Um novo modelo está aproximando os cientistas da compreensão dos tipos de sinais de luz produzidos quando dois buracos negros supermassivos, que têm milhões a bilhões de vezes a massa do Sol, espiralam em direção a uma colisão.
© Goddard Space Flight Center (animação gira 360 graus ao redor de simulação estagnada)
Pela primeira vez, uma nova simulação de computador que incorpora completamente os efeitos físicos da teoria da relatividade geral de Einstein mostra que o gás em tais sistemas irá brilhar predominantemente no ultravioleta e em raios X.
Por norma, cada galáxia com o tamanho da Via Láctea ou maior contém um monstruoso buraco negro no seu centro. As observações mostram que as fusões de galáxias ocorrem com frequência no Universo mas, até agora, ninguém viu uma fusão destes gigantescos buracos negros.
"Sabemos que as galáxias com buracos negros supermassivos centrais se fundem regularmente no Universo, mas só vemos uma pequena fração de galáxias com dois perto dos seus centros," comenta Scott Noble, astrofísico do Goddard Space Flight Center da NASA. "Os pares que vemos não emitem sinais fortes de ondas gravitacionais porque estão muito longe um do outro. O nosso objetivo é identificar, apenas com a luz, pares ainda mais íntimos dos quais os sinais de ondas gravitacionais podem ser detectados no futuro."
Os cientistas detectaram a fusão de buracos negros de massa estelar, que variam entre cerca de 3 a várias dúzias de massas solares, usando o LIGO (Laser Interferometer Gravitational-Wave Observatory). As ondas gravitacionais são ondulações no espaço-tempo que viajam à velocidade da luz. São criadas quando objetos massivos em órbita, como buracos negros e estrelas de nêutrons, espiralam na direção um do outro e se fundem.
As fusões supermassivas serão muito mais difíceis de encontrar do que os seus homólogos de massa estelar. Uma razão pela qual os observatórios terrestres não podem detectar ondas gravitacionais destes eventos é porque a própria Terra é demasiado barulhenta, tremendo com vibrações sísmicas e mudanças gravitacionais decorrentes de perturbações atmosféricas. Os detectores têm que estar no espaço, como a missão LISA (Laser Interferometer Space Antenna) da ESA, com lançamento planejado para a década de 2030. Os observatórios que monitoram conjuntos de estrelas superdensas e de rápida rotação, chamadas pulsares, podem detectar ondas gravitacionais de fusões monstruosas. Como faróis, os pulsares emitem feixes regulares de luz que passam pela nossa perspetiva da Terra enquanto giram. As ondas gravitacionais podem provocar pequenas mudanças no tempo destas emissões, mas até agora os estudos não produziram qualquer detecção.
Mas os binários supermassivos perto da colisão podem ter algo que os binários de massa estelar não têm, ou seja, um ambiente rico em gás. É possível que a explosão de supernova que produz um buraco negro estelar também afugenta a maior parte do gás circundante. O buraco negro consome o pouco que resta tão rapidamente que não sobra muito para brilhar quando a fusão acontece.
Por outro lado, os buracos negros supermassivos resultam de fusões de galáxias. Cada buraco negro supermassivo traz com ele uma comitiva nuvens de gás e poeira, estrelas e planetas. Os cientistas pensam que uma colisão galáctica impulsiona grande parte deste material na direção dos buracos negros centrais, que o consomem numa escala de tempo semelhante à necessária para a fusão do binário. À medida que os buracos negros se aproximam, as forças magnéticas e gravitacionais aquecem o gás restante, produzindo luz que podem ser observadas.
"A modelagem destes eventos requer ferramentas computacionais sofisticadas que incluem todos os efeitos físicos produzidos por dois buracos negros supermassivos que se orbitam um ao outro a uma fração da velocidade da luz. Saber quais os sinais de luz que podemos esperar, destes eventos, vai ajudar à identificação em observações modernas. A modelagem e as observações serão então alimentadas umas às outras, ajudando-nos a melhor compreender o que acontece nos corações da maioria das galáxias," disse Manuela Campanelli, diretora do Center for Computational Relativity and Gravitation at the Rochester Institute of Technology, em New York.
A nova simulação mostra três órbitas de um par de buracos negros supermassivos a apenas 40 órbitas da fusão. Os modelos revelam que a luz emitida neste estágio do processo de fusão pode ser dominada pela radiação ultravioleta com alguns raios X altamente energéticos, semelhante ao que é visto em qualquer galáxia com um buraco negro supermassivo bem alimentado.
Três regiões de gás emissor de luz brilham à medida que os buracos negros se fundem, todas ligadas por correntes de gás quente: um grande anel que rodeia todo o sistema, chamado disco circumbinário, e dois menores ao redor de cada buraco negro, chamados minidiscos. Todos estes objetos emitem predominantemente raios ultravioletas. Quando o gás flui para um minidisco a uma alta velocidade, a luz ultravioleta do disco interage com a coroa do buraco negro, uma região de partículas subatômicas altamente energéticas acima e abaixo do disco. Esta interação produz raios X. Quando a taxa de acreção é mais baixa, a radiação ultravioleta diminui em relação aos raios X.
Com base na simulação, os pesquisadores esperam que os raios X emitidos por uma fusão próxima sejam mais brilhantes e mais variáveis do que os raios X vistos em buracos negros supermassivos individuais. O ritmo das mudanças está ligado à velocidade orbital do gás, localizado na fronteira interior do disco circumbinário, bem como à velocidade orbital dos buracos negros em fusão.
"A maneira como ambos os buracos negros refletem luz dá origem a efeitos complexos de lente," realça Stéphane d'Ascoli, estudante de doutoramento na Écola Normale Supérieure em Paris. "Algumas características exóticas foram uma surpresa, como as sombras em forma de sobrancelha que um buraco negro cria ocasionalmente perto do horizonte do outro."
A simulação correu no supercomputador Blue Waters do National Center for Supercomputing Applications da Universidade do Illinois. A modelagem das três órbitas do sistema levou 46 dias em 9.600 núcleos de computação.
A simulação original estimou as temperaturas do gás. A equipe pretende refinar o seu código para modelar como os parâmetros variáveis do sistema, como por exemplo a temperatura, distância, massa total e taxa de acreção, afetam a luz emitida. Estão interessados em ver o que acontece com o gás que viaja entre os dois buracos negros, além de modelar períodos de tempo mais longos.
"Nós precisamos de encontrar sinais na luz de buracos negros supermassivos binários distintos o suficiente para que os astrônomos possam encontrar estes sistemas raros por entre a multidão de buracos negros supermassivos," comenta Julian Krolik, astrofísico da Universidade Johns Hopkins, EUA. "Se pudermos fazer isso, podemos descobrir a fusão de buracos negros supermassivos antes que sejam vistos por um observatório de ondas gravitacionais espacial."
O artigo que descreve a análise da nova simulação foi publicado na revista The Astrophysical Journal.
Fonte: Goddard Space Flight Center