sábado, 10 de fevereiro de 2018

As três surpresas de 'Oumuamua

Um dos momentos decisivos da astronomia planetária em 2017 foi a descoberta do primeiro objeto astronômico que entrou no Sistema Solar vindo do espaço interestelar.

Artist’s impression of the interstellar asteroid `Oumuamua

© ESO/M. Kornmesser (ilustração do objeto interestelar 'Oumuamua)

Agora conhecido como 1I/'Oumuamua, o objeto foi descoberto pela equipe do levantamento Pan-STARRS no Havaí no dia 19 de outubro. Durante as três semanas seguintes foi, por sua vez, classificado como um cometa, um asteroide de longo período e, finalmente, o primeiro de uma nova classe de objetos interestelares.

Assim que a verdadeira trajetória de 'Oumuamua foi confirmada, todos os telescópios disponíveis foram usados para o estudar o mais depressa possível pois estava se afastando da Terra a uma velocidade muito alta. 'Oumuamua foi descoberto quando já se encontrava saindo do nosso Sistema Solar, depois de passar pela Terra e de ter sido finalmente observado no céu noturno (quando estava no mesmo lado do Sol, não era visível). Agora, 'Oumuamua é demasiado tênue para ser observado até mesmo com os maiores telescópios, mas a sua breve passagem forneceu-nos algumas raras informações em primeira mão sobre um Sistema Solar distante, e também nos deixou com três surpresas.

Antes de discutirmos os aspetos surpreendentes de 'Oumuamua, aqui estão alguns dos seus fatos menos inesperados:

Não se movia muito depressa em relação às estrelas mais próximas, na verdade, foi o Sistema Solar que se deparou com 'Oumuamua e não o oposto. Isto significa que a estrela progenitora de 'Oumuamua orbita a Galáxia numa trajetória situada no disco galáctico, como a maioria das outras estrelas locais.

'Oumuamua é pequeno e fraco. Não é conhecido o seu tamanho exato pois não se sabe quão refletiva é a sua superfície, mas tem definitivamente menos de um quilômetro de comprimento.

Outra qualidade não significativa de 'Oumuamua é a sua cor, um pouco avermelhada e, portanto, muito semelhante à de alguns dos nossos próprios cometas e asteroides distantes.

A primeira surpresa de 'Oumuamua é que não é um cometa. 'Oumuamua foi inicialmente classificado como um cometa, não por ter coma ou cauda, mas porque esperava-se que os objetos interestelares fossem cometas. Os nossos planetas gigantes expulsaram vários cometas (e muitos menos asteroides) para o espaço interestelar durante a formação do Sistema Solar. Isto é devido que alguns não foram exatamente "perdidos", ficaram "presos" na nuvem de Oort, um enxame gigante de cometas em órbita do Sol a distâncias muito grandes. Em combinação com o fato de que os cometas são mais fáceis de observar do que os asteroides com o mesmo tamanho (os cometas já eram conhecidos na Antiguidade e os asteroides só foram descobertos no século XIX), esperava-se que o primeiro visitante interestelar fosse um cometa.

A segunda surpresa é quão alongado 'Oumuamua é. As mudanças no brilho de 'Oumuamua, ao longo do tempo, mostram que tem mais ou menos a forma de um charuto, uma relação de eixo de 5:1 a 10:1. Esta proporção é muito extrema entre os asteroides do Sistema Solar e certamente não seria de esperar se fosse selecionado aleatoriamente um corpo entre os mais de cem mil asteroides conhecidos. Caso a forma de 'Oumuamua seja típica da população de onde é originário, as coisas devem ser muito diferentes no seu sistema natal, em comparação com o nosso.

A terceira surpresa foi o fato de que 'Oumuamua "cambaleia". Ao início, notou-se que 'Oumuamua tinha um período de rotação de 7 ou 8 horas, mas diferentes medições não concordavam. Descobriu-se que a rotação de 'Oumuamua não é regular, que executa um movimento cambaleante e complexo que mostra diferentes vistas do corpo em diferentes momentos. Alguns asteroides no nosso Sistema Solar também têm este comportamento, mas a vasta maioria não tem. Nós pensamos que isto ocorre porque os movimentos internos do material no interior dos asteroides (que são muitas vezes apenas aglomerados de rocha e poeira suavemente mantidos juntos pela gravidade) amortecem este cambalear bastante depressa, deixando apenas os asteroides que sofreram colisões recentes como cambaleantes. 'Oumuamua é provavelmente um pedaço sólido de rocha ou metal, sem qualquer estrutura interna ou material solto.

Então, porque é que 'Oumuamua é como é? Não se sabe, embora existam algumas ideias. 'Oumuamua pode ser um pedaço de um planeta destruído por forças de maré, enquanto passava perto de uma anã vermelha num sistema binário. A ideia é que o planeta se formou em torno da companheira da anã vermelha, mas a sua órbita foi desestabilizada e o planeta passou pela anã vermelha e foi lançado para o espaço interestelar. As estrelas anãs vermelhas podem ser surpreendentemente densas, algumas delas são do tamanho de Júpiter, mas com cem vezes a massa. Isto faz com que as suas marés sejam muito fortes, podendo perturbar os corpos que se aproximam demais (como Júpiter fragmentou o cometa Shoemaker-Levy em 1994). Se um planeta pode ser destruído em trilhões de fragmentos, que são depois expelidos para o espaço interestelar, tais eventos catastróficos podem produzir mais objetos interestelares do que as expulsões regulares de cometas e asteroides por planetas.

A procura de mais objetos interestelares para ver como são poderá trazer novas evidências. Um novo telescópio, o LSST (Large Synoptic Survey Telescope), está sendo construído no Chile e deve entrar em operação em 2022. O LSST será um telescópio robótico que realizará uma varredura completa do céu, incluindo objetos muito tênues, a cada três dias, de modo que encontrará, literalmente, qualquer coisa que se mova. Se 'Oumuamua não foi um acaso, o LSST deverá detectar aproximadamente um exemplo deste tipo de objetos todos os anos.

'Oumuamua é o primeiro e quase certamente não será o último visitante interestelar descoberto. Aguardamos ansiosamente pelo próximo visitante.

Fonte: SETI Institute

Atmosfera vazante ligada a planeta leve

A baixa gravidade do Planeta Vermelho e a falta de campo magnético tornam a atmosfera ultraperiférica um alvo fácil de ser levada pelo vento solar, mas novas evidências da nave Mars Express da ESA mostram que a radiação do Sol pode desempenhar um papel surpreendente na sua fuga.

ilustração do vento solar formando magnetosferas em planetas

© ESA (ilustração do vento solar formando magnetosferas em planetas)

A imagem acima mostra como o vento solar forma as magnetosferas de Vênus (topo), Terra (meio) e Marte (baixo).

