segunda-feira, 31 de outubro de 2016

A Nebulosa Cabeça de Fantasma

A imagem abaixo, efetuada pelo telescópio espacial Hubble, mostra a nebulosa NGC 2080, também chamada de "Nebulosa Cabeça de Fantasma".

NGC 2080

© Hubble/Mohammad Heydari-Malayeri (NGC 2080)

Esta nebulosa é apenas uma de uma cadeia de regiões de formação de estrelas que estão situadas ao sul da nebulosa 30 Doradus na Grande Nuvem de Magalhães. A nebulosa 30 Doradus é o maior complexo de formação de estrelas não somente na Grande Nuvem de Magalhães mas também em todo o Grupo Local de galáxias.

As cores que aparecem nesta imagem da nebulosa são emitidas por dois elementos, o hidrogênio e o oxigênio. A luz vermelha e azul vem de regiões de gás hidrogênio aquecido por estrelas vizinhas até que ele é completamente ionizado. A luz verde no filamento à esquerda da imagem vem do oxigênio duplamente ionizado. A energia para iluminar o filamento é fornecida por um poderoso vento estelar que é originado de uma estrela massiva que está imediatamente fora da imagem.

A região branca no centro é uma combinação de todas as tres emissões e indica uma região central de estrelas massivas e quentes nesta região de formação de estrelas. A intensa emissão proveniente destas estrelas esculpiu uma cavidade em forma de bacia no gás que as circunda.

Duas regiões brilhantes, os "olhos do fantasma", chamadas de A1 (a esquerda) e A2 (a direita) são 'bolhas" brilhantes, muito quentes, de hidrog~enio e oxigênio. A bolha em A1 é produzida pela radiação intensa e quente e poderoso vento estelar proveniente de uma única estrela massiva. A região A2 tem uma aparência mais complexa devido à presença de mais poeira e ela contém várias estrelas massivas escondidas.

As estrelas massivas em A1 e A2 devem ter se formado nos últimos 10.000 anos uma vez que suas nuvens de gás primordial não foram ainda destruídas pela poderosa radiação das estrelas recentemente nascidas.

Fonte: NASA

sábado, 29 de outubro de 2016

Uma Lula Gigante dentro de um Morcego Cósmico

Embora bastante tênues, mas muito grandes para serem observadas nos céus da Terra, tanto a Nebulosa da Lula Gigante (Ou4) quanto a Nebulosa do Morcego Voador (Sh2-129) foram captadas nesta cena na direção da constelação de Cepheus.

Ou4 e Sh2-129

© Rolf Geissinger (Ou4 e Sh2-129)

A imagem consiste de uma composição de quase 17 horas de dados em banda estreita. A imagem cobre um largo campo de visão equivalente a 4 graus ou 8 Luas cheias de diâmetro.

Descoberta em 2011 pelo astrofotógrafo francês Nicolas Outters, a forma bipolar sedutora da Nebulosa da Lula Gigante é distinguida aqui pela emissão azul esverdeada reveladora gerada pelos átomos de oxigênio duplamente ionizado.

Embora, apareça completamente envolvida pela emissão avermelhada do hidrogênio da Nebulosa do Morcego Voador, a verdadeira distância e natureza da Nebulosa da Lula tem sido difícil de determinar.

Uma recente investigação sugere que a Ou4 reside dentro da Sh2-129 a cerca de 2.300 anos-luz da Terra. Coerente com esse cenário, a Ou4 representaria um fluxo espetacular criado a 90.000 anos atrás pelo triplo sistema de estrelas quentes e massivas, catalogados como HR8119, observável próximo ao centro da nebulosa. Entretanto, a verdadeira Nebulosa da Lula Gigante ocupa fisicamente uma área com quase 50 anos-luz de diâmetro.

Fonte: NASA

O fantasma da labareda de Cepheus

Formas fantasmagóricas parecem assombrar esta vastidão estrelada, à deriva durante a noite na constelação real de Cepheus.

VDB 141

© Thomas Lelu (VDB 141)

Claro, as formas são nuvens de poeira cósmica ligeiramente visíveis na luz fracamente refletida das estrelas. Longe de sua própria vizinhança no planeta Terra, elas se escondem na borda do complexo de nuvens moleculares conhecido como Labareda de Cepheus localizado a aproximadamente 1.200 anos-luz de distância. Com mais de 2 anos-luz de diâmetro a nebulosa fantasmagórica e o relativamente isolado glóbulo de Bok, também conhecido como VDB 141 ou Sh2-136, aparece perto do campo estrelado. O núcleo da nuvem escura à direita está colapsando e é provavelmente um sistema estelar binário nos estágios iniciais de formação.

Feliz Dia das Bruxas!

Fonte: NASA

sexta-feira, 28 de outubro de 2016

Observado sistema jovem formando estrelas múltiplas

Pela primeira vez, astrônomos observaram um disco poeirento de material em torno de uma estrela jovem se fragmentando num sistema estelar múltiplo.

imagem do sistema L1448 IRS3B

© ALMA/VLA (imagem do sistema L1448 IRS3B)

Os cientistas há muito que suspeitavam da existência deste processo, provocado pela instabilidade gravitacional, mas novas observações com o ALMA (Atacama Large Millimeter/submillimeter Array) e com o VLA (Karl G. Jansky Very Large Array) revelaram o processo em ação.

"Este novo trabalho suporta diretamente a conclusão de que existem dois mecanismos que produzem sistemas estelares múltiplos: a fragmentação de discos circunstelares, como vemos aqui, e fragmentação da maior nuvem de gás e poeira a partir da qual se formam estrelas jovens," afirma John Tobin, da Universidade de Oklahoma e do Observatório de Leiden na Holanda.

As estrelas formam-se em nuvens gigantes de gás e poeira, quando o material nas nuvens colapsa gravitacionalmente em núcleos mais densos que começam a atrair material adicional para dentro. O material em queda forma um disco ao redor de uma estrela jovem. Eventualmente, a estrela jovem reúne massa suficiente para criar temperaturas e pressões, no seu centro, que desencadeiam reações termonucleares.

Os estudos anteriores haviam indicado que os sistemas estelares múltiplos tendem a ter companheiras, ou relativamente perto, até cerca de 500 vezes a distância Terra-Sol, ou significativamente separadas, mais de 1.000 vezes essa distância. Foi verificado que as diferenças de distância resultam de diferentes mecanismos de formação. Os sistemas mais separados são formados quando os fragmentos maiores da nuvem se formam através de turbulência, e observações recentes têm apoiado essa ideia.

Pensava-se que os sistemas mais íntimos resultavam da fragmentação do disco mais pequeno em torno da jovem protoestrela, mas essa conclusão era baseada principalmente na relativa proximidade das estrelas companheiras.

"Agora, vimos esta fragmentação do disco em ação," comenta Tobin.

Tobin, Kaitlin Kratter da Universidade do Arizona, e seus colegas usaram o ALMA e o VLA para estudar um jovem sistema triplo chamado L1448 IRS3B, localizado numa nuvem de gás na direção da constelação de Perseu, a cerca de 750 anos-luz da Terra. A mais central das estrelas jovens está separada das outras duas por 61 e 183 vezes a distância Terra-Sol. Todas as três são cercadas por um disco de material que o ALMA revelou ter uma estrutura espiral, uma característica que indica instabilidade no disco.

evolução do sistema estelar triplo

© NRAO/Bill Saxton (evolução do sistema estelar triplo)

Ilustração de como o sistema estelar triplo se desenvolve. À esquerda, o disco de material fragmenta-se em protoestrelas separadas.

"Este sistema tem provavelmente menos de 150.000 anos," acrescenta Kratter. "A nossa análise indica que o disco é instável e a mais separada das três protoestrelas pode ter-se formado apenas nos últimos 10.000 a 20.000 anos," realça.

O sistema L1448 IRS3B fornece evidências observacionais diretas de que a fragmentação no disco pode produzir sistemas estelares múltiplos muito cedo no seu desenvolvimento.

"Nós esperamos agora encontrar outros exemplos deste processo e aprender qual a sua contribuição para a população de estrelas múltiplas," conclui Tobin.

Esta descoberta foi divulgada na revista Nature.

Fonte: National Radio Astronomy Observatory

O planeta em órbita de estrela mais próxima pode ser habitável

Um exoplaneta com uma massa parecida com a da Terra foi recentemente detectado em torno de Proxima Centauri, a estrela mais próxima do Sol.

ilustração da vista da superfície do planeta Proxima b

© ESO/M. Kornmesser (ilustração da vista da superfície do planeta Proxima b)

Este exoplaneta, chamado Proxima b, está numa órbita que lhe permite ter água líquida à superfície, levantando assim a questão da sua habitabilidade. Uma equipe internacional liderada por pesquisadores do Laboratório de Astrofísica de Marselha determinou as dimensões do planeta e as propriedades da sua superfície, o que na verdade favorecem a sua habitabilidade.

A equipe diz que Proxima b pode ser um "planeta oceânico," com um oceano que cobre toda a sua superfície, a água talvez idêntica à dos oceanos subterrâneos detectados no interior de luas geladas de Júpiter e Saturno. Os pesquisadores também mostram que a composição de Proxima b pode ser parecida com a de Mercúrio, com um núcleo de metal que corresponde a dois-terços da massa do planeta. Estes resultados fornecem a base para estudos futuros a fim de determinar a habitabilidade de Proxima b.

Proxima Centauri, a estrela mais próxima do Sol, tem um sistema planetário que consiste em, pelo menos, um planeta. O novo estudo analisa e complementa observações anteriores. Estas novas medições mostram que o exoplaneta tem uma massa parecida com a da Terra (1,3 massas terrestres) e orbita a sua estrela a uma distância de 0,05 UA (um-décimo da distância Sol-Mercúrio). Ao contrário do que se poderia pensar, esta pequena distância não implica uma alta temperatura à superfície de Proxima b porque a sua estrela hospedeira, Proxima Centauri, é uma anã vermelha com apenas um-décimo da massa e do raio do Sol e um brilho mil vezes mais fraco. Assim sendo, Proxima b está na zona habitável da sua estrela e pode abrigar água líquida à sua superfície.

