor, porque mostra o potencial para formar muitas estrelas massivas (estrelas com mais de 8 vezes a massa do nosso Sol). O SMA foi usado para observar a radiação sub-milimétrica da nebulosa, a radiação emitida entre o infravermelho e ondas de rádio do espectro eletromagnético.

painéis mostrando as regiões P1 e P6 da nebulosa da Serpente

© Spitzer/Herschel (painéis mostrando as regiões P1 e P6 da nebulosa da Serpente)

Os dois painéis acima mostram a nebulosa da Serpente fotografada pelos telescópios espaciais Spitzer e Herschel. Em comprimentos de onda do infravermelho médio (o painel superior feito pelo Spitzer), o espesso material nebular bloqueia a luz das estrelas mais distantes. Em comprimentos de onda do infravermelho distante (o painel inferior feito pelo Herschel), a nebulosa brilha devido à emissão de poeira fria. As duas regiões em destaque, P1 e P6, foram examinadas mais detalhadamente pelo Submillimeter Array.

"Para saber como as estrelas se formam, temos que pegá-las em suas primeiras fases, enquanto elas ainda estão profundamente enraizadas nas nuvens de gás e poeira, e o SMA é um excelente telescópio para fazer isso", explicou do Wang Ke do Observatório Europeu do Sul (ESO), que começou a pesquisa no Centro Harvard-Smithsonian de Astrofísica (CfA).

A equipe estudou dois pontos específicos dentro da nebulosa da Serpente, designados P1 e P6. Dentro dessas duas regiões foram detectadas um total de 23 "sementes" cósmicas, manchas levemente brilhantes que irão gerar algumas estrelas. Estas manchas geralmente possuem uma massa entre 5 a 25 vezes da massa do Sol, e cada uma se estende por algumas centenas de bilhões de quilômetros (por comparação, a distância média Terra-Sol é de 150 milhões de km). As sensíveis imagens de alta resolução do SMA não só revelam as pequenas sementes, mas também podem diferenciá-las quanto a idade.

Teorias anteriores propunham  que as estrelas de alta massa formavam dentro de núcleos isolados muito maciços, com massa de pelo menos 100 vezes a massa do Sol. Os dados demonstram que estrelas massivas não nascem sozinhas, mas em grupos.

A equipe ficou surpresa ao descobrir que essas duas manchas nebulares tinham se fragmentado em sementes individuais tão cedo no processo de formação estelar. Foi também detectado saídas bipolares e outros sinais de atividade em curso de formação de estrelas. Eventualmente, a nebulosa da Serpente se dissolverá e brilhará como uma cadeia de vários aglomerados de estrelas.

Fonte: Royal Astronomical Society

Encontrada água na atmosfera de um exoplaneta

Pesquisadores utilizando nova técnica detectaram água na atmosfera de um planeta fora do nosso Sistema Solar.

ilustração do exoplaneta Tau Boötis b ao redor de sua estrela

© NASA (ilustração do exoplaneta Tau Boötis b ao redor de sua estrela)

A equipe de cientistas que fez a descoberta inclui astrônomos da CalTech, Penn State University, Naval Research Laboratory, University of Arizona, e Harvard-Smithsonian Center for Astrophysics. Os astrônomos detectaram a água na atmosfera de um planeta com a massa de Júpiter, que orbita a estrela próxima tau Boötis.

"Planetas como o tau Boötes b, que possuem a massa de Júpiter, mas muito mais quente, não existe em nosso Sistema Solar", diz Chad Bender, um pesquisador do Departamento de Astronomia e Astrofísica da Universidade Penn State. "Nossa descoberta de água na atmosfera de tau Boötes b é importante porque nos ajuda a entender como esses planetas exóticos evoluem e se formam. Ele também demonstra a eficácia da nossa nova técnica, que detecta a radiação infravermelha na atmosfera destes planetas."
Os cientistas já haviam detectado vapor de água em outros planetas, usando uma técnica que só funciona se um planeta tem uma órbita que passa na frente de sua estrela, quando vistos da Terra. Os cientistas também foram capazes de usar outra técnica de imagem que só funciona se o planeta está suficientemente longe da sua estrela hospedeira. No entanto, uma parte significativa da população de planetas extra-solares não se encaixam em qualquer um destes critérios, e não houve uma maneira de descobrir informações sobre as atmosferas desses planetas.

A equipe aplicou alta resolução espectroscópica na banda L para medir as variações de velocidade radial do exoplaneta tau Boötes b, encontrando uma velocidade de cerca de 111 (+5 ou -5) km/s, inferindo uma inclinação orbital planetária de 45 (+3 ou –4) graus e uma massa planetária igual a 5,90 (+0.35 ou -0.20) da massa de Júpiter.

Com a nova técnica de detecção e mais potentes telescópios no futuro, como o telescópio espacial James Webb e o Thirty Meter Telescope, os astrônomos esperam ser capazes de analisar as atmosferas de planetas que são muito mais frio e mais distantes de suas estrelas hospedeiras, onde água líquida é ainda mais provável de existir.

Fonte: The Astrophysical Journal Letters