A razão pela qual as atmosferas dos planetas rochosos, no Sistema Solar interno, evoluíram de forma tão diferente durante mais de 4,6 bilhões de anos, é fundamental para entender o que faz um planeta habitável. Enquanto a Terra é um mundo de água rico em vida, o nosso vizinho menor, Marte, perdeu muito da sua atmosfera no início da sua história, transformando-se de um ambiente quente e úmido para as planícies frias e áridas que observamos hoje. Em contrapartida, o outro vizinho da Terra, Vênus, embora hoje inóspito, é de tamanho comparável ao nosso próprio planeta e tem uma atmosfera densa.

Uma das maneiras que muitas vezes se pensa que ajuda a proteger a atmosfera de um planeta, é através de um campo magnético gerado internamente, como na Terra. O campo magnético desvia as partículas carregadas do vento solar à medida que se afastam do Sol, esculpindo a magnetosfera ao redor do planeta.

Em Marte e Vênus, que não geram um campo magnético interno, o principal obstáculo para o vento solar é a atmosfera superior. Assim como na Terra, a radiação ultravioleta solar separa os elétrons dos átomos e moléculas nesta região, criando uma zona de gás ionizado carregado eletricamente: a ionosfera. Em Marte e Vênus, esta camada ionizada interage diretamente com o vento solar e o seu campo magnético para criar uma magnetosfera induzida, que atua para retardar e desviar o vento solar ao redor do planeta.

Durante 14 anos, a Mars Express da ESA tem procurado íons carregados, como oxigênio e dióxido de carbono, que fluem para o espaço, a fim de melhor compreender a taxa em que a atmosfera está escapando do planeta.

O estudo descobriu um efeito surpreendente, com a radiação ultravioleta do Sol desempenhando um papel mais importante do que se pensava anteriormente.

"Costumávamos pensar que a fuga de íons ocorria devido a uma transferência efetiva da energia solar do vento através da barreira magnética marciana induzida para a ionosfera", diz Robin Ramstad, do Instituto Sueco de Física Espacial.

"Talvez de forma contraintuitiva, o que realmente vemos é que o aumento da produção de íons, desencadeada pela radiação solar ultravioleta, protege a atmosfera do planeta da energia transportada pelo vento solar, mas é muito pouca a energia realmente necessária para que os íons escapem por si mesmos, devido à baixa gravidade que liga a atmosfera a Marte."

Descobriu-se que a natureza ionizante da radiação do Sol produz mais íons do que os que podem ser removidos pelo vento solar. Embora o aumento da produção de íons ajude a proteger a atmosfera mais baixa da energia transportada pelo vento solar, o aquecimento dos elétrons parece ser suficiente para arrastar íons em todas as condições, criando um "vento polar". A fraca gravidade de Marte, cerca de um-terço da gravidade da Terra, significa que o planeta não consegue agarrar estes íons e estes escapam facilmente para o espaço, independentemente da energia extra fornecida por um forte vento solar.

Em Vênus, onde a gravidade é semelhante à da Terra, é necessária muito mais energia para despojar a atmosfera dessa maneira e os íons que saem do lado do Sol provavelmente cairiam de volta em direção ao planeta, no sotavento, a menos que se acelerassem ainda mais.

"Portanto, concluímos que, no presente, a fuga de íons de Marte é principalmente limitada em relação à produção e não limitada à energia, enquanto em Vênus é provável que seja limitada em termos de energia, dada a maior gravidade do planeta e alta taxa de ionização, por estar mais perto do Sol," acrescenta Robin.

"Por outras palavras, o vento solar, provavelmente, só teve um efeito direto muito pequeno sobre a quantidade de atmosfera de Marte que se perdeu ao longo do tempo e, em vez disso, apenas aumenta a aceleração das partículas que já por si se escapam."

O monitoramento contínuo de Marte, desde 2004, que cobriu a mudança na atividade solar do mínimo ao máximo, dá-nos um grande conjunto de dados que é vital para entender o comportamento a longo prazo da atmosfera de um planeta e a sua interação com o Sol," diz Dmitri Titov, cientista do projeto Mars Express da ESA. "A colaboração com a missão MAVEN da NASA, que tem estado em Marte desde 2014, também nos permite estudar mais detalhadamente os processos de escape atmosféricos."

O estudo também tem implicações para a busca de atmosferas do tipo da Terra em outros lugares do Universo.

"Talvez um campo magnético não seja tão importante para proteger a atmosfera de um planeta como a própria gravidade do planeta, a qual define o quão bem pode agarrar as suas partículas atmosféricas depois de terem sido ionizadas pela radiação solar, independentemente do poder do vento solar," acrescenta Dmitri.

Um artigo foi publicado no periódico Journal of Geophysical Research: Space Physics.

Fonte: ESA

quinta-feira, 8 de fevereiro de 2018

Descoberta uma das primeiras estrelas formadas na Via Láctea

Pesquisadores do Instituto de Astrofísica das Canárias (IAC) identificaram, usando o Gran Telescopio de Canarias (GTC), uma estrela que pode ser a chave para a formação dos primeiros elementos químicos na Galáxia.

ilustração das primeiras estrelas da Via Láctea

© IAC/Gabriel Pérez (ilustração das primeiras estrelas da Via Láctea)

O estudo divulga a descoberta de uma das estrelas com o menor conteúdo metálico (elementos pesados) conhecido. A estrela está a 7.500 anos-luz da Terra, no halo da Via Láctea e na direção da constelação do Lince. A estrela está ainda na sequência principal, o estágio em que a maioria das estrelas passa a maior parte das suas vidas. A fonte de energia destas estrelas é, como sempre, a fusão do hidrogênio nos seus núcleos, e as suas temperaturas superficiais e luminosidades são quase constantes com o passar do tempo. Outra das suas propriedades é a sua pequena massa, cerca de 0,7 vezes a massa do Sol, embora seja 400 graus mais quente.

Esta descoberta foi feita usando o OSIRIS (Optical System for Imaging and low-intermediate-Resolution Integrated Spectoscopy) acoplado ao GTC, no Observatório Roque de los Muchachos (Garafía, La Palma). A espectroscopia permite-nos decompor a luz de objetos celestes para estudar as suas propriedades físicas e químicas, e através disso nota-se que a J0815+4729 possui apenas uma milionésima parte do cálcio e do ferro que o Sol contém, mas tem um conteúdo comparativamente enorme de carbono, quase 15% da abundância solar.

A teoria prevê que estas estrelas mais antigas e mais pobres em metais possam formar-se só após e usando o material das primeiras supernovas, cujas progenitoras foram as primeiras estrelas massivas da Galáxia, cerca de 300 milhões de anos após o Big Bang. Apesar da sua idade e da sua distância, ainda pode ser observada.