No entanto, sabe-se muito pouco sobre Proxima b, particularmente o seu raio. Por isso, é impossível saber o aspeto do planeta ou a sua composição. A medição do raio de um exoplaneta é normalmente feita durante um trânsito, quando eclipsa a sua estrela. Mas Proxima b parece não transitar Proxima Centauri.

Existe outro método para estimar o raio de um planeta. Se conhecermos a sua massa, podemos simular o comportamento dos materiais constituintes. Este é o método usado por uma equipe franco-americana do Laboratório de Astrofísica de Marselha e do Departamento de Astronomia da Universidade de Cornell. Com a ajuda de um modelo de estrutura interna, exploraram as diferentes composições que podem estar associadas com Proxima b e deduziram os valores correspondentes para o raio do planeta. Eles restringiram o seu estudo para o caso de planetas potencialmente habitáveis, simulando planetas densos e sólidos, formados com o núcleo metálico e manto rochoso encontrado em planetas terrestres no nosso Sistema Solar. Também permitiram a incorporação de uma grande massa de água na sua composição.

Estes pressupostos permitem uma grande variedade de composições para Proxima b. O raio do planeta pode variar entre 0,94 e 1,40 vezes o raio da Terra (6.371 km). O estudo mostra que Proxima b tem um raio mínimo de 5.990 km, e a única maneira de obter este valor é tendo um planeta muito denso, composto por um núcleo metálico com uma massa igual a 65% do planeta, sendo o resto manto rochoso (formado por silicatos). A fronteira entre estes dois materiais está, então, localizada a uma profundidade de 1.500 km. Com uma tal composição, Proxima b é muito parecido com o planeta Mercúrio, que também tem um núcleo metálico muito sólido. Este primeiro caso não exclui a presença de água à superfície do planeta, pois na Terra o conteúdo de água não ultrapassa os 0,05% da massa do planeta. Em contraste, Proxima b também pode ter um raio de 8.920 km, desde que seja composto por 50%  de rocha rodeada por 50% de água. Neste caso, Proxima b estaria coberto por um único oceano líquido com 200 km de profundidade. Abaixo, a pressão seria tão alta que a água estaria sob a forma de gelo antes de atingir o limite do manto a 3.100 km de profundidade. Nestes casos extremos, uma fina atmosfera de gás podia cobrir o planeta, como na Terra, tornando Proxima b potencialmente habitável.

Estes resultados fornecem informações adicionais importantes para diferentes cenários de composição que foram propostos para Proxima b. Alguns envolvem um planeta completamente seco, enquanto outros permitem a presença de uma quantidade significativa de água na sua composição. O estudo incluiu o fornecimento de uma estimativa do raio do planeta para cada um destes cenários. Do mesmo modo, isto restringiria a quantidade de água disponível em Proxima b, onde a água é propensa à evaporação devido aos raios ultravioleta e raios X da estrela hospedeira, que são muito mais violentos do que os do Sol.

As observações futuras de Proxima Centauri irão aperfeiçoar este estudo. Em particular, a medição das abundâncias estelares de elementos pesados (magnésio, ferro, silício) irá diminuir o número de composições possíveis para Proxima b, permitindo a determinação mais precisa do seu raio.

O estudo será publicado na revista The Astrophysical Journal Letters.

Fonte: Laboratoire d’Astrophysique de Marseille

Preferencialmente, planetas do tamanho da Terra com muita água

Simulações de computador, por astrofísicos da Universidade de Berna, da formação de planetas em órbita na zona habitável de estrelas de baixa massa, como Proxima Centauri, mostram que são mais propensos a ser aproximadamente do tamanho da Terra e a conter grandes quantidades de água.

ilustração de dois exoplanetas passando em frente da sua estrela hospedeira

© STScI/MIT (ilustração de dois exoplanetas passando em frente da sua estrela hospedeira)

Em agosto de 2016, o anúncio da descoberta de um exoplaneta terrestre orbitando na zona habitável de Proxima Centauri estimulou a imaginação dos especialistas e do público em geral. Afinal de contas, esta é a estrela mais próxima do Sol apesar de ser dez vezes menos massiva e 500 vezes menos luminosa. Esta descoberta, juntamente com a de maio de 2016 de um planeta parecido em órbita de uma estrela ainda mais leve (TRAPPIST-1), convenceu os astrônomos de que as anãs vermelhas podem ser as anfitriãs de uma grande população de planetas parecidos com a Terra.

Como é que estes objetos são? Qual a sua constituição?

Yann Alibert e Willy Benz do Swiss NCCR PlanetS e do Center of Space and Habitability (CSH) da Universidade de Berna realizaram as primeiras simulações de computador da população de planetas que se espera orbitarem estrelas dez vezes menos massivas que o Sol.

"Os nossos modelos conseguem reproduzir planetas semelhantes com os observados recentemente em termos de massa e período," explica Yann Alibert. "Curiosamente, descobrimos que os planetas em órbitas íntimas em torno deste tipo de estrelas são de pequeno tamanho. Normalmente, variam entre 0,5 e 1,5 raios terrestres com um pico próximo do raio da Terra. As descobertas futuras vão dizer-nos se estamos corretos!" comenta o pesquisador.

Além disso, os astrofísicos determinaram o teor de água dos planetas em órbita da sua pequena hospedeira na zona habitável. Descobriram que, considerando todos os casos, cerca de 90% dos planetas contêm mais do que 10% de água. Em comparação: a água corresponde a apenas 0,02% da massa total da Terra. Assim, a maioria destes planetas alienígenas são, literalmente, mundos de água! A situação pode até ser ainda mais extrema caso os discos protoplanetários, a partir dos quais estes planetas se formam, perdurem mais tempo do que o previsto nos modelos. Em qualquer caso, estes planetas estariam cobertos por oceanos muito profundos, no fundo dos quais, devido à enorme pressão, a água estaria na forma de gelo.

A água é necessária para a vida como a conhecemos. Será que estes planetas podem ser, de fato, habitáveis?

"Pensa-se que a água líquida é um ingrediente essencial, mas água em abundância também pode ser desfavorável," afirma Willy Benz. Em estudos anteriores, os cientistas de Berna mostraram que um demasiado alto conteúdo de água pode impedir a regulação da temperatura à superfície e desestabilizar o clima. "Mas esse seria um cenário para a Terra, aqui lidamos com planetas consideravelmente mais exóticos que podem ser submetidos a um ambiente de radiação muito mais extremo, e/ou encontrarem-se em rotação síncrona," acrescenta.

Para dar início aos seus cálculos, os cientistas consideraram uma série de algumas centenas a milhares de estrelas de baixa massa e ao redor de cada uma um disco protoplanetário de gás e poeira. Os planetas são formados pela acreção deste material. Alibert e Benz assumiram que, no início, em cada disco encontravam-se 10 embriões planetários com uma massa inicial igual à massa da Lua. Ao fim de alguns dias de processamento de computador, para cada sistema, o modelo calculou como estes embriões localizados aleatoriamente cresceram e migraram. O tipo de planetas que se formaram depende da estrutura e evolução dos discos protoplanetários.

"Habitável ou inabitável, o estudo de planetas em órbita de estrelas de baixa massa trará, provavelmente, novos e excitantes resultados, melhorando o nosso conhecimento da formação, evolução e habitabilidade planetária," resume Willy Benz. Dado que estas estrelas são consideravelmente menos luminosas do que o Sol, os planetas podem estar muito mais próximos da estrela antes da sua temperatura à superfície se tornar demasiado elevada para a existência de água líquida. Se ao considerar que este tipo estelar também representa a esmagadora maioria de estrelas na vizinhança solar e que os planetas íntimos são, atualmente, mais fáceis de detectar e estudar, compreende-se a importância da existência desta população de planetas parecidos com a Terra.

O resultado do estudo que foi aceito para publicação na revista Astronomy and Astrophysics.

Fonte: University of Bern

A distribuição do hidrogênio no céu

Onde estão as nuvens de gás da nossa galáxia Via Láctea e para onde elas estão se dirigindo?

distribuição do hidrogênio no céu

© HI4PI Collaboration/Benjamin Winkel (distribuição do hidrogênio no céu)

Para ajudar a responder essas questões, um novo mapa com maior resolução possível de todo o céu rastreando o gás mais abundante do Universo, o hidrogênio, foi completado e recentemente liberado, junto com os dados fundamentais.

Na imagem acima em destaque, nota-se o mapeamento da emissão de 21 cm do hidrogênio, revelando sua abundância pela intensidade do brilho e sua velocidade associada com cores.

Desta forma, as velocidades radiais de menor valor vindo em nossa direção foram colorizadas artificialmente em azul (as mais velozes estão em violeta) e as baixas velocidades radiais do hidrogênio se afastando estão em tons de verde (as mais velozes estão em amarelo e laranja). O quadro embaixo na extrema direita associa as velocidades com as cores empregadas no mapa.

A faixa esbranquiçada que atravessa o meio da imagem corresponde ao plano da Via Láctea, enquanto que as manchas brilhantes abaixo e à direita são as galáxias vizinhas Nuvens de Magalhães.

O mapa HI4PI coleciona dados fornecidos por mais de um milhão de observações realizadas com o rádiotelescópio Effelsberg de 100 metros na Alemanha, rastreando o hemisfério norte, juntamente com o rádiotelescópio Parkes de 64 metros na Austrália, também conhecido como “O Prato”, cobrindo o hemisfério sul celeste.

Os detalhes esmiuçados no mapa não só informam sobre a formação estelar e a presença do gás interestelar na Via Láctea, como também exibe o quanto da luz este gás local é capaz de absorver quando observamos o Universo fora da nossa galáxia. Entretanto, diversos detalhes revelados pelo mapa ainda não estão totalmente compreendidos.

Fonte: NASA

quarta-feira, 26 de outubro de 2016

Detectados halos gigantes brilhantes em torno de quasares distantes

Astrônomos descobriram nuvens de gás brilhante em torno de quasares distantes.

halos brilhantes em torno de quasares distantes

© ESO (halos brilhantes em torno de quasares distantes)

Esta é a primeira vez que todos os quasares num rastreio apresentam estes halos. As propriedades dos halos desta descoberta surpreendente encontram-se também em total desacordo com as atuais teorias aceitas para a formação de galáxias no Universo primordial.

