quarta-feira, 12 de janeiro de 2022

Enorme erupção de estrela de nêutrons supermagnética

Cientistas recentemente relataram que uma estrela densa e magnética entrou em erupção violentamente e cuspiu tanta energia quanto um bilhão de sóis, e fez isso em uma fração de segundo.

© NASA/C. Smith (ilustração de magnetar emitindo poderosa rajada de raios X)

Este tipo de estrela, conhecida como magnetar, é uma estrela de nêutrons com um campo magnético excepcionalmente forte, e elas frequentemente irrompem de forma espetacular e sem qualquer aviso. Mas ainda que magnetars possam ser milhares de vezes mais brilhantes que o nosso Sol, suas erupções são tão breves e imprevisíveis que se tornam desafiadoras para que os astrofísicos as encontrem e estudem. 

Entretanto, recentemente, pesquisadores conseguiram captar uma destas emissões e calcular as oscilações no brilho da magnetar enquanto estava em erupção. Os cientistas descobriram que a magnetar distante liberou tanta energia quanto o nosso Sol produz em 100.000 anos, e ela o fez em apenas um décimo de segundo. 

Uma estrela de nêutrons se forma quando uma estrela enorme colapsa ao final de sua vida. Conforme a estrela morre em uma supernova, prótons e elétrons em seu núcleo são esmagados em uma massa solar comprimida que une gravidade intensa com rotação em altas velocidades e forças magnéticas poderosas. O resultado é uma estrela de nêutrons, que possui aproximadamente 1,3 a 2,5 massas solares (1 massa solar corresponde a cerca de 330.000 Terras) esmagadas em uma esfera medindo apenas 20 quilômetros de diâmetro.

As magnetars são estrelas de nêutrons com campos magnéticos 1.000 vezes mais fortes que outras estrelas de nêutrons, e elas são mais poderosas que qualquer outro objeto no Universo. Por isso, nosso Sol não é nada comparado a estas estrelas brilhantes e densas, até mesmo quando não estão em erupção. Até mesmo em um estado inativo, as magnetars podem ser 100.000 vezes mais luminosas que nosso Sol.

A magnetar, denominada GRB2001415, que produziu a breve erupção está localizada na Galáxia do Escultor, uma galáxia espiral a cerca de 13 milhões de anos-luz da Terra. O enorme flare foi detectado no dia 15 de abril de 2020, pelos instrumentos do Monitor de Interações Atmosfera-Espaço (ASIM) na Estação Espacial Internacional. Por intermédio de inteligência artificial no processamento da ASIM foi detectado o flare, permitindo que os pesquisadores analisassem este pico de energia breve e violento. O flare durou apenas 0,16 segundos, e então o sinal caiu tão rapidamente que se tornou quase indistinguível do ruído de fundo nos dados. 

Apenas cerca de 30 magnetars foram identificadas entre aproximadamente 3.000 estrelas de nêutrons conhecidas, e este é o flare de magnetar mais distante já detectado. Cientistas suspeitam que erupções como esta podem ser causadas pelos chamados estelemotos (terremotos estelares), que perturbam as camadas mais externas e elásticas. E esta rara observação poderia ajudar os pesquisadores a desvendar as forças que produzem os arrotos energéticos das magnetars, de acordo com o estudo. 

Um artigo foi publicado na revista Nature.

Fonte: Scientific American

terça-feira, 11 de janeiro de 2022

Uma estrela moribunda com final explosivo

Pela primeira vez, os astrônomos viram em "tempo real" o fim dramático da vida de uma supergigante vermelha, observando a rápida autodestruição e morte da estrela antes de se transformar numa supernova do Tipo II.

© A. Makarenko (ilustração de estrela supergigante vermelha)

Usando dois telescópios no Havaí, o Pan-STARRS do Instituto de Astronomia da Universidade do Hawai'i em Haleakalā, Maui e o Observatório W. M. Keck em Maunakea, Havaí, astrônomos que trabalhavam no levantamento YSE (Young Supernova Experiment) observou a supergigante vermelha durante os seus últimos 130 dias, que culminou na sua detonação mortal.

A detecção direta de atividade pré-supernova numa estrela supergigante vermelha nunca tinha sido observada antes numa supernova comum do Tipo II. Pela primeira vez, é vista uma estrela supergigante vermelha explodir!" 

O Pan-STARRS detectou pela primeira vez a estrela massiva condenada no verão de 2020 graças à enorme quantidade de luz que irradiava. Alguns meses mais tarde, no outono de 2020, uma supernova iluminou o céu. A equipe rapidamente captou o poderoso flash e obteve o primeiro espectro da explosão energética, denominada SN 2020tlf, usando o instrumento LRIS (Low Resolution Imaging Spectrometer) do observatório Keck. 

Os dados mostraram evidências diretas de material circunstelar denso ao redor da estrela no momento da explosão, provavelmente o mesmo gás que o Pan-STARRS tinha fotografado sendo ejetado violentamente no início do verão.

A equipe continuou monitorando a SN 2020tlf após a explosão; com base nos dados obtidos pelos instrumentos DEIMOS (DEep Imaging and Multi-Object Spectrograph) e NIRES (Near Infrared Echellette Spectrograph) do observatório Keck, determinaram que a supergigante vermelha progenitora de SN 2020tlf, localizada na galáxia NGC 5731, a cerca de 120 milhões de anos-luz de distância, era 10 vezes mais massiva do que o Sol. 

A descoberta desafia as ideias anteriores de como as estrelas supergigantes vermelhas evoluem mesmo antes de explodirem. Antes deste evento, todas as supergigantes vermelhas observadas antes da explosão estavam relativamente quiescentes: não mostravam qualquer evidência de erupções violentas ou emissão luminosa, como foi observado antes de SN 2020tlf. Contudo, esta nova detecção de radiação luminosa proveniente de uma supergigante vermelha no seu último ano antes da explosão sugere que pelo menos algumas destas estrelas devem sofrer alterações significativas na sua estrutura interna, o que resulta então na ejeção tumultuosa de gás momentos antes do seu colapso.

A descoberta abre um caminho para levantamentos transientes como o YSE para buscar radiação luminosa proveniente de supergigantes vermelhas, e para reunir mais evidências de que tal comportamento pode assinalar a destruição iminente de uma estrela massiva. 