Esta estrela foi identificada na base de dados do Sloan Digital Sky Survey (SDSS) durante o levantamento Baryon Oscillation Spectroscopic Survey (BOSS) e mais tarde observada com o espectrógrafo de dispersão intermédia ISIS no Telescópio William Herschel (WHT) do Grupo de Telescópios Isaac Newton, também no Observatório Roque de los Muchachos.

No futuro próximo, o espectrógrafo de alta resolução HORS, atualmente numa fase de testes no GTC, será um instrumento fundamental para a análise química de estrelas fracas como a J0815+4729.

Os resultados desta pesquisa foram publicados na revista científica The Astrophysical Journal Letters.

Fonte: Instituto de Astrofísica de Canarias

Ventos estelares que se comportam inesperadamente

O telescópio XMM-Newton detectou mudanças surpreendentes nos poderosos fluxos de gás de duas estrelas massivas, sugerindo que os ventos estelares em colisão não se comportam como o esperado.

aglomerado aberto NGC 346 e local de HD 5980

© Hubble/A. Nota (aglomerado aberto NGC 346 e local de HD 5980)

A imagem acima mostra a evolução dos ventos estelares no sistema binário HD 5980, observada pelo XMM-Newton entre 2000 e 2016.

As estrelas massivas, várias vezes maiores do que o nosso Sol, levam vidas turbulentas, queimando o seu combustível nuclear rapidamente e expelindo grandes quantidades de material para os seus arredores ao longo das suas curtas, mas furiosas vidas.

Estes ferozes ventos estelares podem transportar o equivalente à massa da Terra num mês e viajar milhões de quilômetros por hora, de modo que quando dois destes ventos colidem, liberam quantidades enormes de energia. O choque cósmico aquece o gás a milhões de graus, tornando-o brilhante em raios X.

Normalmente, os ventos em colisão mudam pouco porque nem as estrelas nem as suas órbitas mudam. No entanto, algumas estrelas massivas têm comportamentos dramáticos. Este é o caso da HD 5980, um par de duas estrelas gigantes, cada com 60 vezes a massa do nosso Sol e separadas por apenas 100 milhões de quilômetros, mais perto do que a Terra está do Sol. Ele está localizado na Pequena Nuvem de Magalhães.

Uma delas sofreu uma grande explosão em 1994, reminiscente da erupção que transformou Eta Carinae na segunda estrela mais brilhante do céu durante mais ou menos 18 anos no século XIX. Embora já seja tarde demais para estudar a histórica erupção de Eta Carinae, os astrônomos têm vindo a observar HD 5980 com telescópios de raios X para estudar o gás quente.

Em 2007, Yaël Nazé da Universidade de Liège, Bélgica, e colegas descobriram a colisão dos ventos destas estrelas usando observações feitas pelos telescópios XMM-Newton da ESA e Chandra da NASA entre 2000 e 2005. E observaram novamente com o XMM-Newton em 2016.

evolução dos ventos estelares no sistema binário HD 5980

© ESA/XMM-Newton/Y. Nazé (evolução dos ventos estelares no sistema binário HD 5980)

Os astrônomos esperavam que a HD 5980 diminuísse gentilmente de brilho ao longo dos anos, à medida que a estrela em erupção voltava ao normal, mas surpreendentemente fez exatamente o contrário. Descobriram que o par era duas vezes e meia mais brilhante do que uma década antes e que a sua emissão de raios X era ainda mais energética. Isto nunca foi visto numa colisão entre ventos.

Com menos material expelido, mas mais luz emitida, foi difícil explicar o que estava acontecendo. Finalmente, encontraram um estudo teórico que fornece um cenário apropriado.

Quando os ventos estelares chocam, o material libera grandes quantidades de raios X. No entanto, caso a matéria quente irradie muita luz, esta arrefece rapidamente, o choque torna-se instável e a emissão de raios X diminui. "Este processo um pouco contraintuitivo é o que pensamos ter acontecido no momento das nossas primeiras observações, há mais de 10 anos atrás. Mas, até 2016, o choque tinha relaxado e as instabilidades tinham diminuído, permitindo que a emissão de raios X eventualmente subisse," disse Yaël.

Estas são as primeiras observações que fundamentam este cenário anteriormente hipotético. Os colegas de Yaël estão agora testando o novo resultado em maior detalhe através de simulações de computador. "Descobertas únicas como esta demonstram como o XMM-Newton continua fornecendo aos astrônomos novos materiais para melhorar a nossa compreensão dos processos mais energéticos do Universo," comenta Norbert Schartel, cientista do projeto XMM-Newton da ESA.

Um artigo intitulado “A Changing Wind Collision” foi publicado no Astrophysical Journal.

Fonte: ESA

quarta-feira, 7 de fevereiro de 2018

O espectáculo de fogo de artifício mais solitário

Uma pequena galáxia pouco conhecida, chamada NGC 1559, está localizada a aproximadamente 50 milhões de anos-luz de distância da Terra.

NGC 1559

© Hubble (NGC 1559)

A foto retratada aqui pela Wide Field Camera 3 do Hubble, mostra esta galáxia espiral barrada situada na constelação boreal Reticulum pouco observada.

A NGC 1559 tem braços em espiral massivos repletos de formação de estrelas e está recuando de nós a uma velocidade de cerca de 1.300 km/s. A galáxia contém a massa de cerca de dez bilhões de sóis, sendo quase 100 vezes menor do que a Via Láctea. Embora, a NGC 1559 pareça estar perto de um dos nossos vizinhos mais próximos do céu, a Grande Nuvem de Magalhães (LMC), isso é apenas um truque de perspectiva. Na realidade, a NGC 1559 não está fisicamente perto da LMC no espaço, ela está realmente solitária, sem a companhia de galáxias próximas ou de qualquer aglomerado de galáxias.

Apesar da falta de companheiros cósmicos, quando esta galáxia solitária tem um telescópio apontado em sua direção, ela produz um show!

A NGC 1559 hospeda uma variedade de estrelas explosivas espetaculares, chamadas supernovas, quatro das quais observamos em 1984, 1986, 2005 e 2009 (SN 1984J, 1986L, 2005df [Tipo Ia] e 2009ib [Tipo II-P , com um platô excepcionalmente longo]).

A NGC 1559 pode estar sozinha no espaço, mas estamos observando e admirando de longe.

Fonte: ESA

Descobertos planetas em outra galáxia

Uma equipe de astrofísicos da Universidade de Oklahoma descobriu, pela primeira vez, uma população de planetas localizados além da Via Láctea.

galáxia da lente gravitacional no centro e quatro quasares de fundo

© U. Oklahoma (galáxia da lente gravitacional no centro e quatro quasares de fundo)

A lente gravitacional galáctica RX J1131-1231 com a galáxia da lente no centro e quatro quasares de fundo. Estima-se que existam trilhões de planetas na galáxia elíptica central da imagem.