Uma colaboração internacional de astrônomos, liderada por um grupo do Instituto Federal de Tecnologia da Suíça (ETH), em Zurique, usou o poder sem precedentes do instrumento MUSE montado no Very Large Telescope (VLT), instalado no Observatório do Paranal do ESO, para estudar o gás que rodeia galáxias ativas distantes, observadas a menos de dois bilhões de anos após o Big Bang. Estas galáxias ativas, chamadas quasares, contêm buracos negros supermassivos nos seus centros, os quais consomem estrelas, gás e qualquer outro material a taxas extremamente elevadas. Este fenômeno, por sua vez, faz com que os centros destas galáxias emitam enormes quantidades de radiação, tornando os quasares os objetos mais luminosos e ativos do Universo.

O estudo envolveu 19 quasares, selecionados entre os mais brilhantes que podiam ser observados com o MUSE. Estudos anteriores tinham mostrado que cerca de 10% de todos os quasares examinados se encontram rodeados por halos compostos de gás do meio intergaláctico, halos estes que se estendem até cerca de 300.000 anos-luz de distância dos centros dos quasares. No entanto, este novo estudo revelou-se surpreendente, detectando halos enormes em torno de todos os 19 quasares observados, muito mais do que os dois halos que se esperavam estatisticamente. A equipe suspeita que este efeito se deva ao enorme aumento de poder de observação do MUSE comparativamente aos instrumentos do mesmo tipo anteriormente utilizados, no entanto são necessárias mais observações para se determinar se este é efetivamente o caso.

“Ainda é cedo para dizer se este resultado se deve à nossa nova técnica observacional ou se se trata de algo peculiar nos quasares da nossa amostra.  Ainda temos muito que aprender; começamos agora uma nova era de descobertas”, disse a autora principal do trabalho Elena Borisova, do ETH.

O objetivo inicial do estudo era analisar as componentes gasosas do Universo em larga escala: a estrutura por vezes referida como rede cósmica, da qual os quasares são nodos brilhantes. A rede cósmica é a estrutura do Universo em maior escala. É composta por estreitos filamentos de material primordial (essencialmente hidrogênio e hélio gasosos) e matéria escura, que ligam as galáxias e enchem os espaços entre elas. O material desta rede pode levar estes filamentos às galáxias e dar assim origem ao seu crescimento e evolução. As componentes gasosas desta rede são normalmente extremamente difíceis de detectar, por isso os halos iluminados de gás que rodeiam os quasares fornecem-nos uma oportunidade quase única para estudar o gás no coração desta estrutura cósmica de larga escala.

Os 19 halos recentemente detectados revelaram também outra surpresa: são constituídos por gás intergaláctico relativamente frio, com cerca de 10 mil graus Celsius. Os atuais modelos aceitos para a estrutura e formação de galáxias sugerem que o gás tão próximo das galáxias deve apresentar temperaturas superiores a um milhão de graus.

Esta é a primeira vez que o MUSE com as suas capacidades observacionais únicas foi utilizado para este tipo de rastreio. A descoberta mostra o potencial do instrumento na observação deste tipo de objetos. O MUSE é um espectrógrafo de campo integral que combina capacidades espectroscópicas com capacidades de imagem. Pode observar grandes objetos astronômicos de uma vez só e em cada pixel mede a intensidade da radiação em função da cor, ou comprimento de onda.

Esta pesquisa combinada com uma nova geração de modelos teóricos e numéricos continuará proporcionando novas descobertas para a formação da estrutura cósmica e a evolução de galáxias.

Este trabalho foi descrito no artigo científico intitulado “Ubiquitous giant Lyα nebulae around the brightest quasars at z~3,5 revealed with MUSE”, que será publicado na revista especializada Astrophysical Journal.

Fonte: ESO

terça-feira, 25 de outubro de 2016

Descobertos objetos cósmicos misteriosos que explodem em raios X

Astrônomos descobriram um par de objetos cósmicos extraordinários que explodem dramaticamente em raios X.

  animação da erupção da fonte de raios X na galáxia NGC 5128

© NASA/Chandra (animação da erupção da fonte de raios X na galáxia NGC 5128)

Esta descoberta, obtida com o observatório de raios X Chandra da NASA e com o observatório XMM-Newton da ESA, pode representar uma nova classe de eventos explosivos encontrados no espaço.

As misteriosas fontes de raios X tornam-se cerca de cem vezes mais brilhantes em menos de um minuto, antes de regressar aos níveis de raios X originais após mais ou menos uma hora. No seu pico, estes objetos qualificam-se como ULXs (Ultraluminous X-ray Sources) que emitem centenas até milhares de vezes mais raios X do que os típicos sistemas binários onde uma estrela orbita um buraco negro ou uma estrela de nêutrons.

"Nunca vimos nada como isto," afirma Jimmy Irwin da Universidade do Alabama, EUA. "Os astrônomos têm visto muitos objetos diferentes que explodem de brilho, mas estes podem ser exemplos de um fenômeno inteiramente novo."

Sabemos que os magnetares, estrelas de nêutrons jovens com campos magnéticos poderosos, produzem explosões brilhantes e rápidas de raios X, mas estes objetos recém-descobertos são diferentes em alguns aspetos fundamentais.

Em primeiro lugar, os magnetares demoram alguns segundos para diminuir de brilho após uma explosão. Em segundo lugar, estes novos objetos encontram-se em populações de estrelas velhas situadas em galáxias elípticas, galáxias esféricas ou em forma de ovo compostas principalmente por estrelas mais velhas.

Isto torna improvável que estes recém-descobertos objetos brilhantes sejam jovens, astronomicamente falando, como se pensa que os magnetares sejam. Além disso, estes objetos são mais brilhantes em raios X durante os seus períodos "calmos".

"Estas erupções são extraordinárias," comenta Peter Maksym, do Harvard-Smithsonian Center for Astrophysics. "Por um breve período, uma das fontes tornou-se das mais brilhantes ULXs alguma vez observadas numa galáxia elíptica."

Quando não estão explodindo de brilho, estas fontes parecem ser sistemas binários normais onde um buraco negro ou uma estrela de nêutrons puxa material de uma companheira estelar parecida com o Sol. Isto indica que os aumentos de brilho não perturbam significativamente o sistema binário.

Embora a natureza destas explosões seja desconhecida, a equipe começou a procurar respostas. Uma ideia é que as explosões representam episódios em que a matéria que está sendo puxada da estrela companheira cai rapidamente para um buraco negro ou estrela de nêutrons. Isto pode acontecer quando a companheira faz a sua maior aproximação ao objeto compacto na sua órbita elíptica. Outra explicação pode envolver matéria que cai para um buraco negro de massa intermediária, com uma massa de aproximadamente 800 vezes a do Sol para uma fonte e 80 vezes a massa do Sol para a outra.

O Chandra observou uma das fontes, localizada perto e presumivelmente associada com a galáxia NGC 4636 a uma distância de 47 milhões de anos-luz, aumentando de brilho uma vez. Observou-se outra fonte explodindo de brilho cinco vezes, localizada perto da galáxia NGC 5128 a uma distância de 14 milhões de anos-luz. Quatro destas explosões foram observadas com o Chandra e uma com o XMM-Newton.

A equipe analisou variações de raios X de vários milhares de fontes nas observações de 70 galáxias próximas com o Chandra. Apesar de terem sido encontrados vários exemplos de fontes "explosivas", nenhuma exibia o comportamento das explosões rápidas e gigantescas aqui relatadas.

O estudo foi publicado na última edição da revista Nature.

Fonte: Marshall Space Flight Center

Urano pode ter duas pequenas luas desconhecidas

A sonda Voyager 2 da NASA passou por Urano há 30 anos atrás, mas os pesquisadores ainda estão fazendo descobertas a partir dos dados que recolheu naquele momento.

anéis e algumas luas de Urano

© NASA/U. Arizona/Erich Karkoschka (anéis e algumas luas de Urano)

A imagem acima mostra Urano, visto aqui em cores falsas obtida pelo Hubble em agosto de 2003. O brilho dos tênues anéis do planeta e das luas escuras foi melhorado para dar mais visibilidade.

Um novo estudo liderado por cientistas da Universidade do Idaho, EUA, sugere a existência de duas pequenas luas anteriormente desconhecidas que orbitam perto de dois dos anéis do planeta.

Rob Chancia, doutorando da Universidade do Idaho, avistou padrões elucidativos nos anéis enquanto examinava imagens antigas dos anéis gelados de Urano captadas pela Voyager 2 em 1986. Ele notou que a quantidade de material na orla do anel alfa, um dos mais brilhantes anéis de Urano, variava periodicamente. Um padrão parecido, mas ainda mais promissor, ocorria na mesma parte do vizinho anel beta.

"Quando olhamos para este padrão em locais diferentes ao redor do anel, o comprimento de onda é diferente, isso aponta para algo mudando à medida que dá a volta ao anel. Há algo quebrando a simetria," comenta Matt Hedman, professor assistente de física da Universidade do Idaho, que trabalhou com Chancia para investigar o achado.

Chancia e Hedman são bem versados na física dos anéis planetários: ambos estudam os anéis de Saturno usando dados da sonda Cassini da NASA, atualmente em órbita do "Senhor dos Anéis". Os dados da Cassini produziram novas ideias sobre o comportamento dos anéis e uma bolsa da NASA permitiu com que Chancia e Hedman examinassem, sob nova luz, os dados de Urano recolhidos pela Voyager 2. Especificamente, analisaram ocultações de rádio, feitas quando a Voyager 2 enviou ondas rádio através dos anéis para serem detectados aqui na Terra, e ocultações estelares, feitas quando a nave mediu a luz de estrelas de fundo brilhando através dos anéis, o que ajuda a revelar quanto material eles contêm.

Eles descobriram que o padrão nos anéis de Urano era parecido com estruturas relacionadas com luas nos anéis de Saturno.