A detecção de mais eventos como SN 2020tlf terá um impacto relevante na definição dos meses finais da evolução estelar.

A descoberta foi publicada no periódico The Astrophysical Journal.

Fonte: W. M. Keck Observatory

segunda-feira, 10 de janeiro de 2022

Tranquilidade galáctica

Os braços espirais preguiçosamente sinuosos da espetacular galáxia NGC 976 preenchem o quadro desta imagem do telescópio espacial Hubble.

© Hubble (NGC 976)

Esta galáxia espiral fica a cerca de 150 milhões de anos-luz da Via Láctea, na constelação de Áries. Apesar de sua aparência tranquila, a NGC 976 foi palco de um dos fenômenos astronômicos mais violentos conhecidos, uma explosão de supernova.

Estes eventos cataclísmicos violentos ocorrem no final da vida de estrelas massivas e podem ofuscar galáxias inteiras por um curto período. Enquanto as supernovas marcam a morte de estrelas massivas, elas também são responsáveis ​​pela criação de elementos pesados ​​que são incorporados às gerações posteriores de estrelas e planetas. 

As supernovas também auxiliam os astrônomos na medida de distâncias às galáxias distantes. A quantidade de energia lançada no espaço por explosões de supernovas é muito uniforme, permitindo aos astrônomos estimar suas distâncias de quão brilhantes elas parecem ser quando vistas da Terra.

Esta imagem foi criada usando dados da Wide Field Camera 3 do Hubble e vem de uma grande coleção de observações do telescópio de galáxias próximas que hospedam supernovas, bem como uma classe pulsante de estrelas conhecidas como variáveis ​​Cefeidas. Tanto as cefeidas quanto as supernovas são usadas para medir distâncias astronômicas, e as galáxias contendo os dois objetos fornecem laboratórios naturais úteis onde os dois métodos podem ser calibrados concomitantemente. 

Fonte: ESA

sábado, 8 de janeiro de 2022

Objeto é atingido por ondas de radiação emitidas por estrela

Uma equipe de cientistas usou o observatório de raios X Chandra da NASA e o XMM-Newton da ESA para investigar alguma atividade incomum de raios X de uma estrela anã branca.

© CfA (ilustração de estrela anã branca e seu companheiro)

A ilustração de um artista mostra uma anã branca como uma esfera branco-azulada próxima ao centro e um objeto marrom avermelhado no lado direito em torno da estrela.

Os dados sugerem que esta anã branca está fulminando um objeto companheiro, que é uma estrela de baixa massa ou planeta, com ondas de calor e radiação enquanto o separa por meio da força gravitacional. 

A maioria das estrelas, incluindo o Sol, se tornará "anãs brancas" depois que começarem a ficar sem combustível, expandir e resfriar em uma gigante vermelha, e então perder suas camadas externas. Esta evolução deixa para trás um nó estelar que desaparece lentamente por bilhões de anos. 

Astrônomos observaram que a anã branca KPD 0005+5106, localizada a cerca de 1.300 anos-luz da Terra, emite emissão de raios X de alta energia que aumenta e diminui regularmente o brilho a cada 4,7 horas. Este fluxo recorrente de raios X indica que a estrela KPD 0005+5106 tem um objeto em órbita ao seu redor, uma estrela de massa muito baixa ou um planeta. 

A anã branca puxa o material da companheira para um disco em torno de si, antes de atingir seus polos norte e sul. A concentração de material atingindo os polos da anã branca está criando dois pontos brilhantes de emissão de raios X de alta energia. À medida que a anã branca e seu companheiro orbitam um ao redor do outro, o ponto quente voltado para a Terra entra e sai de vista, fazendo com que os raios X de alta energia aumentem e diminuam regularmente. 

Os pesquisadores analisaram o que aconteceria se este objeto fosse um planeta com massa semelhante à de Júpiter, uma possibilidade que concorda com os dados mais prontamente do que uma estrela apagada ou uma anã marrom. Em seus modelos, a anã branca puxaria material do planeta para a anã branca, um processo pelo qual o objeto só poderia sobreviver por algumas centenas de milhões de anos antes de ser destruído. Este material roubado gira em torno da anã branca, que brilha em raios X que o Chandra pode detectar.

Um artigo descrevendo estes resultados foi publicado no periódico The Astrophysical Journal. . 

Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 6 de janeiro de 2022

Enorme erupção em buraco negro

Os astrônomos produziram a imagem mais compreensiva da emissão de rádio do buraco negro supermassivo, em alimentação ativa, mais próximo da Terra.

© ICRAR (galáxia elíptica Centauro A)

Centauro A é uma gigante galáxia ativa elíptica a 12 milhões de anos-luz de distância. No seu núcleo encontra-se um buraco negro com uma massa de 55 milhões de sóis. A composição acima mostra a galáxia e o espaço intergaláctico circundante em vários comprimentos de onda. O plasma, no rádio, é exibido em azul e parece interagir com gás quente, emissor de raios X (laranja) e com o hidrogênio neutro frio (roxo). As nuvens que emitem H-alpha (vermelho) são também mostradas por cima da parte óptica principal da galáxia que se encontra entre as duas mais brilhantes manchas de rádio. O "fundo" está em comprimentos de onda visíveis, mostrando estrelas da Via Láctea que estão em primeiro plano.

A emissão é abastecida por um buraco negro central na galáxia Centauro A. À medida que o buraco negro absorve gás em queda, ejeta material a uma velocidade próxima da luz, fazendo com que "bolhas de rádio" cresçam ao longo de centenas de milhões de anos. 

Quando vista a partir da Terra, a erupção de Centauro A estende-se agora oito graus no céu, ou seja, o comprimento de 16 Luas Cheias colocadas lado a lado. A imagem foi captada usando o telescópio MWA (Murchison Widefield Array) na Austrália Ocidental, e revela novos detalhes espetaculares da emissão rádio da galáxia.

Estas ondas de rádio vêm do material que está sendo sugado para o buraco negro supermassivo no centro da galáxia."Forma um disco em volta do buraco negro e à medida que a matéria é dilacerada perto do buraco negro, poderosos jatos formam-se em cada lado do disco, ejetando a maior parte do material de volta para o espaço, para distâncias provavelmente superiores a um milhão de anos-luz. As observações anteriores, no rádio, não conseguiam lidar com o brilho extremo dos jatos e os detalhes da área maior, em torno da galáxia, eram distorcidos, mas a nova imagem ultrapassa estas limitações. 