Usando microlentes, um fenômeno astronômico e o único conhecido capaz de descobrir exoplanetas a distâncias verdadeiramente enormes da Terra, entre outras técnicas de detecção, pesquisadores foram capazes de detectar objetos em outras galáxias que variam desde a massa da Lua até à massa de Júpiter.

Xinyu Dai, professor do Departamento Homer L. Dodge de Física e Astronomia, do Colégio de Artes e Ciências da Universidade de Oklahoma, juntamente com o pesquisador de pós-doutorado Eduardo Guerras, fizeram a descoberta recorrendo a dados do Observatório de raios X Chandra da NASA, um telescópio espacial controlado pelo Observatório Astrofísico do Smithsonian.

"Estamos muito excitados com esta descoberta. Esta é a primeira vez que alguém descobriu planetas fora da nossa Galáxia," realça Dai. "Estes planetas pequenos são os melhores candidatos para a assinatura que observámos neste estudo usando a técnica de microlentes. Analisámos a alta frequência da assinatura modelando os dados para determinar a massa."

Apesar da descoberta de planetas na Via Láctea usando microlentes, o efeito gravitacional de até objetos pequenos pode criar uma alta ampliação, levando a uma assinatura que pode ser modelada e explicada e outras galáxias. Até este estudo, não havia evidências de planetas em outras galáxias.

"Este é um exemplo de quão poderosas podem ser as técnicas de análise de microlentes extragalácticas. Esta galáxia está localizada a 3,8 bilhões de anos-luz de distância da Terra e não há a mínima hipótese de observar estes planetas diretamente, nem mesmo com o melhor telescópio que se possa imaginar num cenário de ficção científica," comenta Guerras. "No entanto, somos capazes de os estudar, revelar a sua presença e até ter uma ideia das suas massas. É uma forma muito emocionante de ciência."

Um artigo foi publicado no periódico Astrophysical Journal Letters.

Fonte: University of Oklahoma

terça-feira, 6 de fevereiro de 2018

Mapeando uma fusão

Esta imagem incomum mostra-nos o resultado de uma colisão catastrófica entre duas galáxias, a qual ocorreu há cerca de um bilhão de anos atrás.

Hubble image of NGC 7252

© Hubble/Judy Schmidt (NGC 7252)

Desta colisão resultou uma única galáxia de forma muito estranha chamada NGC 7252, à qual se deu a curiosa alcunha de galáxia “Átomos pela Paz”.

No coração deste resto de fusão podemos ver uma interessante “miniespiral”, um disco de gás brilhante em rotação, onde ocorre formação estelar intensa. Com o auxílio do instrumento VIMOS (Visible Multi-Object Spectrograph) montado no Very Large Telescope (VLT) do ESO, os astrônomos conseguiram medir o movimento do gás no interior deste disco, o que lhes permitiu mapear a sua rotação.

VLT map of gas within NGC 7252’s minispiral

© Hubble/VLT (mapa do gás no interior da miniespiral da NGC 7252)

As regiões vermelhas indicam gás que se afasta de nós, enquanto as regiões azuis assinalam gás se movendo na nossa direção. Em conjunto, estas cores revelam o movimento de rotação contínuo do centro da galáxia, destacando igualmente duas correntes de gás quente a noroeste e a sudeste da região central. Estudos anteriores sugeriram que a espiral central se encontrava girando no sentido contrário à restante galáxia, no entanto comparando o movimento das estrelas em torno da galáxia com o gás ionizado por estrelas recém-formadas na miniespiral, foi possível comprovar agora que rodam na mesma direção.

A criação de um mapa tão detalhado foi possível graças ao IFU (Integral Field Unit) do VIMOS, que permitiu aos astrônomos estudar o gás na NGC 7252 numa visão de “mosaico”. Do mesmo modo que uma mosca vê o mundo, um IFU divide o objeto de estudo em muitas células, ou pixels, gerando um espectro para cada uma delas. A informação resultante é disposta num cubo de dados 3D, particularmente útil para estudar objetos extensos de uma só vez.

Fonte: ESO

Planetas TRAPPIST-1 são provavelmente ricos em água

Um novo estudo determinou que os sete planetas descobertos em órbita da estrela anã ultra fria próxima de nós TRAPPIST-1 são todos constituídos principalmente por rochas, e alguns poderão potencialmente ter mais água que a Terra. Este é o primeiro vislumbre da composição de exoplanetas do tamanho da Terra!

ilustração do sistema planetário TRAPPIST-1

© ESO/M. Kornmesser (ilustração do sistema planetário TRAPPIST-1)

As densidades dos planetas, agora conhecidas com muito mais precisão que anteriormente, sugerem que alguns destes corpos podem ter até 5% da sua massa sob a forma de água, cerca de 250 vezes mais que os oceanos da Terra. Os planetas mais quentes mais próximos da estrela têm provavelmente atmosferas densas de vapor e os mais distantes terão provavelmente superfícies geladas. Em termos de tamanho, densidade e radiação recebida da estrela, o quarto planeta a partir do interior é o mais semelhante à Terra. Parece ser o mais rochoso dos sete e tem potencial para ter água líquida em sua superfície.

Os planetas que se encontram em órbita da tênue estrela vermelha TRAPPIST-1, situada a apenas 40 anos-luz de distância da Terra, foram inicialmente detectados em 2016 pelo telescópio TRAPPIST-South instalado no Observatório de La Silla do ESO. No ano seguinte observações adicionais obtidas com telescópios em solo, incluindo o Very Large Telescope (VLT) do ESO, e com o telescópio espacial Spitzer da NASA, revelaram que existem sete planetas no sistema, cada um mais ou menos do tamanho da Terra. Este planetas receberam os nomes TRAPPIST-1b, c, d, e, f, g, h, por ordem crescente de distância à estrela central.

Agora foram obtidas mais observações, tanto por telescópios em solo, incluindo a infraestrutura SPECULOOS instalada no Observatório do Paranal do ESO, como pelos telescópios espaciais Spitzer e Kepler da NASA. Uma equipe de cientistas, liderada por Simon Grimm da Universidade de Berna, na Suíça, aplicou modelos computacionais muito complexos a todos os dados disponíveis e determinou as densidades dos planetas com muito mais precisão do que anteriormente.