Os pesquisadores estimam que as pequenas luas teorizadas nos anéis de Urano têm entre 4 e 14 quilômetros em diâmetro, tão pequenas quanto algumas das luas identificadas em Saturno, mas mais pequenas do que as luas conhecidas de Urano. As luas uranianas são especialmente difíceis de avistar porque as suas superfícies estão cobertas de material escuro.

"Nós ainda não vimos as luas, mas a ideia é que o tamanho das luas, necessário para produzir estas características, é muito pequeno, de modo que podem ter sido facilmente negligenciadas," acrescenta Hedman. "As imagens da Voyager não eram sensíveis o suficiente para ver facilmente estas luas."

Hedman disse que os seus achados podem ajudar a explicar algumas características nos anéis de Urano, que são estranhamente estreitos em comparação com os de Saturno. As pequenas luas, se existirem, podem estar agindo como satélites "pastores", ajudando a manter a forma dos anéis. Duas das 27 luas conhecidas de Urano, Ofélia e Cordélia, atuam como pastores do anel épsilon de Urano.

O problema de manter os anéis estreitos existe desde a descoberta do sistema de anéis de Urano em 1977.

A confirmação ou refutação da existência das pequenas luas com o auxílio de telescópios ou imagens obtidas por sondas será deixada para outros pesquisadores, que vão continuar examinando padrões e estruturas nos anéis de Urano, ajudando a descobrir mais dos muitos segredos do planeta.

"É emocionante ver a histórica exploração de Urano pela Voyager 2 ainda contribuindo com novos conhecimentos sobre os planetas," comenta Ed Stone, cientista do projeto Voyager, com base no Caltech, Pasadena, Califórnia.

A Voyager 2 e a sua gêmea, Voyager 1, foram lançadas em 1977 com 16 dias de diferença. Ambas as naves passaram por Júpiter e Saturno, e a Voyager 2 também passou por Urano e Netuno. A Voyager 2 é a sonda espacial operada continuamente há mais tempo. Espera-se que entre no espaço interestelar daqui a alguns anos, juntando-se à Voyager 1, que o cruzou em 2012. Embora muito além dos planetas, a missão continua enviando observações sem precedentes do ambiente espacial no Sistema Solar, fornecendo informações cruciais sobre o ambiente que rodeia a sonda à medida que exploramos cada vez mais longe de casa.

Os seus resultados serão publicados na revista The Astronomical Journal.

Fonte: Jet Propulsion Laboratory

domingo, 23 de outubro de 2016

O aglomerado de galáxias Antlia

Galáxias pontuam os céus nesta impressionantemente imagem larga e profunda do aglomerado de galáxias de Antlia.

Abell S0636

© Rolf Olsen (Abell S0636)

Antlia, catalogado como Abell S0636, é o terceiro aglomerado de galáxias mais próximo da Terra, respectivamente atrás dos aglomerados de Virgem (Virgo) e da Fornalha (Fornax).

O aglomerado de galáxias de Antlia pussui um diâmetro de cerca de 2 milhões de anos-luz e dista cerca de 130 milhões de anos-luz da Terra e reside na direção da constelação de Antlia.

Antlia é conhecido pela sua forma muito compacta e sua grande fração de galáxias elípticas em relação as galáxias espirais.

Antlia tem dois grupos proeminentes de galáxias (um embaixo no centro e o outro na esquerda superior da imagem) entre as seus mais de 200 membros, mas não apresenta uma galáxia central dominante.

A faixa vertical avermelhada no primeiro plano à esquerda da imagem está associado à nebulosa remanescente de supernova em Antlia dentro da nossa Via Láctea, não fazendo parte do aglomerado de Antlia.

A imagem composta em destaque foi captada na Nova Zelândia, sendo um árduo resultado de mais de 150 horas de exposições tomadas ao longo de 6 meses.

Fonte: NASA

A nebulosa da Tulipa na constelação do Cisne

Esta imagem telescópica retrata uma brilhante nebulosa de emissão que se destaca ao longo do plano da galáxia Via Láctea na direção da rica constelação do Cisne.

nebulosa da Tulipa

© Martin Pugh (nebulosa da Tulipa)

Popularmente conhecida como a nebulosa da Tulipa, essa luminosa nuvem de gás interestelar e poeira cósmica consta do catálogo de 1959 produzido pelo astrônomo Stewart Sharpless com a designação de Sh2-101.

A complexa nebulosa da Tulipa, que desabrocha no centro dessa imagem composta, dista cerca de 8.000 anos luz da Terra e tem um diâmetro estimado em 70 anos-luz.

Notam-se tons em vermelho, verde e azul que mapeiam a emissão originada, respectivamente, pelos átomos ionizados de enxofre, hidrogênio e oxigênio.

A radiação ultravioleta emanada pelas jovens, massivas e energéticas estrelas na borda da associação OB3 de Cygnus, incluindo a estrela da classe O HDE 227018, ioniza os átomos e é responsável pela emissão luminosa da nebulosa da Tulipa. A estrela HDE 227018 é o ponto brilhante bem próximo do arco em azul próximo ao centro da tulipa cósmica.

Fonte: NASA

O aglomerado estelar das Plêiades

Você já viu o aglomerado estelar das Plêiades?

M45

© Hermann von Eiff (M45)

Mesmo que você já tenha visto, você provavelmente nunca viu tão empoeirado assim. Talvez o mais famoso aglomerado estelar do céu, as brilhantes estrelas do aglomerado das Plêiades podem ser vistas sem binóculos até mesmo de cidades com muita poluição luminosa. Com uma longa exposição de locais escuros, a nuvem de poeira ao redor das Plêiades se torna muito evidente.

A imagem acima foi feita com uma exposição de 20 minutos e cobre uma área do céu algumas vezes maior do que o tamanho da Lua Cheia. Também conhecida como as Sete Irmãs e M45, as Plêiades localizam-se a aproximadamente 400 anos-luz de distância na direção da constelação de Touro (Taurus).

Uma lenda comum com um toque moderno é que uma das estrelas das Plêiades se apagou desde que o aglomerado foi nomeado, deixando somente seis estrelas visíveis a olho nu. O número atual de estrelas visíveis nas Plêiades, contudo, pode ser mais ou menos que sete, dependendo da escuridão do céu ao redor e da claridade da linha de visão do observador.

Fonte: NASA

Inclinação curiosa do Sol atribuída ao Planeta Nove

De acordo com um novo estudo, o Planeta Nove, o planeta ainda não descoberto na orla do Sistema Solar que foi previsto pelo trabalho de Konstantin Batygin e Mike Brown em janeiro de 2016, parece ser responsável pela invulgar inclinação do Sol.

ilustração do Planeta Nove

© Caltech/IPAC/R. Hurt (ilustração do Planeta Nove)

O planeta grande e distante pode estar adicionando uma oscilação ao Sistema Solar, dando a aparência de que o Sol está ligeiramente inclinado.

"Dado que o Planeta Nove é tão grande e tem uma órbita inclinada em comparação com a dos outros planetas, o Sistema Solar não tem escolha a não ser torcer-se lentamente para fora do alinhamento," comenta Elizabeth Bailey, estudante do Caltech e autora principal de um estudo que anuncia a descoberta.

Todos os planetas orbitam num plano achatado em relação ao Sol (eclíptica), no máximo com cerca de 2 graus uns dos outros. Esse plano, no entanto, gira a uma inclinação de seis graus em relação ao Sol, dando a aparência de que o próprio Sol está inclinado. Até agora, ninguém tinha encontrado uma explicação convincente para este efeito. "É um mistério tão profundamente enraizado e tão difícil de explicar que as pessoas simplesmente não falam sobre ele," comenta Brown, professor de Astronomia Planetária.

A descoberta de Brown e Batygin, de evidências de que o Sol é orbitado por um planeta ainda não descoberto muda a física. Este planeta tem cerca de 10 vezes a massa da Terra e uma órbita que o leva cerca de 20 vezes mais longe do Sol, em média, que Netuno. O Planeta Nove, com base nos seus cálculos, parece orbitar a 30 graus do plano orbital dos outros planetas, influenciando a órbita de uma grande população de objetos no Cinturão de Kuiper, que foi como Brown e Batygin vieram a suspeitar da existência de tal planeta em primeiro lugar.

"Continua a surpreender-nos; de cada vez que olhamos com cuidado, continuamos descobrindo que o Planeta Nove explica algo sobre o Sistema Solar que há muito que era um mistério," realça Batygin, professor assistente de ciência planetária.

A inclinação do plano orbital do Sistema Solar há muito que confunde os astrônomos devido à forma como os planetas se formaram: uma nuvem giratória lentamente colapsou num disco para formar objetos em órbita de uma estrela central.

Com base na sua localização e tamanho, o momento angular do Planeta Nove está tendo um impacto desproporcional no Sistema Solar. O momento angular de um planeta é igual à massa do objeto multiplicada pela sua distância ao Sol, e corresponde à força que o planeta exerce sobre a rotação do sistema global. Dado que os outros planetas do Sistema Solar estão todos praticamente ao longo de um único plano achatado, os seus momentos angulares trabalham em conjunto para manter sem problemas a rotação de toda a eclíptica.

A órbita invulgar do Planeta Nove, no entanto, acrescenta uma oscilação de bilhões de anos a este sistema. Matematicamente, dado o hipotético tamanho e a hipotética distância do Planeta Nove, uma inclinação de seis graus encaixa perfeitamente, comenta Brown.

A próxima questão é, então, como é que o Planeta Nove alcançou a sua órbita invulgar? Isso continua ainda por determinar, mas Batygin sugere que o planeta poderá ter sido expulso da vizinhança dos gigantes gasosos por Júpiter, ou talvez sido influenciado pela atração gravitacional de outros corpos estelares no passado extremo do Sistema Solar.

Por agora, Brown e Batygin continuam trabalhando, com colegas em todo o mundo, à procura de sinais do Planeta Nove ao longo do percurso que previram em janeiro. Essa pesquisa, afirma Brown, poderá levar três anos ou mais.

As suas conclusões foram apresentadas dia 18 de outubro na reunião anual da Divisão de Ciências Planetárias da Sociedade Astronômica Americana, realizada em Pasadena, no estado norte-americano da Califórnia, e foram aceitas para publicação numa edição futura da revista The Astrophysical Journal.

Fonte: California Institute of Technology

quarta-feira, 19 de outubro de 2016

Os ventos fortes no famoso sistema estelar de Eta Carinae

Uma equipe internacional de astrônomos utilizou um interferômetro para obter imagens do sistema estelar de Eta Carinae, as mais detalhadas obtidas até hoje.

  Eta Carinae

© ESO/G. Weigelt (Eta Carinae)

A equipe descobriu estruturas novas e inesperadas no sistema binário, incluindo uma região entre as duas estrelas onde ventos estelares de velocidades extremamente elevadas colidem. Esta nova descoberta sobre o enigmático sistema estelar poderá levar a uma melhor compreensão da evolução de estrelas de alta massa.

Uma equipe de astrônomos, liderada por Gerd Weigelt do Instituto Max Planck de Rádio Asttronomia (MPIfR) em Bonn, na Alemanha, utilizou o Interferômetro do Very Large Telescope (VLTI), instalado no Observatório do Paranal do ESO, para obter uma imagem única do sistema estelar Eta Carinae situado na Nebulosa Carina.

Este colossal sistema binário, constituído por duas estrelas massivas que orbitam em torno uma da outra, é muito ativo, dando origem a ventos estelares com velocidades que vão até 10 milhões de km por hora. A região entre as duas estrelas, onde os ventos de ambas colidem, é muito turbulenta, mas até agora não tinha sido estudada.

O poder do sistema binário Eta Carinae cria fenômenos dramáticos. Astrônomos dos anos 1830 observaram uma “Grande Erupção” no sistema. Sabemos agora que esta erupção ocorreu quando a maior das estrelas do sistema binário liberou enormes quantidades de gás e poeira num curto período de tempo, o que levou à formação dos lóbulos distintos, conhecidos por Nebulosa do Homúnculo, que vemos atualmente no sistema. O efeito combinado dos dois ventos estelares se chocando um contra o outro a velocidades extremas faz com que as temperaturas na região aumentem para milhões de graus e ocorram intensos “dilúvios” de raios X.

A área central onde os ventos colidem é relativamente pequena, mil vezes menor que a Nebulosa do Homúnculo, razão pela qual os telescópios colocados tanto no espaço como no solo não tinham ainda conseguido obter uma imagem detalhada da região. A equipe utilizou o poder de resolução do instrumento AMBER do VLTI para observar este reino violento pela primeira vez. Uma combinação inteligente, um interferômetro de três dos quatro telescópios auxiliares do VLT fez aumentar em 10 vezes o poder de resolução que tem um único telescópio principal do VLT. Conseguiu-se assim obter a imagem mais nítida até hoje do sistema, o que levou à obtenção de resultados inesperados sobre a sua estrutura interna.

A nova imagem do VLTI mostra claramente a estrutura que existe entre as duas estrelas Eta Carinae. Foi observada uma inesperada forma em ventoinha na região onde o vento da estrela menor e mais quente colide com o vento mais denso da estrela maior.

“Os nossos sonhos tornaram-se realidade, porque agora conseguimos obter imagens extremamente nítidas no infravermelho. O VLTI nos dá a oportunidade única de aumentar o nosso conhecimento sobre Eta Carinae e sobre muitos outros objetos chave”, diz Gerd Weigelt.

Além das imagens, observações espectroscópicas da região de colisão permitiram medir as velocidades dos intensos ventos estelares. As medições foram feitas utilizando o efeito Doppler. Os astrônomos usam este efeito (ou desvios) para calcular de forma precisa quão depressa as estrelas e outros objetos astronômicos se afastam ou aproximam da Terra. O movimento de um objeto na nossa direção ou em sentido contrário provoca um ligeiro desvio das suas linhas espectrais. A velocidade do movimento pode ser calculada a partir deste desvio. Com estes valores, foi possível criar modelos de computador mais precisos da estrutura interna deste sistema estelar, o que nos ajudará a compreender como é que estas estrelas de massas extremamente elevadas perdem massa à medida que evoluem.

Um dos membros da equipe, Dieter Schertl (MPIfR), olha para o futuro: ”Os novos instrumentos GRAVITY e MATISSE do VLTI irão obter imagens interferométricas com ainda mais precisão e num intervalo de comprimentos de onda ainda maior. É necessário um vasto intervalo de comprimentos de onda para se poder derivar as propriedades físicas de muitos objetos astronômicos.”

O mosaico acima mostra a Nebulosa Carina (parte esquerda da imagem), local onde se encontra o sistema estelar Eta Carinae. Esta parte da imagem foi observada com o instrumento Wide Field Imager montado no telescópio MPG/ESO de 2,2 metros no Observatório de La Silla do ESO. A parte central mostra o meio ao redor da estrela: a Nebulosa Homunculus, formada a partir de material ejetado pelo sistema Eta Carinae. Esta imagem foi obtida pelo instrumento infravermelho próximo de ótica adaptativa NACO montado no Very Large Telescope (VLT) do ESO. A imagem da direita mostra a região mais interna do sistema observada com o VLTI.

Este trabalho foi descrito num artigo científico que será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

terça-feira, 18 de outubro de 2016

O Tucano e o aglomerado globular

A constelação do Tucano é famosa por abrigar alguns dos objetos mais interessantes de serem observados como a Galáxia Anã Tucana e o aglomerado globular 47 Tucanae, o segundo aglomerado mais brilhante do céu.

NGC 299_Hubble

© Hubble (NGC 299)

A constelação do Tucano também possui uma variedade de belezas cósmicas desconhecidas.

Uma dessas é o aglomerado aberto de estrelas NGC 299, localizado dentro da Pequena Nuvem de Magalhães a apenas 200.000 anos-luz de distância da Terra. Aglomerados abertos de estrelas como esse, são coleções de estrelas fracamente agrupadas pela gravidade, todas elas tendo se formado da mesma nuvem molecular massiva de gás e poeira. Por conta disso, todas as estrelas possuem a mesma composição e a mesma idade, mas possuem massa variável pois elas se formaram em diferentes posições dentro da nuvem.

Essa única propriedade, não só garante uma espetacular visão quando o objeto é observado através de instrumentos sofisticados acoplados a telescópios como a Advanced Camera for Surveys do Hubble, mas também fornece aos astrônomos um laboratório cósmico onde é possível estudar a formação e a evolução das estrelas, um processo que acredita-se, depende fortemente da massa da estrela.

Fonte: NASA

O Universo observável contém 10 vezes mais galáxias do que se pensava

Graças a um novo censo de céu profundo montado a partir de estudos obtidos pelo telescópio espacial Hubble e por outros observatórios, o Universo parece muito mais cheio.

grande censo de galáxias

© Hubble/GOODS/M. Giavalisco (grande censo de galáxias)

Esta imagem cobre uma porção de um grande censo de galáxias denominado GOODS (Great Observatories Origins Deep Survey).

Os astrônomos chegaram à conclusão surpreendente que existem pelo menos 10 vezes mais galáxias no Universo observável do que se pensava.

Os resultados têm implicações claras para a formação de galáxias e também ajudam a desvendar um antigo paradoxo astronômico: porque é que o céu é escuro à noite?

Ao analisar os dados, uma equipe liderada por Christopher Conselice da Universidade de Nottingham, Reino Unido, descobriu que o número de galáxias agrupadas num determinado volume do espaço, no início do Universo, era 10 vezes superior ao do presente. A maioria destas galáxias eram relativamente pequenas e tênues, com massas parecidas àquelas das galáxias satélite ao redor da Via Láctea. À medida que se fundiam para formar galáxias maiores, a densidade populacional das galáxias no espaço diminuiu. Isto significa que as galáxias não estão distribuídas uniformemente ao longo da história do Universo.

"Estes resultados são uma poderosa evidência de que teve lugar uma significativa evolução galáctica ao longo da história do Universo, o que reduziu drasticamente o número de galáxias por meio de fusões, assim reduzindo o seu número total. Isto fornece uma verificação da chamada formação estrutural descendente no Universo," explica Conselice.

Uma das questões mais fundamentais da astronomia é a de quantas galáxias o Universo contém. O marco HDF (Hubble Deep Field), obtido em meados da década de 1990, forneceu a primeira visão real da população galáctica do Universo. Observações sensíveis subsequentes, como o HUDF (Hubble's Ultra Deep Field), revelaram uma miríade de galáxias fracas. Isto levou a uma estimativa de que o Universo observável continha cerca de 200 bilhões de galáxias. A limitada velocidade da luz e a idade do Universo significam que todo o Universo não pode ser visto da Terra. A parte visível no nosso horizonte cosmológico é chamado o Universo observável.

A nova pesquisa mostra que esta estimativa é, pelo menos, dez vezes demasiado baixa.

Conselice e a sua equipe chegaram a esta conclusão usando imagens de céu profundo obtidas pelo Hubble e dados já publicados por outras equipes. Eles converteram meticulosamente as imagens para 3-D a fim de fazerem medições precisas do número de galáxias em épocas diferentes da história do Universo. Além disso, usaram novos modelos matemáticos, o que lhes permitiu inferirem a existência de galáxias que a atual geração de telescópios não consegue observar. Isto levou à surpreendente conclusão de que, para o número de galáxias que vemos atualmente e suas massas equivalerem ao esperado, devem existir mais 90% de galáxias no Universo observável que são demasiado tênues e distantes para poderem ser observadas com telescópios atuais. Esta miríade de galáxias pequenas no início do Universo fundiu-se ao longo do tempo em galáxias maiores que agora podemos observar.

"É inacreditável que mais de 90% das galáxias no Universo ainda não foram estudadas. Quem sabe que propriedades interessantes vamos encontrar quando descobrirmos essas galáxias com as gerações futuras de telescópios? No futuro próximo, o Telescópio Espacial James Webb será capaz de estudar estas galáxias ultrafracas, comenta Conselice.