Centauro A é a radiogaláxia mais próxima da nossa Via Láctea. Nesta pesquisa foram  combinadas as observações de rádio com dados ópticos e de raios X, para auxiliar na compreensão da física destes buracos negros supermassivos.

O Dr. Massimo Gaspari, astrofísico do INAF (Instituto Nacional de Astrofísica, Itália), disse que o estudo corroborou uma teoria nova conhecida como CCA (Chaotic Cold Accretion), que está emergindo em diferentes campos. "Neste modelo, nuvens de gás frio condensam-se no halo galáctico e 'chovem' sobre as regiões centrais, alimentando o buraco negro supermassivo". Desencadeado por esta chuva, o buraco negro reage vigorosamente, lançando energia através de jatos de rádio que 'insuflam' os lóbulos espetaculares visto na imagem obtida pelo MWA. Este estudo é um dos primeiros a analisar com tanto detalhe o 'clima' CCA multifásico em toda a gama de escalas," concluiu o Dr. Gaspari.

© ICRAR (galáxia Centauro A no rádio)

Esta imagem mostra a galáxia no rádio, revelando vastos lóbulos de plasma que vão muito além da galáxia visível, que ocupa apenas uma pequena mancha no centro da imagem. Os pontos no plano de fundo não são estrelas, mas radiogaláxias muito semelhantes a Centauro A, a distâncias muito maiores.

A galáxia parece mais brilhante no centro, onde é mais ativa e onde há muita energia. Depois é mais fraca à medida que se afasta, porque ocorre perda de energia. Mas há características interessantes onde as partículas carregadas reaceleram e estão interagindo com fortes campos magnéticos.

O MWA é um precursor do SKA (Square Kilometre Array), uma iniciativa global para construir os maiores radiotelescópios do mundo na Austrália Ocidental e na África do Sul. O vasto campo de visão e, como consequência, a extraordinária quantidade de dados que podem ser recolhidos, significa que o potencial de descoberta de cada observação do MWA é muito elevado. Isto proporciona um fantástico passo em direção ao ainda maior SKA.

A pesquisa foi publicada na revista Nature Astronomy.

Fonte: International Centre for Radio Astronomy Research

terça-feira, 4 de janeiro de 2022

A lareira de Órion

A imagem recém-processada da Nebulosa da Chama (NGC 2024), onde podemos ver também nebulosas menores, tais como a Nebulosa da Cabeça de Cavalo (Barnard 33), é baseada em observações conduzidas pelo ex-astrônomo do ESO Thomas Stanke e sua equipe há alguns anos.

© ESO/APEX/VISTA (Nebulosa da Chama)

Entusiasmados em experimentar o, então recém instalado, instrumento SuperCam no APEX (Atacama Pathfinder Experiment), os pesquisadores apontaram o telescópio na direção da constelação de Órion.

Uma das regiões mais famosas do céu, Órion é o lar das nuvens moleculares gigantes mais próximas do Sol, ou seja, vastos objetos cósmicos compostos essencialmente por hidrogênio, onde se formam novas estrelas e planetas. Estas nuvens estão localizadas entre 1.300 e 1.600 anos-luz de distância e apresentam o berçário estelar mais ativo na vizinhança do Sistema Solar, além da Nebulosa da Chama que vemos na imagem. Esta nebulosa de “emissão” abriga um aglomerado de estrelas jovens em seu centro que emite radiação de alta energia, fazendo brilhar os gases circundantes. 

Além da Nebulosa da Chama e seus arredores, os astrônomos puderam admirar uma grande variedade de outros objetos espetaculares. Alguns exemplos incluem: as nebulosas de reflexão Messier 87 e NGC 2071, nuvens de gás e poeira interestelar que refletem a radiação emitida por estrelas próximas. A equipe até descobriu uma nova nebulosa, um pequeno objeto, notável em sua aparência quase perfeitamente circular, que eles chamaram de Nebulosa da Vaca. 

As observações foram conduzidas captando ondas de rádio emitidas pelo monóxido de carbono, CO, nas nuvens de Órion. Usar essa molécula para investigar grandes áreas do céu é o objetivo principal do SuperCam, já que este instrumento permite aos astrônomos mapear enormes nuvens de gás onde se formam novas estrelas. Ao contrário do que o “fogo” desta imagem possa sugerir, estas nuvens são, na realidade, frias, com temperaturas típicas de apenas alguns graus acima do zero absoluto. 

Dados os muitos segredos que ela pode contar, esta região do céu foi varrida muitas vezes no passado em diferentes comprimentos de onda, cada faixa de comprimento de onda revelando características diferentes e únicas das nuvens moleculares de Órion. Como exemplo temos as observações infravermelhas feitas pelo VISTA (Visible and Infrared Survey Telescope for Astronomy) do ESO no Observatório do Paranal no Chile, que compõem o fundo calmo desta imagem da Nebulosa da Chama e seus arredores. Ao contrário da radiação visível, as ondas infravermelhas passam através das nuvens espessas de poeira interestelar, permitindo aos astrônomos descobrir estrelas e outros objetos que, de outro modo, permaneceriam escondidos.

As observações foram apresentadas num artigo aceito para publicação na revista Astronomy & Astrophysics

Fonte: ESO

segunda-feira, 3 de janeiro de 2022

Conjunção galáctica

Esta imagem do telescópio espacial Hubble captou a galáxia espiral NGC 105, que fica a cerca de 215 milhões de anos-luz de distância, na constelação de Peixes.

© Hubble (NGC 105)

Embora pareça que a NGC 105 está mergulhando de ponta-cabeça em uma colisão com uma galáxia vizinha, a PGC 212515, isso é apenas o resultado do alinhamento casual dos dois objetos no céu noturno. O vizinho alongado da galáxia NGC 105 está na verdade muito mais distante e permanece relativamente desconhecido para os astrônomos. 

Estas conjunções enganosas ocorrem com frequência na astronomia; por exemplo, as estrelas nas constelações estão a distâncias muito diferentes da Terra e só parecem formar padrões graças ao alinhamento casual de suas estrelas componentes.

As observações da Wide Field Camera 3 nesta imagem são de uma vasta coleção de medições do Hubble examinando galáxias próximas que contêm dois fenômenos astronômicos fascinantes: variáveis ​​cefeidas e explosões cataclísmicas de supernovas.