A medição das densidades dos exoplanetas não é uma tarefa fácil, já que é preciso saber o tamanho e a massa dos planetas em questão. Os planetas TRAPPIST-1 foram descobertos pelo método dos trânsitos, a busca de pequenos decréscimos no brilho de uma estrela, que assinala o instante em que um planeta passa em frente ao seu disco e bloqueia parte da sua luz. Este método fornece uma boa estimativa do tamanho do planeta, mas medir a sua massa é mais difícil; se mais nenhum efeito estiver presente, planetas com massas diferentes têm as mesmas órbitas e não há uma maneira direta de os distinguir. No entanto, num sistema com múltiplos planetas há uma maneira, os planetas de maior massa perturbam mais as órbitas dos outros planetas do que os planetas mais leves, o que por sua vez afeta o momento em que ocorrem os trânsitos. A equipe liderada por Simon Grimm usou estes efeitos complicados e muito sutis para estimar as massas mais prováveis dos sete planetas, baseando-se numa grande quantidade de dados dos trânsitos e em análise de dados e modelos muito sofisticados.

Simon Grimm explica como é que são determinadas as massas dos planetas: “Os planetas TRAPPIST-1 estão tão próximos uns dos outros que interferem entre si gravitacionalmente, por isso os momentos em que passam em frente à sua estrela progenitora variam ligeiramente. Estas variações dependem das massas dos planetas, das suas distâncias e de outros parâmetros orbitais. Com um modelo de computador, simulamos as órbitas dos planetas até que os trânsitos calculados coincidissem com os valores observados, derivando assim as massas planetárias.”

As medições das densidades, quando combinadas com modelos das composições dos planetas, sugerem que os sete planetas TRAPPIST-1 não são mundos rochosos estéreis. Parecem conter quantidades significativas  de materiais voláteis, provavelmente água, correspondente, em alguns casos, a 5% da massa do planeta, uma quantidade enorme quando comparada com a Terra, que tem apenas cerca de 0,02% de água relativamente à sua massa!

Os planetas mais interiores, TRAPPIST-1b e 1c, têm muito provavelmente núcleos rochosos e encontram-se rodeados por atmosferas muito mais espessas que a da Terra. O TRAPPIST-1d é o planeta mais leve com cerca de 30% da massa da Terra. Os cientistas não sabem precisar se possui uma grande atmosfera, um oceano ou uma camada de gelo.

Os pesquisadores ficaram surpreendidos por TRAPPIST-1e ser o único planeta do sistema ligeiramente mais denso que a Terra, o que sugere que possa ter um núcleo de ferro mais denso e que não tem necessariamente que possuir uma atmosfera espessa, um oceano ou uma camada de gelo. O fato de TRAPPIST-1e parecer ser muito mais rochoso em termos de composição que os demais planetas é algo que permanece um mistério. Em termos de tamanho, densidade e quantidade de radiação recebida da estrela, este é o planeta mais parecido com a Terra.

Os exoplanetas TRAPPIST-1f, g, h encontram-se suficientemente longe da estrela hospedeira para que a água esteja em forma de gelo em suas superfícies. Se possuirem atmosferas finas, provavelmente não conterão as moléculas pesadas que encontramos na Terra, como, por exemplo, dióxido de carbono.

“É interessante notar que os planetas mais densos não são os que se encontram mais próximos da estrela e que os planetas mais frios podem não conter atmosferas densas,” diz Caroline Dorn, da Universidade de Zurique, na Suíça.

O sistema TRAPPIST-1 continuará a ser alvo de intenso escrutínio no futuro com muitas infraestruturas no solo e no espaço, incluindo o Extremely Large Telescope (ELT) do ESO e o telescópio espacial James Webb da NASA/ESA/CSA.

Este trabalho será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

A galáxia elíptica NGC 474

O que está acontecendo com a galáxia NGC 474?

NGC 474

© CFHT/J.-C. Cuillandre/G. A. Anselmi (NGC 474)

As múltiplas camadas de emissão aparecem estranhamente complexas e inesperadas já que em imagens menos profundas esta galáxia elíptica quase não apresenta feição alguma visível.

A causa das conchas não é conhecida, mas possivelmente caudas de maré relacionadas com detritos resultantes da absorção de numerosas galáxias pequenas nos últimos bilhões de anos. Outra hipótese é que as conchas podem ser como ondas num lago, onde a colisão que está acontecendo com a galáxia espiral vista logo acima está causando ondas de densidade que passam através da galáxia gigante.

Independente de qual seja a causa das conchas, a imagem acima aumenta o consenso de que no mínimo algumas galáxias elípticas se formaram num passado recente, e que os halos externos da maior parte das grandes galáxias não são realmente suaves, mas sim possuem complexidades induzidas por frequentes interações, e acreções com galáxias menores.

O halo da Via Láctea é um exemplo de uma complexidade inesperada. A NGC 474 se espalha por cerca de 250 mil anos-luz e está localizada a cerca de 100 milhões de anos-luz de distância da Terra, na constelação Pisces.

Fonte: NASA

A Nebulosa da Bolha expandindo

A Nebulosa da Bolha (NGC 7635), está sendo empurrada para fora, pelo vento estelar emitido pela estrela BD+602522, visível em azul, na parte direita da imagem dentro da nebulosa.

Nebulosa da Bolha

© Göran Nilsson/Liverpool Telescope (Nebulosa da Bolha)

Ao lado, exite uma gigantesca nuvem molecular, visível na parte extrema direita da imagem em vermelho. Neste local do espaço, uma força irresistível encontra um objeto imóvel de uma forma interessante.

A nuvem é capaz de conter a expansão da bolha de gás, mas é explodida pela radiação quente da estrela central da bolha. A radiação aquece as regiões densas da nuvem molecular fazendo com que ela brilhe.

A Nebulosa da Bolha tem cerca de 10 anos-luz de diâmetro e é parte de um conjunto de estrelas e conchas muito mais complexas. A Nebulosa da Bolha pode ser vista com pequenos telescópios, quando apontados na direção da constelação de Cassiopeia.

Fonte: NASA

domingo, 4 de fevereiro de 2018

Vista incrível de Vênus

A sonda espacial japonesa Akatsuki não deveria ter sobrevivido após a explosão do motor ocorrida a sete anos atrás. No entanto, os engenheiros da Japan Aerospace Exploration Agency (JAXA) recusaram-se a desistir.

Vênus

© JAXA/Damia Bouic (Vênus)

A imagem composta acima foi efetuada usando o filtro UVI, onde muitos detalhes são revelados, especialmente em termos de atividade convectiva na atmosfera venusiana.

A Akatsuki não só sobreviveu à sua catástrofe do espaço profundo, mas agora está segura em órbita em torno de Vênus e produz imagens de tirar o fôlego de nuvens turbulentas em vários níveis dentro da atmosfera densa do planeta que nunca antes foram vislumbrados.

A Akatsuki deveria chegar a Vênus e entrar em órbita em 6 de dezembro de 2010, usando um inovador propulsor de cerâmica. Infelizmente, o disparo crucial do motor falhou de forma dramática, quando o fluxo de pressão inadequado no motor causou a elevação da temperatura do propulsor até o bico quebrar. A nave espacial autônoma desligou seu mecanismo quebrado apenas parcialmente.