A diminuição do número de galáxias, à medida que o tempo avançava, também contribuiu para a solução do paradoxo de Olbers, formulado pela primeira vez no início do século XVIII pelo astrónomo alemão Heinrich Wilhelm Olbers: porque é que o céu é escuro à noite se o Universo contém uma infinidade de estrelas? A equipe chegou à conclusão que há, efetivamente, uma abundância tal de galáxias que, em princípio, cada pedaço do céu contém parte de uma galáxia.

No entanto, a luz estelar das galáxias é invisível ao olho humano e à maioria dos telescópios modernos devido a outros fatores conhecidos que reduzem a luz visível e ultravioleta no Universo. Esses fatores são o "avermelhamento" da luz devido à expansão do espaço, à natureza dinâmica do Universo e à absorção de luz pela poeira e gás intergalácticos. Tudo combinado, isto mantém escuro o céu noturno.

Este resultado será publicado na revista The Astrophysical Journal.

Fonte: ESA

sábado, 15 de outubro de 2016

Proxima Centauri pode ser mais parecida com o Sol do que se pensava

Em agosto os astrônomos anunciaram que a estrela vizinha, Proxima Centauri, hospeda um planeta do tamanho da Terra (de nome Proxima b) na sua zona habitável.

ilustração do interior de uma estrela de baixa massa

© NASA/CXC/M.Weiss (ilustração do interior de uma estrela de baixa massa)

À primeira vista, Proxima Centauri não se parece nada com o nosso Sol. É uma pequena e fria anã vermelha com apenas um décimo da massa e um milésimo do brilho do Sol. No entanto, uma nova pesquisa mostra que é parecida com o Sol de uma forma surpreendente: tem um ciclo regular de manchas estelares.

As manchas estelares (como as manchas solares) são zonas escuras à superfície de uma estrela onde a temperatura é um pouco inferior à da área circundante. São alimentadas por campos magnéticos. Uma estrela é constituída por gases ionizados a que chamamos plasma. Os campos magnéticos podem restringir o fluxo de plasma e criar manchas. As alterações ao campo magnético de uma estrela podem afetar o número e a distribuição das manchas estelares.

O nosso Sol tem um ciclo de atividade de 11 anos. Durante o mínimo solar, o Sol não tem quase manchas nenhumas. Durante o máximo solar, normalmente mais de 100 manchas solares cobrem, em média, menos de 1% da superfície do Sol.

O novo estudo descobriu que Proxima Centauri é submetida a um ciclo semelhante com a duração de sete anos de pico a pico. No entanto, o seu ciclo é muito mais dramático. Pelo menos um-quinto da superfície da estrela fica coberta por manchas de uma só vez. Além disso, algumas destas manchas são muito maiores em relação ao tamanho da estrela do que as manchas do nosso Sol.

"Se houvesse vida inteligente em Proxima b, teriam uma vista muito dramática," afirma o autor principal Brad Wargelin, do Harvard-Smithsonian Center for Astrophysics.

Os astrônomos ficaram surpreendidos ao detectar o ciclo de atividade estelar em Proxima Centauri porque o seu interior deverá ser muito diferente do interior do Sol. O terço exterior do Sol sofre um movimento chamado convecção, parecido com a água fervendo numa panela, enquanto o interior do Sol permanece relativamente imóvel. Há uma diferença na velocidade de rotação entre estas duas regiões. Muitos astrônomos acham que esta diferenciação é responsável pela produção do ciclo de atividade magnética do Sol.

Em contraste, o interior de uma pequena anã vermelha como Proxima Centauri deve ser totalmente convectivo até ao núcleo. Como resultado, não deveria ter um ciclo regular de atividade.

"A existência de um ciclo em Proxima Centauri mostra que nós não entendemos a produção dos campos magnéticos estelares tão bem quanto pensávamos," afirma Jeremy Drake, também do Harvard-Smithsonian Center for Astrophysics.

O estudo não aborda se o ciclo de atividade de Proxima Centauri afetaria a potencial habitabilidade do planeta Proxima b. A teoria sugere que as proeminências ou o vento estelar, ambos alimentados por campos magnéticos, podem colidir com o planeta e expulsar qualquer atmosfera. Neste caso, Proxima b seria mais como a Lua da Terra, localizado na zona habitável, mas nada amigável à vida.

"As observações diretas de Proxima b não vão acontecer durante muito tempo. Até lá, a nossa melhor aposta é estudar a estrela e, em seguida, ligar esta informação com as teorias sobre as interações estrela-planeta," afirma Steve Saar, também do Harvard-Smithsonian Center for Astrophysics.

A equipe detectou o ciclo de atividade usando observações terrestres do ASAS (All Sky Automated Survey), combinadas com medições espaciais obtidas por várias missões, incluindo o Swift, Chandra e XMM-Newton.

Os resultados do estudo foram aceitos para publicação na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

O residente incomum de Cassiopeia

Esta imagem, feita com a Wide Field Planetary Camera 2 do telescópio espacial Hubble, mostra a galáxia espiral NGC 278.

NGC 278

© Hubble (NGC 278)

Esta beleza cósmica localiza-se a cerca de 38 milhões de anos-luz de distância da Terra na constelação de Cassiopeia.

Olhando assim, a galáxia NGC 278, parece tranquila. Porém, a galáxia está passando por uma imensa explosão de formação de estrelas. Esta atividade furiosa pode ser percebida pelos nós de tonalidade azulada, que permeiam os braços espirais da galáxia, cada um dos quais representa um grupo de estrelas quentes recém-nascidas.

Contudo, a formação de estrelas na NGC 278 não é comum, ela não se estende para as bordas mais externas da galáxia, só acontecendo dentro de um anel interno de cerca de 6.500 anos-luz de diâmetro. Essa dicotomia pode ser vista nesta imagem, enquanto o centro é brilhante, as extremidades são muito mais escuras. Esta estranha configuração acredita-se que tenha sido causada por uma fusão com uma galáxia menor rica em gás, enquanto que o evento turbulento acendeu o centro da NGC 278, a poeira remanescente da pequena galáxia desapareceu nas regiões mais externas da galáxia. Qualquer que seja a causa, este anel de formação estelar, chamado de anel nuclear, é extremamente incomum em galáxias sem uma barra no seu centro, tornando a NGC 278 uma visão muito intrigante.

Fonte: NASA

O coração antigo da Via Láctea

Com o auxílio do Visible and Infrared Survey Telescope for Astronomy (VISTA), o telescópio infravermelho do ESO, foram descobertas pela primeira vez estrelas antigas do tipo RR Lyrae no centro da Via Láctea.

estrelas variáveis próximo do centro galático

© ESO/VVV Survey/D. Minniti (estrelas variáveis próximo do centro galático)

As estrelas RR Lyrae encontram-se tipicamente em populações estelares com mais de 10 bilhões de anos de idade. A sua descoberta sugere que o centro bojudo da Via Láctea provavelmente cresceu a partir da fusão de aglomerados estelares primordiais. Estas estrelas podem mesmo ser os restos do mais massivo e mais antigo aglomerado estelar que ainda sobrevive na Via Láctea.

Uma equipe liderada por Dante Minniti (Universidad Andres Bello, Santiago, Chile) e Rodrigo Contreras (Pontificia Universidad Católica de Chile, Santiago, Chile) utilizou observações do telescópio infravermelho de rastreio VISTA, obtidas no âmbito do rastreio público Variáveis na Via Láctea (VVV), para fazer uma busca meticulosa da região central da Via Láctea. Ao observar no infravermelho, que é menos afetado pela poeira cósmica do que a radiação visível, e explorando as excelentes condições de observação do Observatório do Paranal do ESO, a equipe conseguiu obter a visão mais clara desta região conseguida até hoje. Foram encontradas uma dúzia de estrelas RR Lyrae antigas no coração da Via Láctea, as quais se desconheciam anteriormente.

A nossa Galáxia tem um centro densamente povoado, uma característica comum a muitas galáxias, mas por estar suficientemente perto é possível estudá-la em profundidade. A descoberta de estrelas RR Lyrae fornece-nos evidências sólidas que ajudam os astrônomos a decidir entre duas teorias principais que competem para explicar a formação destes bojos.

As estrelas RR Lyrae encontram-se tipicamente em aglomerados globulares densos. Tratam-se de estrelas variáveis, sendo que o brilho de cada estrela RR Lyrae varia de forma regular. Ao observar o tamanho de cada ciclo de aumento e diminuição de brilho numa RR Lyrae, e medindo o brilho da estrela, os astrônomos podem calcular a distância a que a estrela se encontra. As estrelas RR Lyrae, tal como as outras estrelas variáveis regulares, como por exemplo as Cefeidas, apresentam uma relação simples entre quão rápido mudam de brilho e quão luminosas são. Períodos mais longos significam estrelas mais brilhantes. Esta relação período-luminosidade pode ser usada para deduzir a distância a uma estrela a partir do seu período de variação e do seu brilho aparente.

Infelizmente, estas estrelas que são excelentes indicadoras de distância encontram-se frequentemente ofuscadas por estrelas jovens muito mais brilhantes e em algumas regiões estão escondidas pela poeira. Por isso, localizar estrelas RR Lyrae mesmo no núcleo extremamente denso da Via Láctea não tinha sido possível antes da obtenção de dados pelo rastreio público VVV realizado no infravermelho. Ainda assim, a equipe descreveu a tarefa de localizar as estrelas RR Lyrae entre a enorme população de estrelas mais brilhantes situadas no centro da Via Láctea como extremamente difícil.

O seu trabalho árduo foi no entanto recompensado com a identificação de uma dúzia de estrelas RR Lyrae. A sua descoberta indica que restos de aglomerados globulares antigos se encontram espalhados no centro do bojo da Via Láctea.

Rodrigo Contreras explica: “A descoberta de estrelas RR Lyrae no centro da Via Láctea tem implicações importantes na formação de núcleos galácticos. As evidências apoiam o cenário em que o bojo foi originalmente formado pela fusão de alguns aglomerados globulares.”

A teoria de que os bojos galácticos se formam através da fusão de aglomerados globulares é contestada pela hipótese concorrente de que estes bojos se formam devido à rápida acreção de gás. A descoberta destas estrelas RR Lyrae, quase sempre encontradas em aglomerados globulares, é uma forte evidência de que o bojo da Via Láctea se formou de fato através de fusão. Extrapolando, outros bojos galácticos semelhantes podem também ter-se formado do mesmo modo.

Estas estrelas, além de constituírem uma forte evidência para uma importante teoria de evolução galáctica, têm também muito provavelmente mais de 10 bilhões de anos de idade, possivelmente são tênues sobreviventes do mais antigo e massivo aglomerado estelar da Via Láctea.

Fonte: ESO

quarta-feira, 12 de outubro de 2016

Hubble detecta bolas de plasma disparadas por estrela

O telescópio espacial Hubble detectou bolhas superquentes de gás, cada uma com o dobro da massa do planeta Marte, expelidas perto de uma estrela moribunda.

gráfico do sistema binário V Hydrae lançando bolas de plasma para o espaço

© STScI/A. Feild (gráfico do sistema binário V Hydrae lançando bolas de plasma para o espaço)

Este gráfico com quatro paineis ilustra como o sistema binário V Hydrae lança bolas de plasma para o espaço. O painel 1 mostra as duas estrelas em órbita uma da outra. Uma das estrelas está perto do final da sua vida e inchou em tamanho, tornando-se numa gigante vermelha. No painel 2, a órbita da estrela mais pequena leva-a até à atmosfera estendida da gigante vermelha. À medida que a estrela viaja através da atmosfera, recolhe material da gigante vermelha, material que assenta num disco em seu redor. A acumulação de material atinge um ponto crítico e este é, eventualmente expelido sob a forma de bolhas de plasma quente ao longo do eixo de rotação da estrela, como o painel 3 mostra. Este processo de expulsão é repetido a cada oito anos e meio, o tempo que leva para a estrela mais pequena fazer outra passagem pelo invólucro inchado da gigante vermelha, visto no painel 4.

As bolas de plasma estão viajando tão depressa pelo espaço que levariam apenas 30 minutos para ir da Terra à Lua. Este disparo de plasma estelar ocorre a cada 8,5 anos há pelo menos 400 anos.

As bolas de plasma são um enigma para os astrônomos, porque o material ejetado não pode ter sido disparado pela estrela hospedeira, chamada V Hydrae. A estrela é uma gigante vermelha inchada, localizada a 1.200 anos-luz de distância, que provavelmente liberou pelo menos metade da sua massa para o espaço durante o seu leito de morte. As gigantes vermelhas são estrelas moribundas nos estágios finais da vida que estão esgotando o seu combustível nuclear que as faz brilhar. Cresceram em tamanho e estão despindo as suas camadas exteriores para o espaço.

A atual melhor explicação sugere que as bolas de plasma foram lançadas por uma companheira estelar invisível. De acordo com esta teoria, a companheira teria que estar numa órbita elíptica que a leva perto da atmosfera inchada da gigante vermelha a cada 8,5 anos. À medida que a companheira entra na atmosfera exterior da gigante vermelha, engole material. Este material, em seguida, assenta num disco ao redor da companheira e serve como plataforma de lançamento destas bolhas de plasma, que viajam a cerca de 800.000 quilômetros por hora.

Este sistema estelar poderá ser o arquétipo que explica uma estonteante variedade de formas brilhantes descobertas pelo Hubble em torno de estrelas moribundas a que chamamos nebulosas planetárias. Uma nebulosa planetária é uma concha de gás brilhante em expansão, expelida por uma estrela no final da sua vida.

"Nós sabíamos, com base em dados anteriores, que este objeto tinha um fluxo de alta velocidade, mas esta é a primeira vez que vemos o processo em ação," afirma Raghvendra Sahai, autor principal do estudo que pertence ao Jet Propulsion Laboratory (JPL) da NASA. "Nós sugerimos que estas bolhas gasosas produzidas durante esta fase final da vida de uma estrela ajudam a produzir as estruturas que vemos nas nebulosas planetárias."

As observações do Hubble, ao longo das duas últimas décadas, têm revelado uma enorme complexidade e diversidade na estrutura das nebulosas planetárias. A alta resolução do telescópio captou nós de material nas nuvens brilhantes de gás que rodeiam estrelas moribundas. Os astrônomos especularam que estes nós são, na realidade, jatos expelidos por discos de material ao redor de estrelas companheiras que não eram visíveis nas imagens do Hubble. A maioria das estrelas na nossa Galáxia encontram-se em sistemas binários. Mas os detalhes de como estes jatos foram produzidos permanecia um mistério.

"Nós queremos identificar o processo que produz estas transformações surpreendentes, de uma gigante vermelha inchada para uma bela e brilhante nebulosa planetária," afirma Sahai. "Estas mudanças dramáticas ocorrem ao longo de 200 a 1.000 anos, um mero piscar de olhos de tempo cósmico."

A equipe de Sahai usou o instrumento STIS (Space Telescope Imaging Spectrograph) do Hubble para realizar observações da estrela V Hydrae e da sua região circundante ao longo de um período de 11 anos, primeiro de 2002 a 2004 e depois de 2011 a 2013. A espectroscopia descodifica a luz de um objeto, revelando informações sobre a sua velocidade, temperatura, localização e movimento.

Os dados mostram uma série de bolhas superquentes e monstruosas, cada com uma temperatura de mais de 9.400 graus Celsius, quase duas vezes mais quentes que a superfície do Sol.

Os pesquisadores compilaram um mapa detalhado da localização das bolhas, o que lhes permite traçar os primeiros aglomerados gigantes até 1986. "As observações mostram que as bolhas se movem ao longo do tempo," comenta Sahai. "Os dados do STIS mostram bolhas recém-ejetadas, bolhas que se deslocaram para mais longe e bolhas ainda mais distantes."

O STIS detectou estas estruturas gigantes tão longe quanto 59,5 bilhões de quilômetros de V Hydrae, mais de oito vezes a distância entre o Cinturão de Kuiper e o nosso Sol.

As bolhas expandem-se e arrefecem à medida que se deslocam para mais longe, deixando de ser detectáveis no visível. Mas as observações efetuadas em comprimentos de onda submilimétricos mais longos no ano de 2004, pelo SMA (Submillimeter Array) no Havaí, revelaram estruturas distorcidas que podem ser bolhas lançadas há 400 anos atrás.

Com base nas observações, Sahai e os colegas Mark Morris da Universidade da Califórnia e Samantha Scibelli da Universidade Estatal de New York, desenvolveram um modelo de uma estrela companheira com um disco de acreção para explicar o processo de ejeção.

"Este modelo fornece a explicação mais plausível porque sabemos que os motores que produzem jatos são discos de acreção," explica Sahai. "As estrelas gigantes não têm discos de acreção, mas muitas têm provavelmente estrelas companheiras que, presumivelmente, têm massas inferiores porque evoluem mais lentamente. O modelo que propomos pode ajudar a explicar a presença de nebulosas planetárias bipolares, a presença de estruturas com a forma de jatos com nós em muitos destes objetos, e até mesmo as nebulosas planetárias multipolares. Nós pensamos que este modelo tem uma ampla aplicabilidade."

Uma surpresa encontrada na observação pelo STIS, foi que o disco não dispara os aglomerados monstruosos exatamente na mesma direção a cada oito anos e meio. A direção move-se ligeiramente de lado a lado e para trás e para a frente devido, possivelmente, a uma oscilação no disco de acreção. "Esta descoberta foi bastante surpreendente, mas é também muito agradável porque ajuda a explicar algumas coisas misteriosas que tinham sido observadas por outros cientistas," comenta Sahai.

Os astrônomos salientam que a V Hydrae é obscurecida a cada 17 anos, como se algo bloqueasse a sua luz. Sahai e colegas sugerem que devido à oscilação vai-e-vem da direção do jato, as bolhas alternam entre o passar por trás e o passar em frente de V Hydrae. Quando uma bolha passa em frente de V Hydrae, protege a gigante vermelha da observação dos astrônomos.

Este motor de disco de acreção é muito estável porque tem sido capaz de lançar estas estruturas durante centenas de anos sem ficar despedaçada. Em muitos destes sistemas, a atração gravitacional pode fazer com que a companheira espirale para o núcleo da gigante vermelha. Porém, eventualmente, a órbita da companheira de V Hydrae continuará a decair porque está perdendo energia nesta interação de atrito. No entanto, o destino final desta companheira é incerto.

A equipe espera usar o Hubble para realizar mais observações do sistema V Hydrae, incluindo a mais recente bolha expulsa em 2011. Os astrônomos também planejam usar o ALMA (Atacama Large Millimeter/submillimeter Array), no Chile, para estudar bolhas lançadas ao longo das últimas centenas de anos e que são agora demasiado frias para serem detectadas com o Hubble.

Os resultados da equipe foram publicados na revista The Astrophysical Journal.

Fonte: Space Telescope Science Institute

segunda-feira, 10 de outubro de 2016

Mapa dinâmico dos ventos na Terra

De que maneira o vento está soprando?


© Cameron Beccario (mapa dinâmico dos ventos na Terra)

O mapa caracterizado acima pode dizer-lhe isso e muito mais, não importa a sua localização no planeta Terra.

O mapa dinâmico exibe previsões de supercomputador extraídas de múltiplas fontes globais de dados de satélite atualizadas a cada três horas. Os dados foram coletados pelo GFS e US National Weather Service do National Oceanic and Atmospheric Administration (NOAA) e pelo GEOS-5 e Goddard Space Flight Center da NASA.

Os redemoinhos brilhantes geralmente indicam sistemas de baixa pressão com altas velocidades de vento, incluindo ciclones dramáticos, furacões e tufões. Embora o mundo pode ser girado de forma interativa aqui, para obter plena interatividade, incluindo a capacidade de zoom, você deve clicar na palavra "earth" no canto inferior esquerdo.

O painel de controle "earth" permite ainda a inclusão de temperatura, umidade, pressão, precipitação e mapas de dióxido de carbono, ou até mesmo mudar para exibir a velocidade do vento, maior altitude ou correntes oceânicas. Em particular, durante tempos de mudanças rápidas, os mapas exibidos podem estar desatualizados ou imprecisos.