Embora esses dois fenômenos possam parecer não relacionados, um é uma classe peculiar de estrelas pulsantes e o outro é a explosão causada pelos espasmos catastróficos finais da vida de uma estrela massiva, ambos são usados ​​por astrônomos para um propósito muito particular: medir grandes distâncias de objetos astronômicos. Tanto as cefeidas quanto as supernovas têm luminosidades muito previsíveis, o que significa que os astrônomos podem dizer com precisão o quão brilhantes elas são. Ao medir o quão brilhantes elas aparecem quando observados da Terra, essas "velas padrão" podem fornecer medições de distâncias confiáveis. A NGC 105 contém supernovas e variáveis ​​Cefeidas, fornecendo uma oportunidade valiosa de calibrar as duas técnicas de medição de distância uma contra a outra. 

Astrônomos recentemente analisaram cuidadosamente as distâncias de uma amostra de galáxias, incluindo a NGC 105, para medir a velocidade com que o Universo está se expandindo, um valor conhecido como constante de Hubble. Seus resultados não concordam com as previsões do modelo cosmológico mais amplamente aceito, e sua análise mostra que há apenas uma chance de 1 em um milhão de que essa discrepância seja causada por erros de medição. Essa discrepância entre as medições da galáxia e as previsões cosmológicas tem sido uma fonte de consternação para os astrônomos, e essas descobertas recentes fornecem novas evidências persuasivas de que algo está errado ou faltando em nosso modelo padrão da cosmologia. 

Fonte: ESA

sábado, 1 de janeiro de 2022

A assinatura de um campo magnético num exoplaneta

Uma equipe internacional de astrônomos utilizou dados do telescópio espacial Hubble para descobrir a assinatura de um campo magnético num exoplaneta.

© D. Bajram/U. de Genebra (ilustração do exoplaneta HAT-P-11b)

A descoberta assinala a primeira vez que tal característica foi vista num exoplaneta. Um campo magnético é o que melhor explica as observações de uma extensa região de partículas de carbono carregadas que rodeiam o planeta e viajam para longe numa longa cauda. 

Os campos magnéticos desempenham um papel crucial na proteção das atmosferas planetárias, pelo que a capacidade de detectar os campos magnéticos dos exoplanetas é um passo significativo para uma melhor compreensão do aspeto destes mundos alienígenas.

Os astrônomos observaram o planeta HAT-P-11b, que possui o tamanho de Netuno, a 123 anos-luz da Terra, passando diretamente pela face (trânsito) da sua estrela hospedeira seis vezes. As observações foram feitas no ultravioleta, comprimento de onda que está imediatamente abaixo do que o olho humano pode ver. 

O Hubble detectou íons de carbono na magnetosfera do planeta. Uma magnetosfera é uma região em torno de um objeto celeste (como a Terra) que é formada pela interação do objeto com o vento solar emitido pela sua estrela hospedeira. Esta é a primeira vez que a assinatura do campo magnético de um exoplaneta é diretamente detectada. 

Um forte campo magnético num planeta como a Terra pode proteger a sua atmosfera e superfície do bombardeamento direto das partículas energéticas que compõem o vento solar. Estes processos afetam fortemente a evolução da vida num planeta como a Terra, porque o campo magnético protege os organismos destas partículas energéticas.

A descoberta da magnetosfera de HAT-P-11b é um passo significativo para uma melhor compreensão da habitabilidade de um exoplaneta. Nem todos os planetas e luas no nosso Sistema Solar têm os seus próprios campos magnéticos, e os pesquisadores dizem que a ligação entre campos magnéticos e a habitabilidade de um planeta ainda precisa de mais estudos.

Uma descoberta fundamental foi a observação de íons de carbono não só numa região em torno do planeta, mas também estendendo-se numa longa cauda que se afasta do planeta a velocidades médias de cerca de 160.000 km/h. A cauda estende-se pelo menos por 1 unidade astronômica, a distância entre a Terra e o Sol. 

Os pesquisadores utilizaram depois simulações computorizadas 3D para modelar as interações entre as regiões atmosféricas mais elevadas do planeta e o campo magnético com o vento estelar. Tal como o campo magnético da Terra e o seu ambiente espacial imediato interagem com o vento solar, que consiste em partículas carregadas que viajam a quase 1,5 milhões de quilômetros por hora, existem interações entre o campo magnético de HAT-P-11b e o seu ambiente espacial imediato com o vento solar da sua estrela progenitora, e estas são muito complexas. 

A física nas magnetosferas da Terra e de HAT-P-11b é a mesma; no entanto, a proximidade do planeta à sua estrela, apenas um-vigésimo da distância da Terra ao Sol, faz com que a sua atmosfera superior seja aquecida, resultando na formação da magnetocauda.

Os cientistas também descobriram que a metalicidade da atmosfera de HAT-P-11b é inferior ao esperado. No nosso Sistema Solar, os planetas gelados e gasosos, Netuno e Urano, são ricos em metais, mas têm campos magnéticos fracos, enquanto os planetas gasosos maiores, Júpiter e Saturno, têm baixa metalicidade e fortes campos magnéticos. 

A baixa metalicidade atmosférica de HAT-P-11b desafia os modelos atuais de formação exoplanetária. Embora a massa de HAT-P-11b seja apenas 8% da de Júpiter, é possível que o exoplaneta se assemelhe mais a um mini-Júpiter do que a Netuno.

Um artigo foi na revista Nature Astronomy.

Fonte: University of Arizona

Encontrada análoga da Via Láctea no Universo jovem

Uma equipe internacional, que inclui pesquisadores do Instituto de Astrofísica das Canárias (IAC), utilizou dados combinados de diferentes radiotelescópios localizados na Espanha para estudar o modo de formação estelar numa galáxia quando o Universo tinha menos de 30% da sua idade atual.

© ESA/Hubble (Cavalo Marinho Cósmico)

Revelaram que as propriedades do reservatório molecular de gás são semelhantes às do nosso próprio reservatório na Via Láctea, algo nunca visto até agora no Universo distante.

Uma questão importante no estudo das galáxias é o modo de formação estelar, quão eficiente é a conversão do gás frio em estrelas. Até agora, as galáxias no início do Universo pareciam formar estrelas de uma forma diferente da observada na nossa própria Galáxia, o que é intrigante. 