Depois de determinar que o motor não era recuperável, a equipe da JAXA ventilou todo o propelente restante para acender a nave espacial e desenvolveu um plano corajoso para tentar a entrada em órbita pela segunda vez.

A Akatsuki esteve em Vênus desde 9 de dezembro de 2015 e em sua órbita final desde 4 de abril de 2016. Esta órbita muito elíptica tem um período de 10,5 dias, viajando de um periápice de cerca de 10.000 km até um apoápise de 360.000 km. O cientista do projeto Takeshi Imamura compara a missão a um satélite meteorológico para Vênus, situado acima de suas nuvens turbulentas, com um ponto de vista de vários dias em movimentos de nuvens.

A Akatsuki carrega cinco câmeras para ver Vênus em diferentes comprimentos de onda, cada uma penetrando a uma profundidade diferente dentro da atmosfera profunda do planeta. Estas imagens têm uma resolução maior do que as da Venus Express da ESA.

O crivo de imagem ultravioleta da Akatsuki registra nuvens de alta altitude, iluminadas pela luz solar, nos comprimentos de onda de 285 e 365 nanômetros. Ao longo das elevações de 65 a 75 km, estas nuvens consistem principalmente de ácido sulfúrico (H2SO4). Seus padrões são delineados pela presença de um "absorvente ultravioleta" ainda não identificado que é especialmente escuro nas imagens de 365 nm.

Enquanto isso, as imagens de comprimento de onda mais curto (285 nm) são mais sensíveis à presença de dióxido de enxofre (SO2) que sobe de baixo para baixo, sobrevivendo na atmosfera superior apenas brevemente antes que a radiação solar ultravioleta quebre e a química atmosférica o recombine em outras moléculas.

As câmeras infravermelhas (IR1 e IR2) não precisam de luz solar para ver Vênus. Elas observam em comprimentos de onda em que a atmosfera quente irradia-se termicamente. A IR2 tem dois canais, 1,74 e 2,26 microns, que detectam o calor a uma altitude de 48 a 55 km acima da superfície. Vistas nestes comprimentos de onda, nuvens escuras de altitude mais elevadas que bloqueiam a visão da Akatsuki do brilho da atmosfera quente mais baixa. Os pesquisadores suspeitam que os movimentos das nuvens nestas altitudes de nível médio são mais sensíveis à topografia muito abaixo.

Infelizmente, as duas câmeras infravermelhas (IR1 e IR2) sofreram uma falha elétrica em dezembro de 2016. Mas a imagem de infravermelho de onda longa (LIR), a câmera Lyman-alpha (LAC) e a imagem ultravioleta (UVI) ainda funcionam.

No final de 2017, a missão fez seu primeiro lançamento de dados científicos no arquivo de dados da Akatsuki.

Fonte:

sábado, 3 de fevereiro de 2018

Modelando o Universo

Uma simulação do Universo com supercomputadores produziu novas informações sobre o modo como os buracos negros influenciam a distribuição da matéria escura, o modo como os elementos pesados são produzidos e distribuídos em todo o cosmos e sobre a origem dos campos magnéticos.

simulação dos movimentos de gás nos filamentos cósmicos

© Colaboração IllustrisTNG (simulação dos movimentos de gás nos filamentos cósmicos)

A imagem acima mostra uma renderização da velocidade do gás numa fina fatia com 100 kiloparsecs de espessura (no sentido da visão) centrada no segundo aglomerado de galáxias mais massivo no cálculo TNG100. Onde a imagem é preta, o gás dificilmente se move, enquanto as regiões mais claras têm velocidades que excedem 1.000 km/s. A imagem contrasta os movimentos de gás nos filamentos cósmicos contra os rápidos movimentos caóticos desencadeados pelo profundo e potencial poço gravitacional e pelo buraco negro supermassivo situado no centro.

Astrofísicos do Massachusetts Institute of Technology (MIT), da Universidade de Harvard, do Instituto Heidelberg de Estudos Teóricos, dos Institutos Max Planck para Astrofísica e Astronomia e do Centro de Astrofísica Computacional obtiveram novas informações sobre a formação e evolução das galáxias, desenvolvendo e programando um novo modelo de simulação para o Universo: "Illustris - The Next Generation" ou IllustrisTNG.

Mark Vogelsberger, professor assistente de física no MIT e no Instituto Kavli para Astrofísica e Pesquisa Espacial do MIT, tem vindo a desenvolver, testar e a analisar as novas simulações IllustrisTNG. Juntamente com os pós-doutorados Federico Marinacci e Paul Torrey, Vogelsberger tem usado a simulação IllustrisTNG para estudar as assinaturas observáveis de campos magnéticos de grande escala que permeiam o Universo.

Vogelsberger usou o modelo IllustrisTNG para mostrar que os movimentos turbulentos de gases quentes e difusos conduzem dínamos magnéticos de pequena escala que podem amplificar exponencialmente os campos magnéticos nos núcleos de galáxias, e que o modelo prevê com precisão a força observada destes campos magnéticos.

"A alta resolução do IllustrisTNG, combinada com o seu sofisticado modelo de formação galáctica, permitiu-nos explorar estas questões dos campos magnéticos em mais detalhe do que com qualquer outra simulação cosmológica anterior," comenta Vogelsberger.

O projeto IllustrisTNG é o sucessor da simulação original Illustris desenvolvida pela mesma equipe, mas foi atualizado para incluir alguns dos processos físicos que desempenham papéis cruciais na formação e evolução das galáxias.

Como o Illustris, o projeto modela uma peça em forma de cubo do Universo. Desta vez, o projeto seguiu a formação de milhões de galáxias numa região representativa do Universo com quase um bilhão de anos-luz de lado (a versão anterior, há quatro anos, media apenas 350 milhões de anos-luz de lado). A simulação hidrodinâmica IllustrisTNG é o maior projeto, até à data, do surgimento de estruturas cósmicas.

A rede cósmica de gás e de estrelas prevista pelo IllustrisTNG produz galáxias bastante parecidas em forma e tamanho com as galáxias reais. Pela primeira vez, as simulações hidrodinâmicas podem calcular diretamente o padrão detalhado de agrupamento de galáxias no espaço. Em comparação com os dados observacionais, incluindo os mais recentes grandes levantamentos galácticos como o SDSS (Sloan Digitized Sky Survey), o IllustrisTNG demonstra um elevado grau de realismo.

As simulações preveem como a teia cósmica muda ao longo do tempo, em particular em relação à estrutura subjacente da matéria escura do cosmos. "É particularmente fascinante que possamos prever com precisão a influência de buracos negros supermassivos na distribuição de matéria até grandes escalas. Isto é crucial para interpretar de forma confiável as próximas medições cosmológicas," realça Volker Springel, pesquisador principal do IllustrisTNG, cientista do Instituto Heidelberg de Estudos Teóricos da Universidade de Heidelberg e do Instituto Max Planck para Astrofísica.

Para o projeto, os pesquisadores desenvolveram uma versão particularmente poderosa do seu código AREPO de malha móvel e altamente paralela e usaram-no na máquina "Hazel-Hen" no Centro de Supercomputação em Stuttgart, o supercomputador mais rápido da Alemanha.

Para calcular uma das duas simulações principais, foram usados mais de 24.000 processadores ao longo de mais de dois meses.

"As novas simulações produziram mais de 500 terabytes de dados de simulação. A análise desta quantidade gigantesca de dados manter-nos-á ocupados nos próximos anos e promete muitas novas e interessantes ideias no que toca a diferentes processos astrofísicos," diz Springel.

Em outro estudo, Dylan Nelson, pesquisador do Instituto Max Planck para Astrofísica, foi capaz de demonstrar o importante impacto dos buracos negros nas galáxias.

As galáxias em evolução brilham no azul com suas jovens estrelas até que uma súbita mudança evolutiva apaga a formação estelar, de modo que a galáxia se torna dominada por velhas estrelas vermelhas e se junta a um cemitério cheio de galáxias antigas e moribundas.

"As únicas entidades físicas capazes de extinguir a formação estelar nas nossas grandes galáxias elípticas são os buracos negros supermassivos nos seus centros. Os fluxos ultrarrápidos destas armadilhas gravitacionais atingem velocidades até 10% da velocidade da luz e afetam os sistemas estelares gigantes bilhões de vezes maiores do que o próprio buraco negro, que é comparativamente pequeno," explica Nelson.

A simulação IllustrisTNG também melhora a compreensão da formação da estrutura hierárquica das galáxias. Os teóricos argumentam que as galáxias pequenas devem formar-se primeiro e depois se fundem em objetos cada vez maiores, impulsionados pela implacável atração da gravidade. As inúmeras colisões galácticas literalmente quebram galáxias e dispersam as suas estrelas em órbitas largas em torno das galáxias grandes recém-criadas, o que deveria dar-lhes um tênue brilho estelar de fundo.

Estes pálidos halos estelares previstos são muito difíceis de observar devido ao seu baixo brilho superficial, mas o modelo IllustrisTNG foi capaz de simular exatamente o que deve ser procurado.

"As nossas previsões podem agora ser sistematicamente verificadas pelos observadores," afirma Annalisa Pillepich, pesquisadora do Instituto Max Planck para Astronomia, que liderou outro estudo do IllustrisTNG. "Isto fornece um teste crítico para o modelo teórico da formação hierárquica das galáxias."

Foram publicados três artigos científicos que divulgam o novo trabalho na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Massachusetts Institute of Technology

sexta-feira, 2 de fevereiro de 2018

Arp 142: o Pinguim e o Ovo

Esta imagem das distantes galáxias em interação, conhecidas coletivamente como Arp 142, lembra muito a imagem de um pinguim protegendo seu ovo.

Arp 142

© Hubble/Spitzer (Arp 142)

Dados dos telescópios espaciais Hubble e Spitzer da NASA foram combinados para mostrar estas galáxias em comprimentos de onda que vão desde o visível até o infravermelho do espectro.

Este par mostra duas galáxias que não poderiam parecer mais diferentes à medida que a atração gravitacional mútua, vagarosamente as aproxima cada vez mais.

O pinguim do par, é a NGC 2336, que foi provavelmente uma galáxia espiral com aspecto relativamente normal, achatada como uma panqueca, com braços espirais suavemente simétricos. Rica com estrelas quentes recém-formadas, vistas na luz visível do Hubble como filamentos azulados, sua foram agora se apresenta distorcida à medida que ela responde à força gravitacional da sua vizinha. Fios de gás misturados com poeira aparecem como filamentos avermelhados, que foram detectados nos comprimentos mais longos da luz infravermelha pelo Spitzer.

O ovo do par, é a galáxia NGC 2937, que se apresenta quase sem característica alguma. O brilho esverdeado distintamente diferente da luz das estrelas conta a história de uma população de estrelas muito mais velhas. A ausência de incandescência vermelha brilhante nos informa que já se passou muito tempo desde que ela perdeu seu reservatório de gás e poeira a partir do qual novas estrelas se formam. Embora esta galáxia esteja certamente reagindo à presença da sua vizinha, sua distribuição suave das estrelas obscurece quaisquer distorções óbvias de sua forma.

Eventualmente, estas duas galáxias irão se fundir formando um único objeto, com suas populações de estrelas, gás e poeira se misturando. Este tipo de fusão foi um passo significativo na história da maioria das grandes galáxias que observamos ao nosso redor no Universo próximo, inclusive para a Via Láctea.

Localizadas a uma distância de aproximadamente 23 milhões de anos-luz, estas duas galáxias estão cerca de 10 vezes mais afastadas de nós do que o nosso maior vizinho galáctico, a galáxia de Andrômeda. A faixa azul na parte superior da imagem é uma galáxia de fundo não relacionada, que está mais mais longe do que Arp 142.

A combinação de luz do espectro visível e infravermelho ajuda os astrônomos a obter dados da história complexa do ciclo de vida das galáxias. Enquanto esta imagem coleta dados dos telescópios Spitzer e Hubble para cobrir esta faixa de luz, espera-se que o telescópio espacial James Webb da NASA poderá cobrir estes comprimentos de onda e com uma clareza dramaticamente melhor.

Fonte: NASA

Sirius obscurecida revela o aglomerado Gaia 1

Se tem observado o céu noturno nas últimas semanas, é possível que tenha "tropeçado" numa estrela muito brilhante perto da constelação de Órion.

Sirius e aglomerado Gaia 1

© H. Kaiser (Sirius e aglomerado Gaia 1)

Esta é Sirius, a estrela mais brilhante de todo o céu noturno, que é visível de quase todos os lugares da Terra, exceto das regiões mais setentrionais. É um sistema estelar binário e um dos mais próximos do nosso Sol, localizado apenas a oito anos-luz de distância.

Conhecida desde a Antiguidade, esta estrela desempenhou um papel fundamental na manutenção do tempo e da agricultura no antigo Egito, uma vez que o seu retorno ao céu estava ligado à inundação anual do Nilo. Na mitologia da Grécia Antiga, representava o olho da constelação de Cão Maior, o cão que segue diligentemente Órion, o Caçador.

As estrelas deslumbrantes, como Sirius, são uma bênção e uma maldição para os astrônomos. A sua aparência brilhante fornece muita luz para estudar as suas propriedades, mas também ofusca outras fontes celestiais que se encontram no mesmo ponto do céu.

É por isso que Sirius foi encoberta nesta imagem, obtida pelo astrônomo amador Harald Kaiser, no dia 10 de janeiro, a partir de Karlsruhe, uma cidade no sudoeste da Alemanha.

Assim que o brilho de Sirius é removido, um objeto interessante torna-se visível à sua esquerda: o aglomerado estelar Gaia 1, observado, pela primeira vez, no ano passado, utilizando dados do satélite Gaia da ESA.

Gaia 1 é um aglomerado aberto, uma família de estrelas nascidas ao mesmo tempo e mantidas unidas pela gravidade, e está localizado a cerca de 15.000 anos-luz de distância da Terra. O seu alinhamento, por acaso, ao lado de Sirius, manteve-o escondido a gerações de astrônomos, que têm varrido o céu com os seus telescópios nos últimos quatro séculos. Mas não para o olho inquisitivo do Gaia, que mapeou mais de um bilhão de estrelas na Via Láctea.

O Sr. Kaiser soube da descoberta deste aglomerado durante uma conversa pública sobre a missão do Gaia e esperou zelosamente por um céu claro para tentar observá-lo, usando o seu telescópio de 30 cm de diâmetro. Depois de cobrir Sirius no sensor do telescópio, criando o círculo escuro na imagem, conseguiu registar algumas das estrelas mais brilhantes do aglomerado Gaia 1.

Gaia 1 é um dos dois grupos de estrelas, anteriormente desconhecidos, que foram descobertos ao contar estrelas a partir do primeiro conjunto de dados de Gaia, que foi lançado em setembro de 2016. Os astrônomos estão ansiosos pelo segundo lançamento de dados do Gaia, planejado para 25 de abril, os quais oferecerão vastas possibilidades para novas e emocionantes descobertas.

Fonte: ESA

Grande Nuvem de Magalhães contém moléculas orgânicas complexas

A galáxia anã próxima conhecida como Grande Nuvem de Magalhães (GNM) é um local quimicamente primitivo.

moléculas orgânicas na Grande Nuvem de Magalhães

© NRAO/ALMA/Blanco/Herschel/Spitzer (moléculas orgânicas na Grande Nuvem de Magalhães)

A imagem acima à esquerda no infravermelho longínquo mostra o todo da galáxia. A imagem ampliada mostra a região de formação estelar observada pelo ALMA. É uma combinação de dados infravermelhos do Spitzer e de dados no visível (H-alpha) obtidos pelo telescópio Blanco de 4 metros.

Ao contrário da Via Láctea, esta coleção semi-espiral de algumas dezenas de bilhões de estrelas não tem a rica abundância de elementos pesados da nossa Galáxia, como carbono, oxigênio e nitrogênio. Com esta escassez de elementos pesados, os astrônomos preveem que a GNM contenha quantidades comparativamente insignificantes de moléculas complexas à base de carbono. As observações anteriores da GNM parecem apoiar esta visão.

No entanto, novas observações com o ALMA (Atacama Large Millimeter/submillimeter Array) descobriram "impressões digitais" químicas surpreendentemente claras das moléculas orgânicas complexas metanol, éter dimetílico e formato de metilo. Embora as observações anteriores tivessem encontrado pistas de metanol na GNM, as últimas duas substâncias são na realidade descobertas sem precedentes e são tidas como as moléculas mais complexas já detectadas de forma definitiva fora da nossa Galáxia.

Os astrônomos descobriram o tênue "brilho" milimétrico das moléculas emanado por dois embriões densos de formação estelar na GNM, regiões conhecidas como "núcleos quentes". Estas observações podem fornecer informações sobre a formação de moléculas orgânicas complexas no início da história do Universo.

"Embora a Grande Nuvem de Magalhães seja um dos nossos companheiros galácticos mais próximos, esperamos que partilhe alguma estranha semelhança química com as galáxias jovens e distantes do Universo inicial," afirma Marta Sweiło, astrônoma do Goddard Space Flight Center da NASA.

Esta falta de elementos pesados é referenciada como "baixa metalicidade". São necessárias várias gerações de nascimentos e mortes estelares para semear uma galáxia com elementos pesados, que são então misturados na próxima geração de estrelas e se tornam nos blocos de construção de novos planetas.

"As galáxias jovens e primordiais simplesmente não tiveram tempo suficiente para se tornarem tão quimicamente enriquecidas," comenta Sewiło. "As galáxias anãs, como a GNM, provavelmente mantiveram esta mesma composição juvenil por causa das suas massas relativamente baixas, que reduzem severamente o ritmo de formação estelar."

"Devido à sua baixa metalicidade, a GNM fornece uma janela para estas primeiras galáxias adolescentes," realça Remy Indebetouw, astrônomo do NRAO (National Radio Astronomy Observatory). "Os estudos de formação estelar nesta galáxia fornecem as bases para avançar a nossa compreensão da formação estelar no Universo inicial."

Os astrônomos focaram o seu estudo na região de formação estelar N113 na GNM, uma das regiões mais ricas em gás e mais massivas da galáxia. Observações anteriores desta área com o telescópio espacial Spitzer da NASA e com o observatório espacial Herschel da ESA revelaram uma surpreendente concentração de objetos estelares jovens, protoestrelas que só agora começaram a aquecer os seus berçários estelares, fazendo com que brilhem intensamente no infravermelho. Pelo menos uma parte desta formação estelar é devida a um efeito de dominó, onde a formação de estrelas massivas desencadeia a formação de outras estrelas na mesma vizinhança geral.

Sewiło e colegas usaram o ALMA para estudar vários jovens objetos estelares nesta região a fim de melhor entender a sua química e dinâmica. Os dados do ALMA revelaram, surpreendentemente, as assinaturas espectrais reveladoras do éter dimetílico e do formato de metilo, moléculas que, até agora, nunca haviam sido detectadas tão longe da Terra.

As moléculas orgânicas complexas, aquelas com seis ou mais átomos, incluindo carbono, estão entre os blocos de construção básicos das moléculas essenciais para a vida na Terra e presumivelmente em outras partes do Universo. Embora o metanol seja um composto relativamente simples em comparação com outras moléculas orgânicas, é, no entanto, essencial para a formação de moléculas orgânicas mais complexas, como aquelas que o ALMA observou recentemente, entre outras.

Caso estas moléculas complexas possam formar-se prontamente em torno de protoestrelas, é provável que durem e se tornem parte dos discos protoplanetários de jovens sistemas estelares. Tais moléculas provavelmente foram entregues à Terra primitiva por cometas e meteoritos, ajudando a impulsionar o desenvolvimento da vida no nosso planeta.

Os astrônomos especulam que uma vez que as moléculas orgânicas se podem formar em ambientes quimicamente primitivos como o da GNM, é possível que a estrutura química para a vida tenha surgido relativamente cedo na história do Universo.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory