quarta-feira, 5 de setembro de 2018

Hubble observa aurora no polo norte de Saturno

Astrônomos usando o telescópio espacial Hubble fizeram uma série de imagens espetaculares com as auroras agitadas no polo norte de Saturno.

Saturn and its northern auroras (composite image)

© Hubble (aurora do polo norte de Saturno em 2018)

As observações foram feitas em luz ultravioleta e as imagens resultantes fornecem aos astrônomos a imagem mais abrangente até o momento da aurora do polo norte de Saturno.

Em 2017, durante um período de sete meses, o telescópio espacial Hubble captou imagens de auroras acima da região do polo norte de Saturno usando o espectrógrafo de imagens. As observações foram feitas antes e depois do solstício de verão setentrional de Saturno. Estas condições proporcionaram a melhor visualização possível da região auroral do norte para o Hubble.

Na Terra, as auroras são criadas principalmente por partículas originalmente emitidas pelo Sol na forma de vento solar. Quando este fluxo de partículas eletricamente carregadas se aproxima do nosso planeta, ele interage com o campo magnético, que age como um gigantesco escudo. Embora proteja o meio ambiente da Terra das partículas do vento solar, ele também pode capturar uma pequena fração deles. Partículas aprisionadas dentro da magnetosfera - a região do espaço ao redor da Terra, na qual partículas carregadas são afetadas por seu campo magnético - podem ser energizadas e seguir as linhas do campo magnético até os polos magnéticos. Lá, eles interagem com átomos de oxigênio e nitrogênio nas camadas superiores da atmosfera, criando as luzes cintilantes e coloridas visíveis nas regiões polares da Terra. As auroras aqui na Terra têm nomes diferentes dependendo de qual polo elas ocorrem. A aurora boreal é o nome dado às auroras em torno do polo norte e aurora austral é o nome dado para auroras ao redor do polo sul.

No entanto, estas auroras não são exclusivas da Terra. Outros planetas em nosso Sistema Solar também apresentam auroras semelhantes. Entre eles estão os quatro gigantes gasosos: Júpiter, Saturno, Urano e Netuno. Como a atmosfera de cada um dos quatro planetas exteriores do Sistema Solar é dominada pelo hidrogênio, as auroras de Saturno podem ser mais facilmente vistas em comprimentos de onda ultravioleta.

O telescópio espacial Hubble permitiu que os pesquisadores monitorassem o comportamento das auroras no polo norte de Saturno durante um longo período de tempo. As observações do Hubble foram coordenadas pela sonda Cassini, quando explorou simultaneamente as regiões aurorais de Saturno. Os dados do Hubble permitiram que os astrônomos aprendessem mais sobre a magnetosfera de Saturno, que é a maior de qualquer outro planeta do Sistema Solar além de Júpiter.

As imagens mostram uma rica variedade de emissões com recursos localizados altamente variáveis. A variabilidade das auroras é influenciada tanto pelo vento solar quanto pela rápida rotação de Saturno, que dura apenas cerca de 11 horas. Além disso, a aurora do norte exibe dois picos distintos de brilho, ao amanhecer e pouco antes da meia-noite. O último pico, não relatado antes, parece específico para a interação do vento solar com a magnetosfera no solstício de Saturno.

A principal imagem apresentada aqui é um composto de observações feitas de Saturno no início de 2018 na região do visível e das auroras na região do polo norte de Saturno, feita em 2017, demonstrando o tamanho das auroras juntamente com as belas cores de Saturno.

O telescópio espacial Hubble estudou as auroras de Saturno no passado. Em 2004, captou a aurora polo sul pouco depois do solstício do sul. E, em 2009, aproveitou uma rara oportunidade de registrar Saturno quando seus anéis estavam de perfil. Isso permitiu que o Hubble observasse os dois polos e suas auroras simultaneamente. Veja estas imagens em Ondas de rádio emitidas por Saturno.

Fonte: ESA

terça-feira, 4 de setembro de 2018

Uma galáxia lenticular em Ursa Maior

Esta imagem do telescópio espacial Hubble mostra a galáxia NGC 4036: uma galáxia lenticular a cerca de 70 milhões de anos-luz de distância da Terra na constelação da Ursa Maior.

Hazy dust in Ursa Major

© Hubble/Judy Schmidt (NGC 4036)

Esta galáxia é conhecida por suas faixas irregulares de poeira, que formam um padrão em espiral ao redor do centro da galáxia. Este núcleo é circundado por uma extensa névoa de gás e poeira, que se estende para o espaço e causando um brilho quente e difuso.

O próprio centro também é intrigante, é conhecido como núcleo galáctico do tipo LINER (Low-Ionisation Nuclear Emission-line Region), significando que exibe linhas de emissão específicas dentro do seu espectro. A estrela particularmente brilhante, visível ligeiramente à direita do centro da galáxia, não está dentro da própria galáxia; fica entre nós e a NGC 4036, adicionando uma explosão de brilho à cena.

Devido ao seu brilho relativo, esta galáxia pode ser vista usando um telescópio amador, tornando-se um alvo favorito dos astrofotógrafos aficionados.

Fonte: ESA

domingo, 2 de setembro de 2018

Astrônomos identificam algumas das primeiras galáxias do Universo

Astrônomos da Universidade de Durham e do Centro de Astrofísica Harvard-Smithsonian (CfA) encontraram evidências de que as galáxias satélites mais fracas que orbitam a nossa galáxia, a Via Láctea, estão entre as primeiras galáxias formadas em nosso Universo.

simulação de galáxias satélites orbitando a Via Láctea

© U. Durham/ICC (simulação de galáxias satélites orbitando a Via Láctea)

Os resultados do grupo de pesquisa sugerem que galáxias incluindo Segue-1, Bootes I, Tucana II e Ursa Maior I são, de fato, algumas das primeiras galáxias já formadas, supostamente com mais de 13 bilhões de anos.

Quando o Universo tinha cerca de 380.000 anos, os primeiros átomos se formaram. Estes eram átomos de hidrogênio, o elemento mais simples da tabela periódica. Estes átomos se acumularam em nuvens e começaram a esfriar gradualmente e se estabelecer nos pequenos aglomerados ou "halos" de matéria escura que emergiram do Big Bang.

Esta fase de resfriamento, conhecida como "idade das trevas cósmica", durou cerca de 100 milhões de anos. Eventualmente, o gás que esfriara dentro dos halos tornou-se instável e começou a formar estrelas. Estes objetos são as primeiras galáxias que já se formaram. Com a formação das primeiras galáxias, o Universo explodiu em luz, terminando a era cósmica da escuridão.

O Dr. Sownak Bose, do CfA, trabalhando com o Dr. Alis Deason e o Professor Carlos Frenk, no Instituto de Cosmologia Computacional da Universidade de Durham (ICC), identificou duas populações de galáxias satélites que orbitam a Via Láctea.

A primeira foi uma população muito fraca consistindo das galáxias que se formaram no final da “idade das trevas cósmica”. A segunda foi uma população ligeiramente mais brilhante, consistindo de galáxias que se formaram centenas de milhões de anos depois, uma vez que o hidrogênio que havia sido ionizado pela intensa radiação ultravioleta emitida pelas primeiras estrelas foi capaz de arrefecer em halos de matéria escura mais massivos. Eventualmente, os halos da matéria escura se tornaram tão grandes que galáxias brilhantes como a própria Via Láctea foram capazes de se formar.

Notavelmente, a equipe descobriu que um modelo de formação de galáxias que eles haviam desenvolvido anteriormente concordava perfeitamente com os dados, permitindo inferir os tempos de formação das frágeis galáxias satélites.

"Nossa descoberta apóia o atual modelo para a evolução do nosso Universo, o 'modelo Lambda-matéria-escura-fria' no qual as partículas elementares que compõem a matéria escura conduzem a evolução cósmica", disse o professor Frenk. Neste modelo "Lambda" refere-se a energia escura, que está causando a expansão do Universo para acelerar.

O Dr. Bose, que era doutorando no ICC quando este trabalho começou e agora é pesquisador no CfA, disse: “Um bom aspecto deste trabalho é que ele destaca a complementaridade entre as previsões de um modelo teórico e real de dados.

"Uma década atrás, as galáxias mais fracas nas proximidades da Via Láctea teriam sido captadas. Com a crescente sensibilidade do presente e futuro dos censos de galáxias, um novo conjunto das menores galáxias chegou à luz, permitindo-nos testar modelos teóricos em novos regimes".

O Dr. Deason, que é pesquisador da Royal Society University no ICC, disse: "Este é um maravilhoso exemplo de como as observações das menores galáxias anãs residentes na Via Láctea podem ser usadas para aprender sobre o Universo primordial".

Um artigo descrevendo este trabalho aparece no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 1 de setembro de 2018

Lançamento do Portal do Arquivo Científico do ESO

Uma atualização recente ao Arquivo Científico do ESO tornou o acesso à enorme coleção de dados astronômicos do ESO muito mais fácil e intuitivo.

Portal do Arquivo Científico do ESO

© ESO (Portal do Arquivo Científico do ESO)

O destaque desta atualização é o lançamento do Portal do Arquivo Científico do ESO, uma interface interativa que funciona a partir do browser e que permite a qualquer pessoa procurar e encontrar rapidamente dados astronômicos obtidos com os telescópios do ESO.

O ESO constrói e opera alguns dos telescópios astronômicos terrestres mais avançados do mundo e por isso a concorrência para usar estes instrumentos é  acirrada, com as propostas bem sucedidas a ganhar acesso a excelentes dados astronômicos. No entanto, estes dados não pertencem para sempre aos pesquisadores que os obtiveram. Após um período de exclusividade, que dura normalmente um ano, os dados tornam-se públicos através do Arquivo Científico do ESO.

O Arquivo Científico do ESO tem fornecido aos astrônomos do mundo inteiro acesso a dados desde 1988. O objetivo desta mais recente atualização é garantir que este tesouro de dados astronômicos de arquivo do ESO se encontra disponível a todos por meio de interfaces poderosas e fáceis de utilizar.

Explore o novo Portal do Arquivo Científico do ESO.

Procurando água nas profundezas da Grande Mancha Vermelha de Júpiter

Os cientistas trabalham já há séculos para compreender a composição de Júpiter.

ilustração de Júpiter

© NASA/JPL/SwRI/Juno (ilustração de Júpiter)

Este planeta misterioso é de longe o maior do nosso Sistema Solar e, quimicamente, o mais parecido com o Sol. A compreensão de Júpiter é fundamental para aprender mais sobre como o nosso Sistema Solar se formou e até sobre como outros sistemas solares se desenvolvem.

Mas uma questão fundamental tem intrigado os astrônomos durante gerações: será que existe água nas profundezas da atmosfera de Júpiter e, em caso afirmativo, quanta?

Gordon L. Bjoraker, astrofísico do Goddard Space Flight Center da NASA, relatou que ele e a sua equipe encontrou uma resposta.

Ao observar com telescópios terrestres comprimentos de onda sensíveis à radiação térmica que escapa das profundezas da persistente tempestade de Júpiter, a Grande Mancha Vermelha, detectaram as assinaturas químicas da água acima das nuvens mais profundas do planeta. A pressão da água combinada com as suas medições de outro gás contendo oxigênio, o monóxido de carbono, implica que Júpiter tem 2 a 9 vezes mais oxigênio do que o Sol. Este achado suporta modelos teóricos e de computador que previram água abundante em Júpiter.

A revelação foi emocionante, uma vez que a experiência da equipe podia ter falhado facilmente. A Grande Mancha Vermelha está repleta de nuvens densas, o que torna difícil a fuga de energia eletromagnética para evidenciar a química interna.

Novas tecnologias espectroscópicas e pura curiosidade deram à equipe um impulso para investigar as profundezas de Júpiter, que tem uma atmosfera com milhares de quilômetros de espessura.

Os dados que Bjoraker e a sua equipe recolheram vão complementar a informação que a sonda Juno da NASA está reunindo enquanto orbita o planeta de norte a sul a cada 53 dias.

Entre outras coisas, a Juno está à procura de água com o seu próprio espectrômetro infravermelho e com um radiômetro de micro-ondas que pode estudar mais profundamente do que alguém já tentou, até 100 bares, ou 100 vezes a pressão atmosférica à superfície da Terra (a altitude em Júpiter é medida em bares, que representa a pressão atmosférica, já que o planeta não tem uma superfície, como a Terra, para medir a elevação).

Se a Juno transmitir descobertas similares de água, apoiando, portanto, a técnica terrestre de Bjoraker, poderá abrir-se uma nova janela para resolver o problema da água. A Juno é a sonda mais recente encarregada de encontrar água, provavelmente em forma de gás, neste gigantesco planeta gasoso.

A água é uma molécula importante e abundante no nosso Sistema Solar. Contribuiu para a formação da vida na Terra e agora lubrifica muitos dos seus processos mais essenciais, incluindo o clima. É também um fator crítico no clima turbulento de Júpiter e para determinar se o planeta tem um núcleo rochoso ou gelado.

Pensa-se que Júpiter tenha sido o primeiro planeta formado no Sistema Solar, absorvendo os elementos que sobraram da formação do Sol, à medida que este coalescia a partir de uma nebulosa amorfa para a ardente bola de gases que vemos hoje. Uma teoria amplamente aceita até há várias décadas atrás afirmava que Júpiter era idêntico em composição com o Sol; uma bola de hidrogênio com uma pequena quantia de hélio; só gás, sem núcleo.

Mas há cada vez mais evidências de que Júpiter tem um núcleo, possivelmente com 10 vezes a massa da Terra. As sondas que anteriormente visitaram o planeta descobriram evidências químicas de que formou um núcleo de rocha e água gelada antes de misturar gases da nebulosa solar para perfazer a sua atmosfera. A maneira como a gravidade de Júpiter puxa a Juno também suporta esta teoria. Há até raios e trovões no planeta, fenômenos alimentados pela umidade.

Em 1995 a Galileo da NASA mostrou um ambiente diferente, quando lançou uma sonda na atmosfera de júpiter e acabou caindo numa região anormalmente seca. "É como enviar uma sonda para a Terra, aterrissar num deserto, e daí concluir que a Terra é seca," explicou Bjoraker.

Na sua busca pela água, Bjoraker e a sua equipe usaram dados de radiação recolhidos no cume do Maunakea, Havaí, em 2017. Contaram com o telescópio infravermelho mais sensível da Terra, no Observatório W. M. Keck, e também com um novo instrumento que pode detectar uma ampla gama de gases acoplado ao IRTF (Infrared Telescope Facility) da NASA.

A ideia era analisar a radiação emitida através das nuvens de Júpiter a fim de identificar as altitudes das suas camadas de nuvens. Isso ajudaria os cientistas a determinar a temperatura e outras condições que influenciam os tipos de gases que podem sobreviver nestas regiões.

Os especialistas em atmosferas planetárias esperam que existam três camadas de nuvens em Júpiter: uma camada inferior composta por água gelada e líquida, uma intermediária de amônia e enxofre, e uma camada superior de amônia.

Para obter uma confirmação por meio de observatórios no solo, os astrônomos observaram os comprimentos de onda no espectro infravermelho, onde a maior parte dos gases não absorvem calor, permitindo o escape das assinaturas químicas. Especificamente, analisaram os padrões de absorção de uma forma do gás metano. Dado que Júpiter é demasiado quente para o metano congelar, a sua abundância não deve mudar de um lugar para outro no planeta.

Foi encontrada evidências para as três camadas de nuvens na Grande Mancha Vermelha, suportando modelos anteriores. A camada mais profunda de nuvens está a 5 bares, exatamente onde a temperatura atinge o ponto de solidificação da água. A localização da nuvem de água, mais a quantidade de monóxido de carbono que os cientistas identificaram em Júpiter, confirma que ele é rico em oxigênio e, portanto, em água.

A técnica de Bjoraker agora precisa de ser testada  em outras partes de Júpiter para obter uma imagem completa da abundância global de água, e os seus dados comparados com os da Juno.

Um artigo foi publicado no periódico The Astronomical Journal.

Fonte: Goddard Space Flight Center

quinta-feira, 30 de agosto de 2018

Um complexo de nebulosas de reflexão em Cygnus

Uma imagem colorida com contrastes que apresenta estrelas, poeira e gás incandescente nas proximidades da NGC 6914.

NGC 6914 e Cygnus OB2

© Ivan Eder (NGC 6914 e Cygnus OB2)

O complexo de nebulosas de reflexão fica a cerca de 6.000 anos-luz de distância, em direção à constelação de Cygnus e ao plano da Via Láctea. Nuvens de poeira interestelares obscuras aparecem em silhueta enquanto nebulosas avermelhadas de emissão de hidrogênio, junto com as nebulosas azuis de reflexão de poeira, preenchem a tela cósmica.

A radiação ultravioleta das estrelas massivas e quentes da extensa associação Cygnus OB2 ioniza o gás hidrogênio atômico da região, produzindo o brilho vermelho característico à medida que os prótons e elétrons se recombinam. As estrelas Cygnus OB2 incorporadas também fornecem a luz estelar azul fortemente refletida pelas nuvens de poeira.

O campo telescópico de quase 1 grau de largura abrange cerca de 100 anos-luz a uma distância estimada da NGC 6914.

Fonte: NASA

quarta-feira, 29 de agosto de 2018

Olho celestial penetrante captado pelo Hubble

Esta imagem exuberante efetuada pelo telescópio espacial Hubble mostra a nebulosa planetária NGC 3918, uma brilhante nuvem de gás colorida na constelação de Centaurus, localizada a cerca de 4.900 anos-luz de distância da Terra.

A piercing eye in the sky

© Hubble (NGC 3918)

No centro da nuvem de gás, e completamente diminuída pela nebulosa, estão os restos mortais de uma estrela gigante vermelha. Durante a fase final convulsiva, na evolução destas estrelas, imensas nuvens de gás são ejetadas da superfície da estrela antes que ela saia do casulo como uma anã branca. A intensa radiação ultravioleta desta diminuta remanescente estelar faz com que o gás ao redor brilhe como uma luz fluorescente. Estas extraordinárias e coloridas nebulosas planetárias estão entre os objetos mais dramáticos do céu noturno, e as vezes possuem estranhas e irregulares formas, que não são ainda totalmente explicadas.

A forma distinta de um olho da NGC 3918, com uma brilhante concha interna de gás e uma concha mais externa mais difusa que se estende para bem longe da nebulosa, se parece como se fosse o resultado de duas ejeções separadas de gases. Mas isto não é o caso: estudos deste objeto sugerem que estas conchas se formaram quase ao mesmo tempo, mas estão sendo sopradas da estrela a diferentes velocidades. Os poderosos jatos de gás emergindo da parte final da estrutura maior estão viajando a cerca de 350 mil quilômetros por hora.

Pelos padrões dos fenômenos astronômicos, as nebulosas planetárias como a NGC 3918, têm uma vida muito curta, durando poucas dezenas de milhares de anos.

A imagem acima é uma composição de imagens feitas na luz visível e no infravermelho próximo com a Wide Field and Planetary Camera 2 do telescópio espacial Hubble.

Fonte: ESA

Estrelas versus poeira na Nebulosa Carina

Na constelação da Quilha, a cerca de 7.500 anos-luz de distância, localiza-se uma nebulosa na qual as estrelas nascem e morrem lado a lado. Moldada por estes eventos dramáticos, a Nebulosa Carina é uma nuvem dinâmica e em evolução, de gás e poeira bastante dispersos.

The Carina Nebula in infrared light

© ESO/J. Emerson/M. Irwin/J. Lewis (Nebulosa Carina no infravermelho)

As estrelas massivas no interior desta bolha cósmica emitem radiação intensa que faz com que o gás ao seu redor brilhe. Em contraste, outras regiões da nebulosa contêm pilares escuros de poeira que escondem estrelas recém-nascidas. Existe como que uma batalha entre as estrelas e a poeira na Nebulosa Carina, sendo que as estrelas recentemente formadas estão gerando radiação de alta energia e ventos estelares que fazem evaporar e dispersar as maternidades estelares empoeiradas nas quais se formaram.

Com uma dimensão de 300 anos-luz, a Nebulosa Carina é uma das maiores regiões de formação estelar da Via Láctea, podendo ser facilmente observada a olho nu num céu escuro. Infelizmente, para as pessoas que vivem no hemisfério norte, este objeto situa-se 60º abaixo do equador celeste e por isso é apenas visível a partir do hemisfério sul.

No centro desta intrigante nebulosa, Eta Carinae ocupa um lugar de destaque como um sistema estelar muito peculiar. esta nebulosa possui uma forma interessante de binário estelar, é o sistema estelar mais energético da região e era um dos objetos mais brilhantes do céu na década de 1830. Desde essa época diminuiu de brilho dramaticamente, aproximando-se agora do final da sua vida, mas permanecendo um dos sistemas estelares mais massivos e luminosos da Via Láctea.

Eta Carinae pode ser vista nesta imagem no meio da área de luz brilhante circundada por uma forma em “V”, formada por nuvens de poeira. Logo à direita de Eta Carinae encontra-se a relativamente pequena Nebulosa do Buraco de Fechadura, uma pequena nuvem densa de moléculas e gás frio situada no coração da Nebulosa Carina, que abriga várias estrelas massivas e cuja aparência mudou também drasticamente ao longo dos últimos séculos.

A Nebulosa Carina foi  descoberta a partir do Cabo da Boa Esperança por Nicolas Louis de La Caille nos anos 1750 e desde este momento foi observada inúmeras vezes. O Visible and Infrared Survey Telescope for Astronomy (VISTA) acrescenta, no entanto, um detalhe sem precedentes à imagem de uma grande área; a sua visão infravermelha é perfeita no que diz respeito a revelar aglomerados de estrelas jovens escondidos no material empoeirado que serpenteia ao longo da Nebulosa Carina.

Em 2014, o VISTA foi utilizado para localizar quase cinco milhões de fontes individuais de infravermelho nesta nebulosa, revelando assim a vasta extensão deste campo de criação de estrelas.

O VISTA é o maior telescópio infravermelho do mundo dedicado a rastreios e o seu grande espelho, enorme campo de visão e detectores extremamente sensíveis permitem aos astrônomos observar o céu austral de uma maneira completamente nova.

Fonte: ESO

Descoberta a radiogaláxia mais distante do Universo

Pesquisadores do Observatório Nacional (ON) descobriram a radiogaláxia mais distante do Universo, a 12,4 bilhões anos-luz da Terra, quando o Universo tinha apenas 7% da sua idade.

localização da radiogaláxia TGSS J1530 1049

© VLA (localização da radiogaláxia TGSS J1530+1049)

A imagem acima em comprimento de onda infravermelho da região obtida pelo Very Large Array (VLA), onde se encontra a radiogaláxia TGSS J1530+1049. As elipses no centro mostram a emissão detectada em comprimentos de onda de rádio.

As radiogaláxias são objetos nos quais existe um buraco negro de grande massa e em rotação rápida que emite radiação intensa principalmente nos comprimentos de onda de rádio. A busca deste tipo de galáxia a grandes distâncias é importante porque contribui para a compreensão dos processos de formação das galáxias e seus buracos negros logo após o Big Bang. Embora existam outras galáxias ainda mais distantes, esta é a mais longínqua das radiogaláxias detectadas até o momento, superando o último recorde estabelecido em 1999 da radiogaláxia da TN J0924-2201, a 12,2 bilhões de anos-luz.

O trabalho foi realizado por Aayush Saxena, aluno de doutorado do Observatório de Leiden, na Holanda, e Murilo Marinello, aluno de doutorado do Observatório Nacional, supervisionado pelo pesquisador Roderik Overzier, da Coordenação de Astronomia e Astrofísica do ON. O desenvolvimento do trabalho só foi possível devido à associação do Brasil com o Observatório Gemini, onde as medidas foram realizadas.

A radiogaláxia foi pré-selecionada com base em observações feitas em diferentes comprimentos de onda de rádio, que indicavam que ela teria um espectro típico de objetos distantes. Entretanto, devido à sua longa distância, a galáxia não havia sido detectada ainda em comprimentos de onda óptico e infravermelho. A observação nestes comprimentos de onda exigiu a utilização do espectrógrafo GMOS do telescópio Gemini Norte, no Havaí, EUA, que permitiu detectar uma linha de emissão de hidrogênio da radiogaláxia, estabelecendo, assim, a sua distância com alta precisão.

A busca por estas radiogaláxias distantes é importante porque, no futuro, radiotelescópios como o Low-frequency Array (LOFAR) e o Square Kilometer Array (SKA) serão capazes de analisar seus espectros. Isso permitirá estudar como a luz ionizante produzida pelas primeiras estrelas e galáxias do Universo afetou as propriedades do espaço durante a denominada "época da reionização", um período muito importante da história do Universo, ainda não bem compreendido. 

O estudo faz parte da tese de doutorado de Murilo Marinello, que estuda a física de galáxias ativas. As galáxias ativas se distinguem das galáxias normais por apresentarem um brilho intenso em sua região central, o qual não pode ser atribuído apenas à densidade das estrelas ali localizadas. No centro destas galáxias existe um buraco negro circundado por um disco de gás, e a matéria inserida neste disco libera energia na forma de uma radiação brilhante, o que não é observado em galáxias normais. Esta radiação e as partículas energéticas expelidas pelo sistema se apresentam na forma de jatos ou lóbulos, que são detectados em comprimentos de onda de rádio, sendo as radiogaláxias um exemplo deste fenômeno. A defesa da sua tese está prevista para fevereiro de 2019, no Observatório Nacional.

O estudo foi publicado na revista inglesa Monthly Notices of the Royal Astronomical Society.

Fonte: Observatório Nacional

Mapa da densidade estelar

O segundo lançamento de dados da missão Gaia da ESA, realizado em abril, marcou um ponto de viragem no estudo da nossa casa galáctica, a Via Láctea.

mapa 3D focado em estrelas OB da Via Láctea

© Galaxy Map/K. Jardine (mapa 3D focado em estrelas OB da Via Láctea)

Com um catálogo sem precedentes de posições 3D e movimentos 2D de mais de um bilhão de estrelas, além de informações adicionais sobre subconjuntos menores de estrelas e outras fontes celestes, o Gaia forneceu um recurso surpreendente para explorar a distribuição e composição da Galáxia e analisar a sua evolução passada e futura.

A maioria das estrelas na Via Láctea está localizada no disco Galáctico, que tem uma forma achatada, caracterizada por um padrão de braços espirais, semelhante ao observado em galáxias espirais além da nossa. No entanto, é particularmente difícil reconstruir a distribuição de estrelas no disco e, especialmente, o design dos braços da Via Láctea, devido à nossa posição dentro do próprio disco.

É aqui que as medições do Gaia podem fazer a diferença.

Esta imagem mostra um mapa 3D que está focado num tipo particular de objeto: estrelas OB, as estrelas mais quentes, mais brilhantes e mais massivas da nossa Galáxia. Como estas estrelas têm vidas relativamente curtas - até algumas dezenas de milhões de anos – encontram-se principalmente perto dos seus locais de formação no disco galáctico. Como tal, podem ser usadas para traçar a distribuição geral de estrelas jovens, locais de formação estelar e braços espirais da Galáxia.

O mapa, que se baseia em 400.000 estrelas deste tipo, a menos de 10.000 anos-luz do Sol, foi criado por Kevin Jardine, um programador e astrônomo amador com interesse em cartografar a Via Láctea, e que utiliza uma variedade de dados astronômicos.

Está centrado no Sol e mostra o disco galáctico como se estivéssemos olhando para ele de um ponto de vista fora da Galáxia.

Para lidar com o enorme número de estrelas no catálogo do Gaia, Kevin utilizou a chamada isosuperfície de densidade, uma técnica que é usada rotineiramente em muitas aplicações práticas, por exemplo, para visualizar o tecido dos órgãos dos ossos em tomografias computadorizadas do corpo humano. Nesta técnica, a distribuição 3D de pontos individuais é representada em termos de uma ou mais superfícies lisas que delimitam regiões com uma densidade de pontos diferente.

Aqui, regiões do disco galáctico são mostradas com cores diferentes, dependendo da densidade de estrelas ionizantes anotadas pelo Gaia; estas são as mais quentes entre as estrelas OB, brilhando com a radiação ultravioleta que retira os elétrons dos átomos de hidrogênio para lhes dar o seu estado ionizado.

As regiões com maior densidade destas estrelas são exibidas em tons rosa/roxo, regiões com densidade intermédia em violeta/azul claro, e regiões de baixa densidade em azul escuro. Informações adicionais de outras pesquisas astronômicas foram também usadas para cartografar as concentrações de poeira interestelar, mostradas em verde, enquanto nuvens conhecidas de gás ionizado estão representadas como esferas vermelhas.

O aparecimento de "raios" é uma combinação de nuvens de poeira que bloqueiam a visão das estrelas por trás delas e um efeito de alongamento da distribuição de estrelas ao longo da linha de visão.

Uma versão interativa deste mapa está também disponível como parte do Gaia Sky, um software de visualização em astronomia 3D, em tempo real, que foi desenvolvido no âmbito da missão Gaia no Astronomisches Rechen-Institut, Universidade de Heidelberg, Alemanha.

Fonte: ESA

segunda-feira, 27 de agosto de 2018

Descoberta misteriosa fonte de raios X

Uma enigmática fonte de raios X, revelada como parte de um projeto de pesquisa de dados por estudantes do ensino secundário, revela caminhos inexplorados, escondidos no vasto arquivo do observatório de raios X do XMM-Newton da ESA.

fonte em NGC 6540

© INAF/EXTraS (fonte em NGC 6540)

Quando o XMM-Newton foi lançado em 1999, a maioria dos estudantes que estão hoje terminando o ensino secundário nem sequer tinham nascido. No entanto, o observatório de raios X da ESA, com quase duas décadas de existência, tem muitas surpresas para serem exploradas pela próxima geração de cientistas.

A nova descoberta foi revelada numa colaboração recente entre cientistas do Instituto Nacional de Astrofísica (INAF), em Milão, na Itália, e um grupo de estudantes de uma escola secundária próxima de Saronno.

A interação frutífera foi parte do projeto EXTraS (Exploring the X-ray Transient e variable Sky), um estudo internacional de pesquisa de fontes variáveis dos primeiros 15 anos de observações do XMM-Newton.

O catálogo EXTraS, recentemente publicado, inclui todas as fontes de raios X - cerca de meio milhão - cujo brilho muda com o tempo, como observado pelo XMM-Newton, e lista vários parâmetros observados para cada fonte.

Cientistas do INAF têm cooperado com escolas locais há já alguns anos, recebendo vários grupos de estudantes no instituto, durante algumas semanas, e incorporando-os nas atividades dos vários grupos de pesquisa.

Para este projeto em particular, os alunos receberam uma introdução sobre astronomia e as fontes exóticas que estudamos com telescópios de raios X, bem como um tutorial sobre o banco de dados e como usá-lo.

Os seis estudantes analisaram cerca de 200 fontes de raios X, analisando a sua curva de luz - um gráfico que mostra a variabilidade do objeto ao longo do tempo - e verificando a literatura científica para comprovar se já haviam sido estudados.

Eventualmente, identificaram um punhado de fontes que exibiam propriedades interessantes que não havia sido relatado anteriormente por outros estudos.

Apresentando a menor luminosidade de todos os objetos analisados, esta fonte parece estar localizada no aglomerado globular NGC 6540, e não havia sido estudada antes.

Uma outra fonte de baixa luminosidade de raios X, foi observada pelo XMM-Newton brilhando até 50 vezes o seu nível normal em 2005, e caindo rapidamente novamente após cerca de cinco minutos.

Estrelas como o nosso Sol brilham moderadamente em raios X e, ocasionalmente, passam por explosões que aumentam o seu brilho, como o observado nessa fonte. No entanto, estes eventos, normalmente, duram muito mais tempo, de até algumas horas ou mesmo dias.

Por outro lado, as explosões curtas são observadas em sistemas estelares binários que hospedam um remanescente estelar denso, como a estrela de nêutrons, mas essas manifestações de raios X são caracterizadas por uma luminosidade muito maior.

Este acontecimento está desafiando a compreensão das explosões de raios X: muito curto para ser um brilho estelar comum, mas muito fraco para estar ligado a um objeto compacto.

Outra possibilidade é que a fonte seja um binário cromosfericamente ativo, um sistema duplo de estrelas com intensa atividade de raios X causada por processos na sua cromosfera, uma camada intermediária na atmosfera de uma estrela. Mas mesmo neste caso, não corresponde, de perto, às propriedades de qualquer objeto conhecido desta classe.

Os cientistas suspeitam que esta fonte peculiar não seja única, e que outros objetos com propriedades semelhantes estejam à espreita no arquivo XMM-Newton, mas ainda não foram identificados por causa da combinação de baixa luminosidade e curta duração do brilho.

A equipe planeia estudar, em detalhe, a nova fonte identificada, de modo a entender melhor a sua natureza, enquanto procura por mais objetos semelhantes no arquivo.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESA

domingo, 26 de agosto de 2018

Messier 20 e 21

A bela Nebulosa Trífida, também conhecida como Messier 20 (M20), é fácil de encontrar com um pequeno telescópio na constelação de Sagitário.

M20 e M21

© Ignacio Diaz Bobillo (M20 e M21)

A Nebulosa Trífida está localizada a cerca de 5.000 anos-luz de distância da Terra.

A imagem colorida desta nebulosa com contrastes cósmicos compartilha este campo composto, de cerca de 1 grau de largura, com o aglomerado estelar aberto Messier 21 (M21), no canto inferior direito. Dissecada por pistas de poeira a Nebulosa Trífida possui de cerca de 40 anos-luz de diâmetro e apenas 300.000 anos de idade.

Isso a torna uma das regiões de formação de estrelas mais jovens em nosso céu, com estrelas recém-nascidas e embrionárias embutidas em suas nuvens de poeira e gás. As estimativas da distância para aglomerado estelar aberto M21 são semelhantes às do M20, mas, apesar de compartilharem esse lindo céu telescópico, não há conexão aparente entre os dois. Na verdade, as estrelas do M21 são muito mais velhas, com cerca de 8 milhões de anos.

Fonte: NASA

Hipparcos e Gaia ajudam a determinar a massa de Beta Pictoris b

A massa de um exoplaneta muito jovem foi revelada pela primeira vez usando dados da missão Gaia da ESA e do seu satélite predecessor, o aposentado Hipparcos com um quarto de século.

exoplaneta Beta Pictoris b visível em órbita da sua estrela hospedeira

© ESO/A-M. Lagrange (exoplaneta Beta Pictoris b visível em órbita da sua estrela hospedeira)

Os astrônomos Ignas Snellen e Anthony Brown da Universidade de Leiden, na Holanda, deduziram a massa do planeta Beta Pictoris b a partir do movimento da sua estrela hospedeira durante um longo período de tempo, tanto com a ajuda do Gaia como com a do Hipparcos.

O planeta é um gigante gasoso parecido com Júpiter, mas, de acordo com a nova estimativa, é 9 a 13 vezes mais massivo. Orbita a estrela Beta Pictoris, a segunda estrela mais brilhante da constelação de Pintor.

O planeta só foi descoberto em 2008 em imagens captadas pelo Very Large Telescope (VLT) do ESO do Chile. Tanto o planeta como a estrela só têm aproximadamente 20 milhões de anos, cerca de 225 vezes mais jovens do que o Sistema Solar. A sua tenra idade torna o sistema intrigante, mas também difícil de estudar usando métodos convencionais.

O comportamento nos estágios iniciais da sua evolução dificulta a tarefa dos astrônomos em medir com precisão a velocidade radial da estrela, a velocidade à qual parece mover-se periodicamente na direção da Terra e na direção oposta. Pequenas mudanças na velocidade radial de uma estrela, provocadas pela atração gravitacional de planetas na sua vizinhança, são regularmente usadas para estimar as massas de exoplanetas. Mas este método funciona principalmente para sistemas que já passaram pelos estágios iniciais da sua evolução.

No caso de Beta Pictoris b, os limites superiores da gama de massas do planeta foram obtidos antes de usar o método de velocidade radial. Para obter uma estimativa melhor, os astrônomos usaram um método diferente, tirando proveito das medições do Hipparcos e do Gaia que revelam a posição precisa e o movimento da estrela hospedeira do planeta no céu ao longo do tempo.

Por outro lado, a estrela é muito quente, gira depressa e pulsa. A estrela orbita em torno do centro da Via Láctea, tal como o Sol. Da Terra, este movimento parece linear quando projetado no céu. Este movimento é denominado movimento próprio. Também existe o efeito de paralaxe, que é provocado pela Terra em órbita do Sol. Por causa disso, ao do longo do ano, vemos a estrela de ângulos ligeiramente diferentes.

E há ainda as pequenas oscilações na trajetória da estrela no céu, desvios minúsculos da trajetória esperada provocados pela atração gravitacional do planeta em órbita da estrela. Esta é a mesma oscilação que pode ser medida através de mudanças na velocidade radial, mas ao longo de uma direção diferente, no plano do céu e não ao longo da linha de visão.

Para poder fazer tal avaliação, os astrônomos precisam de observar a trajetória da estrela durante um período de tempo longo a fim de entender adequadamente o movimento próprio e o efeito de paralaxe.

A missão Gaia, desenhada para observar mais de um bilhão de estrelas na nossa Galáxia, será eventualmente capaz de fornecer informações sobre uma grande quantidade de exoplanetas. Nos 22 meses de observações incluídas no segundo lançamento de dados do Gaia, publicado em abril, o satélite registou a estrela Beta Pictoris cerca de 30 vezes. No entanto, isso não é suficiente.

A combinação das medições do Gaia com as da missão Hipparcos da ESA, que observou Beta Pictoris 111 vezes entre 1990 e 1993, levou a que Ignas e Anthony obtivessem o seu resultado muito mais depressa. Isto levou à primeira estimativa bem-sucedida da massa de um planeta jovem usando medições astrométricas.

O movimento próprio também contém o componente provocado pelo planeta em órbita. O Hipparcos, por si só, não teria sido capaz de encontrar este planeta porque a estrela pareceria solitária e perfeitamente normal a não ser que fosse observado por muito mais tempo.

O resultado representa um passo importante para uma melhor compreensão dos processos envolvidos na formação planetária e antecipa as empolgantes descobertas de exoplanetas que serão alcançadas pelos futuros lançamentos de dados do Gaia.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: ESA

Água gelada confirmada nos polos da Lua

Astrônomos observaram diretamente evidências definitivas de água gelada na superfície da Lua, nas partes mais escuras e mais frias das suas regiões polares.

distribuição do gelo superficial nos polos lunares

© NASA (distribuição do gelo superficial nos polos lunares)

A imagem mostra a distribuição do gelo superficial no polo sul (esquerda) e no polo norte (direita) da Lua, detectado pelo instrumento M3 (Moon Mineralogy Mapper) da NASA. O azul representa as localizações do gelo, sobrepostas sobre uma imagem da superfície lunar, onde o tom cinza corresponde a temperaturas (tons escuros correspondem a áreas mais frias e tons mais claros correspondem a zonas mais quentes). O gelo está concentrado nos locais mais frios e escuros, nas sombras das crateras.

Estes depósitos de gelo estão distribuídos de forma irregular e podem ser antigos. No polo sul, a maioria da água gelada está concentrada nas crateras lunares, enquanto o gelo no polo norte está mais amplamente distribuído, mas é mais escasso.

Uma equipe de cientistas, liderada por Shuai Li da Universidade do Hawaii e da Universidade de Brown e que inclui Richard Elphic do Centro de Pesquisa Ames da NASA, usou dados do instrumento M3 da NASA para identificar três assinaturas específicas que definitivamente comprovam a existência de água gelada na superfície da Lua.

O instrumento M3, a bordo da sonda Chandrayaan-1, lançada em 2008 pela ISRO (Indian Space Research Organization), a agência espacial da Índia, estava equipado para confirmar a presença de gelo na Lua. Recolheu dados que não só captaram as propriedades refletivas que era esperada do gelo, mas também foi capaz de medir diretamente a maneira distinta como as suas moléculas absorvem a luz infravermelha, de modo que pode diferenciar entre água líquida, vapor e gelo sólido.

A maior parte do gelo recém-descoberto encontra-se nas sombras de crateras perto dos polos, onde as temperaturas mais quentes nunca sobem acima dos -157ºC. Devido à inclinação muito pequena do eixo de rotação da Lua, a luz solar nunca alcança estas regiões.

As observações anteriores encontraram indiretamente possíveis sinais de água gelada superficial no polo lunar sul, mas estes podiam ter sido explicados por outros fenômenos, como por exemplo solo lunar incomumente refletivo.

Com gelo suficiente à superfície - nos primeiros milímetros - a água pode ser utilizada como recurso para expedições futuras para explorar e até permanecer na Lua, e é potencialmente mais fácil de aceder do que a água detectada por baixo da superfície da Lua.

Aprender mais sobre este gelo, como lá chegou e como interage com o maior ambiente lunar será um foco fundamental da NASA e parceiros comerciais, à medida que se esforçam para regressar e explorar o nosso vizinho mais próximo, a Lua.

Os resultados foram publicados na revista Proceedings of the National Academy of Sciences.

Fonte: University of Hawaii

quinta-feira, 23 de agosto de 2018

Elementos brilhantes na Nebulosa da Alma

Estrelas estão se formando na Nebulosa da Alma.

IC 1898

© Jesús M.Vargas/Maritxu Poyal (IC 1898)

A Nebulosa da Alma é uma grande região formadora de estrelas, também denominada IC 1898, que pode ser encontrada na direção da constelação de Cassiopeia, que a mitologia grega credita como a esposa vaidosa de um rei que governou há muito tempo as terras ao redor do alto rio Nilo.

A Nebulosa da Alma abriga vários aglomerados abertos de estrelas, uma grande fonte de rádio conhecida como W5 e enormes bolhas formadas pelos ventos de jovens estrelas massivas.

Localizada a cerca de 6.500 anos-luz de distância, a Nebulosa da Alma se estende por cerca de 100 anos-luz e geralmente é vista ao lado de seu vizinho celestial, a Nebulosa do Coração (IC 1805).

A imagem em destaque é um composto de três exposições em cores diferentes: vermelho devido à emissão de gás hidrogênio, amarelo devido à emissão de enxofre e azul devido à emissão do oxigênio.

Fonte: NASA