Para lançar luz sobre esta questão, o gás molecular frio, o combustível para a formação das estrelas, é observado com radiotelescópios. Devido às propriedades físicas do gás hidrogênio molecular (H2), não pode ser observado diretamente no rádio, mas pode ser rastreado através da molécula de monóxido de carbono (CO). Primeiro, os pesquisadores selecionaram uma galáxia cujo brilho é potenciado por lentes gravitacionais graças a um aglomerado interveniente de galáxias. Em seguida, procuraram dados de arquivo de missões espaciais infravermelhas em combinação com imagens pelo telescópio espacial Hubble. A galáxia descoberta sofre fortes efeitos de lentes gravitacionais por um fator de aproximadamente 10 e assim a sua morfologia assemelha-se a um cavalo marinho.

A distância desta galáxia foi revelada (notou-se que a luz viajou durante 9,6 bilhões de anos) graças a observações das linhas de monóxido de carbono com o radiotelescópio de 30 metros do IRAM (Instituto de Radioastronomía Milimétrica) localizado na Sierra Nevada. Juntamente com observações do radiotelescópio Yebes de 40 metros localizado em Yebes, 50 km para nordeste de Madrid e operado pelo IGN (Instituto Geográfico Nacional), as propriedades físicas do combustível da formação estelar através das observações de várias linhas moleculares de gás também puderam ser derivadas. É a galáxia mais distante detectada até agora com o radiotelescópio Yebes de 40 metros.

Através da análise do gás molecular frio, os cientistas também descobriram a presença de um mecanismo de formação estelar previamente invisível e de atividade de buracos negros no Universo.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Instituto de Astrofísica de Canarias

terça-feira, 28 de dezembro de 2021

Encontrados braços espirais fósseis na Via Láctea

Uma equipe internacional de astrônomos, liderada pelo pesquisador Chervin Laporte do Instituto de Ciências do Cosmos da Universidade de Barcelona, utilizou dados da missão espacial Gaia para criar um novo mapa do disco externo da Via Láctea.


© C. laporte/Gaia (mapa celeste mostrando o movimento da Via Láctea)

A imagem acima mostra um mapa de todo o céu evidenciando o movimento da Via Láctea, através dos dados do Gaia. As áreas com movimento significativo são mostradas em preto/púrpura e aquelas com movimento relativamente baixo em amarelo. Várias estruturas de discos filamentosos de grande escala são evidentes sobre o plano médio. O mapa também mostra as nuvens de Magalhães e a sua ponte estelar de ligação à esquerda, enquanto a galáxia anã de Sagitário, atualmente sendo dilacerada, pode ser vista à direita.

Curiosamente, as estruturas recentemente encontradas incluem provas de braços espirais fósseis. A equipa analisou os dados de movimento recolhidos pelo Gaia, disponíveis desde dezembro de 2020, para identificar estruturas coerentes. O seu mapa resultante revelou a existência de muitas estruturas filamentosas e giratórias anteriormente desconhecidas na orla do disco. Também deu uma visão global mais nítida de estruturas anteriormente conhecidas.

As simulações numéricas preveem que tais estruturas filamentares se formem no disco externo a partir de interações passadas com galáxias satélites, mas a enorme quantidade de subestruturas reveladas por este mapa não era esperada e permanece um mistério. O que podem ser estas estruturas? Uma possibilidade é que são os remanescentes de braços do disco da Via Láctea excitados em diferentes momentos por várias galáxias satélites. 

A Via Láctea está agora rodeada por 50 destas galáxias satélites e já absorveu várias outras galáxias no seu passado. Atualmente, pensa-se que a Via Láctea esteja sendo perturbada pela galáxia anã de Sagitário, mas no seu passado mais distante interagiu com outra intrusa, de nome Salsicha Gaia, que agora dispersou os seus detritos na periferia da nossa Galáxia.

Num estudo anterior, a mesma equipe mostrou que uma das estruturas filamentares no disco externo, a Corrente do Anticentro, tinha estrelas predominantemente com mais de 8 bilhões de anos. Isto torna-a potencialmente demasiado velha para ter sido excitada apenas por Sagitário e, ao invés, aponta para a Salsicha Gaia. Outra possibilidade é que nem todas estas estruturas sejam verdadeiros braços espirais fósseis, mas em vez disso formem as "cristas" de distorções verticais em grande escala no disco da Via Láctea.

"Pensamos que os discos respondem aos impactos de galáxias satélites, o que cria ondas verticais que se propagam como ondulações num lago," diz Laporte. Para tentar distinguir entre as duas explicações, a equipe assegurou agora um programa dedicado de acompanhamento com o telescópio William Herschel nas Ilhas Canárias a fim de estudar as propriedades das populações estelares em cada subestrutura. Os futuros levantamentos vão ajudar a esclarecer a natureza e a origem destas finas estruturas celestes.

Tipicamente, esta região da Via Láctea tem permanecido pouco explorada devido à poeira interveniente que obscurece severamente a maior parte do plano Galáctico. Ao passo que a poeira afeta a luminosidade de uma estrela, o seu movimento permanece inalterado. Resta agora o desafio de descobrir o que são exatamente estas coisas, a sua origem, porque é que existem em tão grande número, e o que nos podem dizer sobre a Via Láctea, sobre a sua formação e evolução.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: Royal Astronomical Society

quinta-feira, 23 de dezembro de 2021

Descoberto o maior grupo de planetas errantes

Planetas errantes, nômades ou livres, são objetos cósmicos elusivos que apresentam massas comparáveis às dos planetas do nosso Sistema Solar mas que não orbitam estrela alguma, vagueando livremente por conta própria.

© ESO/M. Kornmesser (ilustração de um planeta nômade em Rho Ophiuchi)

Até agora não se conheciam muitos objetos deste tipo, mas, utilizando dados de vários telescópios do ESO e de outros observatórios, uma equipe de astrônomos acaba de descobrir pelo menos 70 novos planetas errantes na nossa Galáxia. Trata-se do maior grupo deste tipo de planetas já descoberto, o que corresponde a um passo importante para a nossa compreensão das origens e estrutura destes misteriosos nômades galácticos. 

Planetas nômades, que se deslocam longe de qualquer estrela que os ilumine, seriam normalmente impossíveis de observar. No entanto, os astrônomos tiraram proveito do fato de, alguns milhões de anos após a sua formação, estes planetas estarem ainda suficientemente quentes para brilharem, o que os torna diretamente detectáveis pelas câmaras sensíveis dos grandes telescópios. Estes novos planetas errantes com massas comparáveis à de Júpiter estão numa região de formação estelar próxima do nosso Sol, na direção das constelações do Escorpião e de Ofiúco. 

O número exato de planetas errantes descoberto pela equipe é difícil de determinar porque as observações não permitem aos pesquisadores medir as massas dos objetos estudados. Objetos com massas superiores a 13 vezes a massa de Júpiter provavelmente não são planetas, por isso não podem ser incluídos na contagem. Então, o brilho dos planetas forneceu um limite superior para o número de planetas nômades observados. O brilho está relacionado com a idade dos próprios planetas, uma vez que quanto mais velho for o planeta há mais tempo ele está esfriando e consequentemente diminuindo de brilho. Se a região estudada for antiga, então os objetos mais brilhantes do grupo têm provavelmente mais que 13 massas de Júpiter. Dada a incerteza da idade da região estudada, este método nos dá um número de planetas errantes entre 70 e 170. 

Para encontrar tantos planetas nômades, foi utilizado dados de um número de telescópios colocados tanto no solo como no espaço, que cobrem um intervalo temporal de 20 anos. A equipe usou observações do Very Large Telescope (VLT), do Visible and Infrared Survey Telescope for Astronomy (VISTA), do VLT Survey Telescope (VST) e do telescópio MPG/ESO de 2,2 metros, todos do ESO e localizados no Chile, junto com outras instalações. A equipe usou também dados do satélite Gaia, da Agência Espacial Europeia (ESA), marcando assim o enorme sucesso de colaboração entre telescópios no solo e no espaço na exploração e compreensão do nosso Universo. O estudo sugere que poderão existir muito mais destes planetas errantes que ainda não foram descobertos.

O estudo destes planetas livres recentemente descobertos poderá dar aos astrônomos pistas de como é que estes objetos misteriosos se formam. Alguns cientistas acreditam que os planetas nômades se formam a partir do colapso de uma nuvem de gás que é muito pequena para levar à formação de uma estrela, ou então que estes planetas poderão ter sido ejetados do seu sistema original. Mas, qual mecanismo é mais provável permanece desconhecido.

Outros avanços na tecnologia serão a chave para desvendar o mistério desses planetas nômades. A equipe espera continuar a estudá-los com mais detalhe com o futuro Extremely Large Telescope (ELT) do ESO, atualmente em construção no deserto chileno do Atacama e que deverá começar a operar mais para o final desta década. 

Esta pesquisa foi apresentada no artigo intitulado “A rich population of free-floating planets in the Upper Scorpius young stellar association” publicado na revista Nature Astronomy

Fonte: ESO

segunda-feira, 20 de dezembro de 2021

Uma pitada de estrelas

O aglomerado de estrelas aberto NGC 1755 se assemelha a uma pitada de sal espalhada em uma toalha de mesa preta nesta imagem do telescópio espacial Hubble.

© Hubble (NGC 1755)

Esta coleção de estrelas reside em um dos vizinhos próximos da Via Láctea, a Grande Nuvem de Magalhães, e mede 120 anos-luz de diâmetro. Apesar de sua amplitude impressionante, o NGC 1755 é um membro da classe menor de aglomerados de estrelas.

Aglomerados de estrelas são coleções de estrelas ligadas gravitacionalmente e possuem duas variedades principais: aglomerados abertos menores como NGC 1755, que hospeda estrelas mais jovens, e aglomerados globulares gigantescos, que podem conter milhões de estrelas mais velhas. 

O telescópio espacial Hubble olhou para o coração do NGC 1755 para entender melhor como diferentes populações de estrelas podem coexistir em um único aglomerado. Uma população de estrelas é um grupo de estrelas com propriedades semelhantes, como idade ou composição química, e estas populações fornecem aos astrônomos informações valiosas sobre o nascimento, a vida e a morte de estrelas.

Os aglomerados nas Nuvens de Magalhães são laboratórios naturais particularmente úteis graças à proximidade das Nuvens com a Via Láctea. A visão de olho de águia do Hubble foi um recurso vital ao observar o aglomerado NGC 1755, com tantas estrelas compactadas em uma pequena área do céu, a Advanced Camera for Surveys e a Wide Field Camera 3 do Hubble permitiram que estrelas individuais no aglomerado fossem distinguidas. 

Fonte: NASA

domingo, 19 de dezembro de 2021

Exoplaneta feito de metais pesados orbita estrela próxima

Cinco mil mundos. Este é o próximo e mais almejado marco na busca contínua por exoplanetas.

© NASA/G. Bacon (exoplaneta orbitando estrela anã vermelha)

E o seu total confirmado nos catálogos está apenas a algumas centenas antes dele. Entretanto, mais importante do que os próprios números, é a diversidade que eles revelam. Uma fração dos mundos se assemelham aos que orbitam nosso Sol. Mas a maioria são muito mais alienígenas: gigantes gasosos chamuscados que circulam sua estrela a cada alguns dias, do tamanho de Netuno com a densidade de algodão doce, e séries de planetas pequenos esmagados como sardinhas ao redor de minúsculas estrelas geladas.

O mais novo exoplaneta esquisito a desafiar nossas preconcepções e reforçar o quanto ainda temos para descobrir é GJ 367b. Ele é um mundo tão estranho que parece se encaixar melhor em uma capa de álbum de heavy metal ou nas páginas de uma história de ficção científica de baixa qualidade do que na realidade.

Anunciado em 2 de dezembro no periódico Science, este planeta pode ser, essencialmente, uma esfera brilhante de ferro meio derretido com três quartos do tamanho da Terra. Foi descoberto por Kristine Lame, do Centro Alemão Aeroespacial (DLR), usando o Transiting Exoplanet Survey Satellite (TESS) da NASA, o GJ 367b é um mundo “sub-Terra” peculiar localizado relativamente próximo, ao redor de uma pequena anã vermelha a aproximadamente 31 anos-luz de distância de nós.

As medições do TESS mostraram que o planeta possui 9.000 quilômetros de diâmetro, aproximadamente um terço maior que Marte, e observações subsequentes usando outra instalação, o High Accuracy Radial Velocity Planet Searcher (HARPS), do Observatório Europeu do Sul (ESO), revelou que ele possui metade da massa da Terra. Desta forma, ao considerá-los em conjunto, estes resultados sugerem uma densidade espantosa, cerca de oito gramas por centímetro cúbico, próxima da do ferro, com o resto do planeta envolto de um manto rochoso de silicatos, uma estrutura similar a Mercúrio, no nosso Sistema Solar. Mas, ao contrário de Mercúrio, que gira a 58 quilômetros do Sol em uma órbita de 88 dias, GJ 367b é muito mais próximo de sua estrela, completando uma órbita em apenas 7,7 horas em uma distância de somente um milhão de quilômetros. Isto significa que a temperatura da superfície banhada de luz pode ser tão alta quanto 1.500°C, o suficiente para derreter tanto rochas como metais.

Cerca de 100 destes exoplanetas rochosos de período ultracurto foram encontrados, mas GJ 367b se destaca entre eles como o menor e menos massivo já visto. Sua proximidade com a sua estrela significa que ele muito provavelmente teve sua rotação travada pelos efeitos gravitacionais, significando que ele sempre tem o mesmo hemisfério voltado na direção da estrela, como a Lua faz com a Terra. 

As enormes temperaturas no lado do dia podem indicar que esta metade do planeta está coberta de um oceano de magma. Enquanto isto, o lado da noite do planeta teria temperaturas imensamente menores, onde ele deve ser sólido. Esta diferença pode resultar em ventos tempestuosos se o planeta tiver qualquer coisa semelhante a uma atmosfera. Mas a maioria dos especialistas acreditam que a proximidade estelar extrema do GJ 367b o deixou sem qualquer atmosfera há muito tempo. Como o planeta alcançou este estado abismal é um mistério que pode conter implicações importantes para nosso próprio Sistema Solar.

As mesmas forças gravitacionais que levaram GJ 367b a travar sua rotação deveriam ter impedido o processo de formação planetária em primeiro lugar. Acredita-se que planetas não podem se formar extremamente perto de suas estrelas. Ao contrário, eles provavelmente migraram de fora para dentro, um processo que algumas vezes leva a choques interplanetários espetaculares quando mundos literalmente colidem. Impactos gigantes semelhantes podem ter dado a forma ao planeta Mercúrio, que, talvez, um dia pode ter tido uma estrutura mais semelhante à da Terra.

Planetas semelhantes a Netuno ainda são notavelmente ausentes nestes arredores extremos. A explicação pode ser que estes planetas, empurrados para dentro por outro planeta no sistema, perdem suas atmosferas de hidrogênio e hélio enquanto eles se aproximam das estrelas, deixando apenas seus interiores rochosos para trás.

Para Mercúrio, dada sua distância comparavelmente maior do Sol, uma história de origem tão exótica é improvável. Mas estudos futuros de Mercúrio, ao lado de mais observações e descobertas de planetas de período ultracurto com instalações da próxima geração, como o telescópio espacial James Webb, podem nos trazer mais perto de responder como tais mundos surgiram. Mais do que qualquer coisa, este trabalho continua destacando que, entre os milhares de planetas localizados além do Sistema Solar que hoje conhecemos, continuamos encontrando mundos estranhos.

Fonte: Scientific American

quarta-feira, 15 de dezembro de 2021

Uma estrela jovem parecida com o Sol

Espiando um sistema estelar localizado a dúzias de anos-luz da Terra, os astrônomos observaram, pela primeira vez, uma estrela chamada EK Draconis que ejetou uma quantidade gigantesca de energia e partículas carregadas num evento muito mais poderoso do que qualquer evento do gênero já visto no nosso próprio Sistema Solar.

© NAOJ (ilustração da estrela EK Draconis ejetando massa coronal)

O estudo explora um fenômeno estelar denominado "ejeção de massa coronal", também conhecido como tempestade solar. O nosso Sol emite este tipo de erupções regularmente. São compostas por nuvens de partículas extremamente quentes, ou plasma, que podem viajar pelo espaço a velocidades de milhões de quilômetros por hora. As ejeções de massa coronal podem ter um sério impacto na Terra e na sociedade humana, se uma ejeção de massa coronal atingir a Terra, pode danificar satélites em órbita e afetar as redes de energia que servem cidades inteiras.

O novo estudo, liderado por Kosuke Nakemata do NAOJ (National Astronomical Observatory of Japan) também sugere que as explosões podem ficar muito piores. Os pesquisadores usaram telescópios no solo e no espaço para espiar EK Draconis, que parece uma versão jovem do Sol. Em abril de 2020, a equipe observou EK Draconis ejetando uma nuvem de plasma escaldante com uma massa de um quatrilhão de quilogramas, mais de 10 vezes maior do que a ejeção de massa coronal mais poderosa já registada numa estrela parecida com o Sol. O evento pode servir como um aviso de quão perigoso pode ser o clima espacial.

As ejeções de massa coronal geralmente ocorrem logo depois que uma estrela libera uma proeminência, ou uma explosão repentina e brilhante de radiação que pode estender-se para o espaço. No entanto, pesquisas recentes sugeriram que, no Sol, esta sequência de eventos pode ser relativamente tranquila. Em 2019, por exemplo, um estudo mostrou que jovens estrelas semelhantes ao Sol, na Galáxia, parecem ter superproeminências frequentes, como as nossas próprias proeminências solares, mas dezenas ou até centenas de vezes mais poderosas. Tal superproeminência também pode ocorrer no Sol, mas não com muita frequência, talvez uma vez a cada vários milhares de anos. Ainda assim, uma superproeminência também poderia levar a uma superejeção de massa coronal?

Para descobrir, os pesquisadores voltaram-se para EK Draconis. A curiosa estrela tem quase o mesmo tamanho que o nosso Sol mas, com apenas 100 milhões de anos, é relativamente jovem no sentido cósmico. O nosso Sol era assim há 4,5 mil milhões de anos. Os pesquisadores observaram a estrela durante 32 noites no inverno e na primavera de 2020 usando o TESS (Transiting Exoplanet Survey Satellite) da NASA e o telescópio SEIMEI da Universidade de Kyoto. E, no dia 5 de abril, os pesquisadores observaram em EK Draconis a liberação de uma superproeminência realmente grande. Cerca de 30 minutos depois, a foi observado o que parecia ser uma ejeção de massa coronal voando para longe da superfície da estrela. Foi captada apenas a primeira etapa deste fenómeno, chamada fase de "erupção do filamento". Mas, mesmo assim, era um monstro, movendo-se a uma velocidade máxima de 1,6 milhões de quilômetros por hora.

O Sol também pode ser capaz de tais eventos extremos. Mas, tal como as superproeminências, as superejeções de massa coronal são provavelmente raras para estrelas com a idade do nosso Sol. Ainda assim, as grandes ejeções de massa podem ter sido muito mais comuns nos primeiros anos do Sistema Solar. As ejeções gigantescas de massa coronal podem ter ajudado a moldar planetas como a Terra e Marte.

Os resultados foram publicados na revista Nature Astronomy.

Fonte: National Astronomical Observatory of Japan

O flash óptico mais rápido emitido por uma supernova recém-nascida

Uma equipe de astrônomos descobriu o flash óptico mais rápido de uma supernova Tipo Ia.

© U. Kyoto (ilustração de supernova após explosão de anã branca)

Muitas estrelas terminam as suas vidas por meio de uma explosão espetacular. A maioria das estrelas massivas explodirá como uma supernova. Embora uma estrela anã branca seja o remanescente de uma estrela de massa intermediária como o nosso Sol, ela pode explodir se a estrela fizer parte de um sistema estelar binário íntimo, onde duas estrelas se orbitam uma à outra. Este tipo de supernova é classificado como supernova Tipo Ia. 

Por causa do brilho uniforme e extremamente alto das supernovas Tipo Ia, cerca de 5 bilhões de vezes mais brilhantes que o nosso Sol, são amplamente usadas como uma vela padrão para medições de distância em astronomia. Como exemplo de maior sucesso, as supernovas Tipo Ia ajudaram os cientistas a descobrir a expansão acelerada do Universo. 

Mas, apesar do grande sucesso da cosmologia das supernovas Tipo Ia, os pesquisadores ainda debatem questões básicas como o aspeto dos sistemas progenitores das supernovas Tipo Ia e o modo como as explosões das supernovas Tipo Ia são iniciadas. Para resolver estes problemas de longa data, uma equipe de astrônomos liderada por Ji-an Jiang, do Instituto Kavli para Física e Matemática do Universo, tentou captar supernovas Tipo Ia até um dia após as suas explosões, de nome supernovas Tipo Ia de fase inicial, usando novas instalações de levantamento de campo amplo, incluindo a câmara Tomo-e Gozen, o primeiro gerador, do mundo, de mosaicos de campo amplo com sensor CMOS. 

Ao verificar regularmente as candidatas a supernova Tipo Ia de fase inicial descobertas pelo levantamento de transientes Tomo-e, uma candidata chamada Tomo-e202004aaelb chamou a atenção de Jiang. "Tomo-e202004aaelb foi descoberta como tendo alto brilho no dia 21 de abril de 2020. Surpreendentemente, o seu brilho mostrou uma variação significativa nos dois dias seguintes e depois comportou-se como uma supernova Tipo Ia de fase inicial normal. Descobrimos várias supernovas Tipo Ia de fase inicial que mostram um excesso de emissão interessante nos primeiros dias das suas explosões, mas nunca tínhamos visto uma emissão precoce tão rápida e proeminente em comprimentos de onda ópticos. Graças ao modo de levantamento de alta cadência e ao excelente desempenho da Tomo-e Gozen, pudemos capturar perfeitamente esta característica pela primeira vez. Um flash precoce tão rápido deve ter origem diferente em comparação com as supernovas Tipo Ia em excesso anteriormente descobertas," disse Jiang. 

As simulações computacionais pelo professor Keiichi Maeda, da Universidade de Kyoto, mostraram que a origem do misterioso e rápido flash óptico pode ser explicada pela energia liberada a partir de uma interação entre o material ejetado da supernova e um material circunstelar denso e confinado logo após a explosão de supernova.

Por meio de observações espectroscópicas pelo telescópio Seimei da Universidade de Kyoto, a equipe descobriu que a supernova é uma variante das supernovas Tipo Ia mais brilhantes. Na primeira análise do espectro obtido logo o flash inicial, destacou-se como algo diferente das supernovas normais. Foi notado que uma classe mais brilhante de supernovas Tipo Ia poderia parecer-se com esta se fossem observadas numa fase tão inicial. A classificação foi subsequentemente confirmada à medida que o espectro evoluía para se parecer cada vez mais com as brilhantes supernovas Tipo Ia.

O resultado mostra que pelo menos uma fração das supernovas Tipo Ia têm origem num ambiente circunstelar denso, o que fornece uma restrição estrita ao sistema progenitor destes fenômenos espetaculares no nosso Universo. Tendo em que conta que Tomo-e202004aaelb (SN 2020hvf) é muito mais brilhante do que as típicas supernovas Tipo Ia usadas como indicador de distância, a descoberta permitirá que os astrônomos testem várias teorias propostas para estas peculiares supernovas superluminosas Tipo Ia.

"Construímos anteriormente modelos teóricos de anãs brancas giratórias de massa super-Chandrasekhar e das suas explosões. Estes modelos massivos podem ser consistentes com o brilho máximo de SN 2020hvf, mas é necessário mais trabalho teórico para explicar as propriedades observacionais detalhadas. A SN 2020hvf forneceu uma oportunidade maravilhosa de colaboração entre a teoria e as observações," disse Ken'ichi Nomoto, cientista sênior do Instituto Kavli para Física e Matemática do Universo. 

Os pesquisadores continuarão procurando a resposta para a questão de longa data da origem das supernovas Tipo Ia, realizando levantamentos transientes com telescópios por todo o mundo. "Usamos as supernovas Tipo Ia para medir a expansão do Universo, embora as suas origens não sejam bem compreendidas. A fotometria das supernovas Tipo Ia de fase inicial fornece informações únicas para entender as suas origens e, portanto, deve contribuir para medições mais precisas da expansão do Universo no futuro próximo," disse o professor Mamoru Doi, da Universidade de Kyoto e cientista do Instituto Kavli para Física e Matemática do Universo.

O estudo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Kavli Institute for the Physics and Mathematics of the Universe