Fonte: NASA

domingo, 9 de outubro de 2016

Primeiro exoplaneta detectado por variação de fase na luz de sua estrela

Astrônomos encontram a maioria dos exoplanetas através de sinais indiretos, notando mudanças na luz da estrela hospedeira em vez de ver o próprio exoplaneta.

ilustração de um exoplaneta orbitando uma estrela quente

© STScI/G. Bacon (ilustração de um exoplaneta orbitando uma estrela quente)

Mas a luz de algumas das estrelas muda tudo por conta própria, fazendo com que estes métodos se tornem complicados. O KIC 7917485b é o primeiro exoplaneta identificado em torno de uma estrela da sequência principal do  tipo A a partir de seu movimento orbital, e o primeiro encontrado perto de zona habitável.

As estrelas do tipo A são maiores e mais quentes do que a maioria das estrelas no catálogo Kepler, mudando de brilho em intervalos regulares. Este escurecimento e brilho pode ser muito tênue para ser detectado, quando um planeta em trânsito provoca o escurecimento da luz de sua estrela. Contudo, não há nenhuma razão para estrelas do tipo A não terem planetas, pois tem sido difícil para os astrônomos identificá-los. Até agora, os poucos exoplanetas encontrados em torno de estrelas tipo A são ou por imagens diretas, ou seja, quando os planetas estão muito longe de sua estrela, ou do trânsito, onde os planetas estão muito perto da estrela e o sinal é forte.

Mas uma nova idéia aplica a variabilidade da própria estrela como uma maneira de olhar para os exoplanetas. Os pulsos da estrela por causa das mudanças na fusão do hélio em suas camadas inferiores. Ela incha, esfria e escurece, encolhe, aquece e ilumina, e depois repete o processo várias vezes em um dia. Em uma curva de luz de Kepler, estes pulsos aparecem como um escurecimento periódico e brilho, como um relógio. Mas este relógio mostra um atraso. As pulsações aparecem um pouco cedo ou mais tarde, e calculando esse atraso, os astrônomos podem medir como a estrela está realmente oscilando num movimento orbital. E este movimento é devido à força gravitacional de um planeta próximo.

Os atrasos nas pulsações da KIC 7917485 foram revelados por um exoplaneta com cerca de 12 massas de Júpiter e com um período de 840 dias, que está perto da zona habitável de uma estrela tão quente. Com esta massa torna este exoplaneta quase uma anã marrom, e, certamente, um gigante gasoso.

Os atrasos na pulsação são muito semelhantes à forma como os astrônomos encontram planetas através do método da velocidade radial, mas, neste caso, não é necessário qualquer espectrômetro. A curva de luz de Kepler fornece todas as informações necessárias; o planeta não precisa de trânsito para revelar-se. Ter um método que pode revelá-los de qualquer maneira é uma ferramenta importante para idenficar um exoplaneta.

Fonte: Astronomy

Detectado colapso de nuvens interestelares gerando novas estrelas

Pesquisadores utilizaram SOFIA (Stratospheric Observatory for Infrared Astronomy) da NASA, para observar o colapso de seis nuvens interestelares para se tornarem novas estrelas que serão muito maiores do que o nosso Sol.

W43

© NASA/JPL-Caltech/2MASS (W43)

A imagem acima em infravermelho mostra a região W43 de formação de estrelas localizada a 20.000 anos-luz de distância na direção da constelação de Aquila.

O SOFIA é um avião Boeing 747SP modificado para transportar um telescópio com 100 polegadas de diâmetro.

Quando uma nuvem de gás entra em colapso sobre si mesma, a própria gravidade da nuvem faz com que ela se contraia e devido ao atrito produz calor. O calor da contracção eventualmente faz com que o núcleo produza as reações de fusão de hidrogênio que criam uma estrela.

Estas observações através do SOFIA permitiram a confirmação dos modelos teóricos sobre como as nuvens interestelares em colapso se tornam estrelas e o ritmo em que elas entram em colapso. Na verdade observar este colapso é extremamente desafiador porque acontece de forma relativamente rápida em termos astronômicos.

"Detectando o colapso em proto-estrelas é muito difícil de observar, mas é fundamental para confirmar a nossa compreensão geral da formação de estrelas", disse Erick Young, da Universities Space Research Association.

Usando instrumento GREAT (German Receiver for Astronomy at Terahertz Frequencies) do observatório, os cientistas procuraram este estágio de desenvolvimento em nove estrelas embrionárias, chamadas de proto-estrelas, medindo os movimentos do material dentro delas. Eles descobriram que seis das nove proto-estrelas estavam colapsando ativamente, aumentando substancialmente a lista anterior de menos de uma dúzia de proto-estrelas diretamente determinada que estavam neste estágio de colapso.

Durante várias semanas a cada ano, a equipe do SOFIA operando a partir de Christchurch, na Nova Zelândia, estudou objetos a partir de latitudes do sul que são melhores observados, incluindo o centro da Via Láctea, onde existem muitas regiões de formação estelar. Nos meses de inverno do hemisfério sul, quando as noites são longas e o bloqueio infravemelho de vapor de água é especialmente baixo, propiciando boas condições de observação.

"Com as observações do SOFIA no hemisfério sul, o interior pleno da Via Láctea entra em alcance para estudos de formação de estrelas. Isso é crucial para observações das primeiras fases de formação de estrelas de alta massa, uma vez que este é um evento relativamente rápido e raro," disse Friedrich Wyrowski, astrônomo do Instituto Max-Planck para Radioastronomia, em Bonn, Alemanha.

Os resultados das observações feitas no hemisfério sul em 2015 foram publicados no início deste ano no periódico Astronomy and Astrophysics.

Fonte: SOFIA Science Center

sábado, 8 de outubro de 2016

As evidências de um buraco negro errante

Astrônomos usaram o observatório de raios X Chandra da NASA e o observatório de raios X XMM-Newton da ESA para descobrir uma fonte de raios X extremamente luminosa e variável localizada fora do centro da sua galáxia hospedeira.

Faixa Estendida de Groth

© Chandra/Hubble (Faixa Estendida de Groth)

Este objeto peculiar pode ser um buraco negro errante oriundo de uma pequena galáxia que caiu para uma galáxia maior.

Os astrônomos pensam que os buracos negros supermassivos, alguns com cerca de 100 mil a 10 bilhões de vezes a massa do Sol, estão nos centros da maioria das galáxias. Existem também evidências para a existência dos chamados buracos negros de massa intermédia, que têm massas inferiores que variam entre cerca de 100 até 100.000 vezes a massa do Sol.

Ambos estes tipos de objetos podem ser encontrados longe do centro de uma galáxia, após uma colisão ou fusão com outra galáxia que contém um buraco negro massivo. À medida que as estrelas, gás e poeira da segunda galáxia movem-se através da primeira, o seu buraco negro move-se com ela.

Um novo estudo relata a descoberta de um destes buracos negros "errantes" na direção da orla da galáxia lenticular SDSS J141711.07+522540.8 (ou GJ1417+52 para abreviar), localizada a aproximadamente 4,5 bilhões de anos-luz da Terra. Este objeto, conhecido como XJ1417+52, foi descoberto durante longas observações de uma região especial, chamada Faixa Estendida de Groth, com dados do XMM-Newton e do Chandra obtidos entre 2000 e 2002. O seu brilho extremo faz com que seja provavelmente um buraco negro com uma massa estimada em cerca de 100.000 vezes a massa do Sol, assumindo que a força de radiação na matéria ao redor é igual à força gravitacional.

O painel principal mostra uma imagem visível de campo largo obtida com o telescópio espacial Hubble. O buraco negro e a sua galáxia hospedeira estão localizados dentro da caixa no canto superior esquerdo. A inserção da esquerda contém uma ampliação de GJ1417+52 pelo Hubble. Dentro desta inserção, o círculo mostra uma fonte pontual na periferia norte da galáxia que poderá estar associada com XJ1417+52.

A inserção da direita é uma imagem de raios X de XJ1417+52 obtida com o Chandra, cobrindo a mesma região que a ampliação do Hubble. Esta é uma fonte pontual, sem evidências vistas de uma emissão prolongada de raios X.

As observações do Chandra e do XMM-Newton mostram que a emissão de raios X de XJ1417+52 é tão alto que este objeto é classificado como uma "fonte de raios X hiperluminosa". Estes são objetos 10.000 a 100.000 vezes mais luminosos em raios X do que os buracos negros estelares e 10 a 100 vezes mais poderosos do que as fontes de raios X ultraluminosas.

No seu pico, XJ1417+52 é cerca de 10 vez mais luminoso do que a fonte de raios X mais brilhante já avistada para um buraco negro errante. Também está cerca de 10 vezes mais distante do que o detentor anterior do recorde para buraco negro errante.

A brilhante emissão de raios X deste tipo de buraco negro vem do material que cai em direção a ele. Os raios X de XJ1417+52 atingiram um brilho máximo entre 2000 e 2002. A fonte não foi detectada em observações posteriores pelo Chandra e pelo XMM-Newton obtidas em 2005, 2014 e 2015. No geral, o brilho de raios X da fonte diminuiu, pelo menos, por um fator de 14 entre 2000 e 2015.

Os autores teorizam que a explosão de raios X vista em 2000 e 2002 ocorreu quando uma estrela passava demasiado perto do buraco negro e foi dilacerada por forças de maré. Alguns dos escombros gasosos teriam sido aquecidos e tornados brilhantes em raios X enquanto caiam na direção do buraco negro, provocando o pico de emissões.

A localização e brilho da fonte óptica na imagem do Hubble, que poderá estar associada com XJ1417+52, sugere que o buraco negro poderá ter, originalmente, pertencido a uma galáxia pequena que chocou com a maior galáxia GJ1417+52, despojando a maioria das estrelas da galáxia, mas deixando para trás o buraco negro e as suas estrelas vizinhas no centro da pequena galáxia. Caso esta ideia esteja correta, o que vemos na imagem do Hubble são as estrelas circundantes.

Um artigo que descreve este resultado, foi publicado na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics