terça-feira, 31 de julho de 2012

Detectado restos de supernova que explodiu

Há mais de 50 anos, uma supernova foi descoberta na galáxia espiral M83 a cerca de 15 milhões de anos-luz da Terra.

supernova  SN 1957D na galáxia M83

© Chandra (supernova  SN 1957D na galáxia M83)

Os astrônomos utilizaram o observatório de raios X Chandra da NASA para fazer a primeira primeira detecção de raios X emitidos pelos destroços dessa explosão.

A supernova é denominada SN 1957D por ser a quarta supernova descoberta em 1957, ela é uma das poucas localizadas fora da Via Láctea que são detectáveis, em comprimento de ondas ópticas e de rádio, décadas após a explosão ter sido observada. Em 1981, astrônomos viram o restante da estrela que explodiu em ondas de rádio, e em 1987 eles detectaram o restante em comprimentos de ondas ópticas, anos depois que a luz da explosão em si se tornou indetectável.

Uma observação relativamente curta, de aproximadamente 14 horas, do Chandra em 2000 e 2001 não detectou nenhum raio X do remanescente da SN 1957D. No entanto, uma observação muito maior realizada em 2010 e 2011, totalizando aproximadamente oito dias e meio, revelou a presença de emissão de raios X.

Essa nova imagem feita pelo Chandra da M83 é uma das observações mais profundas já feitas em uma galáxia espiral localizada além da nossa. Esse ponto de vista mostra a energia baixa, média e alta de raios observada, respectivamente, em vermelho, verde e azul.

Os novos dados dos restos da SN 1957D fornecem informações importantes sobre a natureza dessa explosão, que os astrônomos acreditam ter acontecido quando uma estrela massiva ficou sem energia e entrou em colapso. A distribuição dos raios X com energia sugerem que a supernova contém uma estrela de nêutrons, ou um pulsar, uma estrela densa que gira rapidamente formada quando o núcleo da estrela pré-supernova entrou em colapso.

Se esta interpretação for confirmada, o pulsar na SN 1957D é observado com idade de 55 anos, um dos mais jovens já vistos. O remanescente da SN 1979C, na galáxia M100, é outro candidato a mais novo pulsar, mas não existe certeza se há um buraco negro ou uma estrela de nêutrons no centro dessa supernova.

Fonte: NASA

Casulo abriga estrelas jovens

Na Terra, os casulos protegem as larvas enquanto elas transformam em borboletas, e estão associados à vida nova.

nuvem RCW 88

© ESO (nuvem RCW 88)

No espaço os casulos são os locais de nascimentos de novas estrelas. A nuvem vermelha na imagem divulgada pelo Observatório Europeu do Sul (ESO) é um exemplo dessas regiões de formação estelar.

Obtida com o instrumento EFOSC2, montado no New Technology Telescope do ESO, a imagem mostra uma nuvem chamada RCW 88, situada a cerca de dez mil anos-luz de distância e com uma dimensão de cerca de nove anos-luz. Ela é feita de hidrogênio gasoso brilhante, que rodeia as estrelas recém-formadas. As novas estrelas formam-se de nuvens de hidrogênio à medida que estas colapsam sob o efeito da sua própria gravidade. Algumas das estrelas mais desenvolvidas, que já brilham intensamente, podem ser vistas pela nuvem.

Estas estrelas jovens e quentes são muito energéticas e emitem enormes quantidades de radiação ultravioleta, o que faz com que os elétrons se libertem dos átomos de hidrogênio da nuvem, deixando apenas os núcleos positivamente carregados - os prótons. À medida que os elétrons são recapturados pelos prótons, emitem radiação H-alfa, a qual tem um brilho vermelho bastante característico.

Observar o céu através de um filtro H-alfa é o modo mais simples de os astrônomos descobrirem estas regiões de formação estelar.

Fonte: ESO

segunda-feira, 30 de julho de 2012

Órbitas de asteroides que podem ameaçar a Terra

A NASA divulgou um diagrama que ilustra as diferenças entre as órbitas de um típico asteroide próximo da Terra (em azul) e um asteroide potencialmente perigoso (PHA, na sigla em inglês, em vermelho).

órbitas de asteroides próximo da Terra

© NASA (órbitas de asteroides próximo da Terra)

Os PHAs são um subconjunto de asteroides próximos da Terra (NEAs) e têm órbitas próximas à do nosso planeta, chegando a cerca de 8 milhões de km. Eles também são grandes o suficiente para sobreviver à passagem pela atmosfera terrestre e causar danos regionalmente, ou em maior escala.

O Sol fica no centro da população de asteroides, enquanto as órbitas de Mercúrio, Vênus e Marte estão em cinza na imagem divulgada. A órbita terrestre está destacada em verde entre Vênus e Marte. Como indica o diagrama, os PHAs tendem a ter órbitas mais semelhantes à órbita terrestre do que os asteroides próximos. As órbitas dos asteroides são obtidas através de simulações, descrevendo o como pode ser o caminho destes objetos em torno do Sol.

Os pontos ao fundo são baseados em dados do NEOWISE, o "caçador de asteroides" da NASA na missão WISE (Wide-field Infrared Survey Explorer), que varreu o Sol duas vezes com luz infravermelha, antes de entrar em modo de hibernação em 2011. Os pontos azuis e laranjas representam uma simulação da população de asteroides próximos da Terra e PHAs, respectivamente, que têm mais de 100 m.

O NEOWISE forneceu a melhor noção geral até o momento dos PHAs, refinando as estimativas de seu número, tamanhos, tipos, órbitas e riscos potenciais. A equipe do NEOWISE estima que de 20 a 30% dos PHAs que se pensou existir foram efetivamente descobertos em maio de 2012, data da imagem divulgada hoje.

Fonte: NASA

Aglomerado globular M68: diamantes no céu

Se você já olhou para o aglomerado globular Messier 68 (M68) através de um telescópio, você conheceu a vista magnífica que representa.

aglomerado globular M68

© Hubble (aglomerado globular M68)

Mas o telescópio espacial Hubble oferece uma espetacular imagem deste acampamento lotado de estrelas, parecendo diamantes cravejados no espaço. Este belo agrupamento de estrelas vem realizando um tipo de dança estelar durante 10 milhões de anos.

O aglomerado globular M68 está localizado na constelação de Hydra a uma distância de aproximadamente 33.000 anos-luz da Terra, e contém pelo menos 2.000 estrelas que são visíveis, incluindo 250 gigantes e 42 variáveis. Estende-se por 106 anos-luz de diâmetro. Ele foi descoberto por Charles Messier em 1780.
A atração gravitacional mútua entre as numerosas estrelas no aglomerado mantém os membros estelares aglutinados, permitindo que os aglomerados globulares perdurem por muitos bilhões de anos.
Os astrônomos podem medir as idades dos aglomerados globulares, olhando para a luz das suas estrelas constituintes.
Os elementos químicos deixam assinaturas nesta luz, revelando a composição química destas estrelas, geralmente elas contêm menos elementos pesados, como carbono, oxigênio e ferro. No Sol os elementos químicos mais abundantes são: hidrogênio (74,9%) e hélio (23,8%). Todos os metais compõem menos de 2% da massa solar, os mais presentes são: oxigênio (compondo cerca de 1% da massa do Sol), carbono (0,3%), neônio (0,2%), e ferro (0,2%).

Fonte: Universe Today e Cosmo Novas

quinta-feira, 26 de julho de 2012

As estrelas mais brilhantes não vivem sozinhas

Um novo estudo que utilizou o Very Large Telescope (VLT) do ESO mostrou que a maioria das estrelas brilhantes de elevada massa, responsáveis pela evolução das galáxias, não vivem isoladas.

ilustração de uma estrela vampira e sua vítima

© ESO (ilustração de uma estrela vampira e sua vítima)

Quase três quartos destas estrelas têm uma companheira próxima, muito mais do que o suposto anteriormente. Surpreendentemente, a maior parte destes pares interagem de modo violento, ocorrendo, por exemplo, transferência de massa de uma estrela para a outra. Pensa-se que cerca de um terço destes pares acabará por se fundir, formando uma única estrela.

O Universo é um lugar muito diverso e muitas das estrelas são bastante diferentes do Sol. Uma equipe internacional utilizou o VLT para estudar estrelas do tipo O, as quais apresentam temperaturas, massas e luminosidades muito elevadas. A maioria das estrelas são classificadas de acordo com o seu tipo espectral ou cor. Este parâmetro está, por sua vez, relacionado com a massa das estrelas e a sua temperatura superficial. Partindo da mais azul (e portanto da mais quente e de maior massa) até a mais vermelha (e portanto a mais fria e de menor massa), a sequência de classificação mais comum é O, B, A, F, G, K e M. As estrela do tipo O têm uma temperatura superficial de cerca de 30.000 ºC ou mais, e possuem coloração azul pálido brilhante. A sua massa é 15 ou mais vezes a massa do Sol e e podem ser até um milhão de vezes mais brilhantes. Estas estrelas têm vidas curtas e violentas, desempenhando um papel fundamental na evolução das galáxias. Estão também ligadas a fenômenos extremos, tais como "estrelas vampiras", onde a estrela menor suga matéria da superfície da companheira maior, e explosões de raios gama.

estrelas quentes e brilhantes do tipo O em regiões de formação estelar

© ESO (estrelas quentes e brilhantes do tipo O)

Os astrônomos estudaram uma amostra de 71 estrelas de tipo O, tanto isoladas como em sistemas binários em seis aglomerados estelares jovens próximos na Via Láctea. A maior parte das observações utilizou os telescópios do ESO, incluindo o VLT.

Ao analisar a radiação emitida por estes objetos com um detalhamento inédito, a equipe descobriu que 75% de todas as estrelas do tipo O fazem parte de um sistema binário, uma proporção mais elevada do que a suposta até agora, e a primeira determinação precisa deste valor. Mais importante ainda, a equipe descobriu que a proporção destes pares onde as estrelas se encontram suficientemente próximas uma da outra para que haja interação entre elas (quer através de fusão estelar quer através de transferência de massa pelas chamadas estrelas vampiras) é muito mais elevada do que a esperada, resultado que tem implicações profundas na nossa compreensão da evolução de galáxias.

As estrelas do tipo O constituem apenas uma fração de um por cento das estrelas no Universo, mas os fenômenos violentos a que estão associadas significam que têm um efeito desproporcional em seu meio circundante. Os ventos e choques que vêm destas estrelas podem tanto dar origem como interromper a formação estelar, a sua radiação faz com que as nebulosas brilhem, as suas supernovas enriquecem as galáxias com elementos pesados essenciais à vida, estando ainda associadas às explosões de raios gama, as quais se contam entre os fenômenos mais energéticos no Universo. As estrelas de tipo O estão por isso implicadas em muitos dos mecanismos que fazem evoluir as galáxias.

As fusões entre estrelas, as quais a equipe estima que serão o destino final de cerca de 20 a 30% das estrelas de tipo O, são fenômenos violentos. Mas mesmo o cenário comparativamente calmo de estrelas vampiras, que acontece em 40 a 50% dos casos, tem efeitos profundos no modo como as estrelas evoluem.

Até agora, os astrônomos pensavam que os sistemas binários de estrelas de elevada massa, onde as componentes orbitam muito próximo uma da outra, eram uma exceção, algo apenas necessário para explicar fenômenos exóticos, tais como binárias de raios X, pulsares duplos ou buracos negros binários. Este novo estudo mostra que, para interpretar corretamente o Universo, não podemos fazer esta simplificação: estas estrelas duplas de elevada massa não são apenas comuns, as suas vidas são também fundamentalmente diferentes daquelas que existem enquanto estrelas isoladas.

Por exemplo, no caso das estrelas vampiras, a estrela menor, de massa menor, rejuvenesce ao sugar hidrogênio fresco da sua companheira. A sua massa irá aumentar substancialmente e irá sobreviver à sua companheira, vivendo muito mais tempo do que uma estrela isolada com a mesma massa. Entretanto, a estrela vítima fica sem o seu envelope antes de ter oportunidade de se tornar numa supergigante vermelha luminosa. Em vez disso, o seu núcleo azul quente fica exposto. Deste fenômeno resulta que a população estelar de uma galáxia distante poderá parecer muito mais jovem do que é na realidade: tanto as estrelas vampiras rejuvenescidas como as estrela vítimas diminuídas tornam-se mais quentes e azuis em termos de cor, ficando portanto com a aparência de estrelas mais jovens. Saber a verdadeira proporção das estrelas binárias de elevada massa em interação é por isso crucial para se poder caracterizar corretamente estas galáxias longínquas. A existência deste número enorme de estrelas vampiras está de acordo com um outro fenômeno anteriormente inexplicável. Cerca de um terço das estrelas que explodem como supernovas têm, surpreendentemente, muito pouco hidrogênio. No entanto, a proporção de supernovas pobres em hidrogênio está de acordo com a proporção de estrelas vampiras encontradas neste estudo. Espera-se que as estrelas vampiras dêem origem a supernovas pobres em hidrogênio nas suas vítimas, uma vez que as camadas exteriores ricas em hidrogênio terão sido arrancadas pela gravidade da estrela vampira antes da vítima ter tido oportunidade de explodir como supernova.

A única informação que os astrônomos têm das galáxias distantes é fornecida pela radiação que chega aos telescópios. Sem fazer suposições sobre o que é responsável por esta radiação, não podemos tirar conclusões sobre a galáxia, tais como quão massiva ou jovem ela é. Este estudo mostra que a suposição frequente de que a maioria das estrelas existem de forma isolada pode levar a tirar as conclusões erradas.

Para compreender qual a proporção estes efeitos e como é que esta nova perspectiva afetará a nova visão da evolução galáctica, temos novos estudos deverão ser aplicados. Fazer a modelagem de estrelas binárias é algo complicado, por isso demorará algum tempo até que estas considerações sejam incluídas nos modelos de formação galáctica.

Os resultados serão publicados na edição de amanhã na revista Science.

Fonte: ESO

A arquitetura de um sistema planetário

Foram encontrados três exoplanetas que orbitam uma estrela em situação semelhante à da Terra.

ilustração de três planetas orbitando a estrela Kepler-30

© Nature (ilustração de três planetas orbitando a estrela Kepler-30)

Essa observação propicia novas condições que determinam a arquitetura de um sistema planetário.

No caso da Via Láctea, o equador do Sol e o plano orbital dos planetas estão praticamente alinhados, o que seria consequência da formação dos corpos em um único disco giratório gasoso. Isso permite, por exemplo, que possa haver luz e vida em uma extensa área do planeta, como ocorre com a Terra.

Muitos sistemas de exoplanetas, porém, não apresentam esse mesmo arranjo. Corpos gigantes e quentes, semelhantes a Júpiter, o maior planeta do Sistema Solar, estão muitas vezes desalinhados. Alguns têm até órbitas retrógradas, ou seja, giram na direção contrária à rotação de sua estrela principal.

Os cientistas suspeitam que grandes inclinações nas órbitas são resultado das mesmas interações dinâmicas que produzem planetas parecidos com Júpiter.

Desta vez, o astrofísico Roberto Sanchis-Ojeda e colegas analisaram o trânsito dos planetas Kepler-30b, Kepler-30c e Kepler-30d ao observarem manchas sobre a estrela Kepler-30, de massa e raio semelhantes aos do Sol, só que mais jovem e com rotação mais rápida que a da nossa maior estrela.

Os pesquisadores mostram que a órbita dos três planetas desse sistema está alinhada com o equador estelar. Além disso, a órbita do trio está alinhada uns com os outros, em uma configuração parecida com a nossa. Nesse sistema, não há nenhum “Júpiter” quente e gasoso.

Os dados foram obtidos pelo telescópio Kepler, da agência espacial americana (NASA), captados durante dois anos e meio, em 27 trânsitos dos planetas pela estrela.

Fonte: Nature

quarta-feira, 25 de julho de 2012

Encontrado um pulsar muito jovem

Usando métodos engenhosos de análise de dados, os pesquisadores do Instituto Max Planck de Física Gravitacional e para Radioastronomia descobriram um pulsar nos dados do telescópio espacial de raios gama Fermi.

ilustração de um pulsar

© NASA/Fermi/Cruz de Wilde (ilustração de um pulsar)

A imagem acima mostra a radiação gama (violeta) muito acima da superfície dos restos compactos da estrela, enquanto as ondas de rádio (verde) são emitidos ao longo dos pólos magnéticos sob a forma de um cone. A rotação varre as regiões de emissões em toda a linha de visão terrestre, fazendo a luz pulsar-se periodicamente no céu.

Os pulsares são astros cósmicos que giram sobre seus eixos muitas vezes por segundo, emitindo ondas de rádio e radiação gama no espaço. Os pulsares de raios gama são difíceis de serem identificados porque as suas características, tais como a sua posição no céu, o período de rotação e sua mudança no tempo, são desconhecidas. E os astrônomos podem apenas determinar a sua posição aproximada no céu a partir das observações originais do Fermi, requerendo uma grande quantidade de tempo de computação.

Esta é a única maneira de encontrar uma periodicidade oculta nos tempos de chegada dos fótons de raios gama. Mesmo computadores de alto desempenho rapidamente atingem o seu limite neste processo. Portanto, os pesquisadores usaram algoritmos originalmente desenvolvidos para a análise de dados de ondas gravitacionais para realizar uma caçada particularmente eficiente através dos dados do Fermi.

O pulsar recém-descoberto, denominado J1838-0537, é muito jovem, com menos  de 5.000 anos de idade. Ele gira sobre seu próprio eixo aproximadamente sete vezes por segundo e sua posição no céu está na direção da constelação Scutum.

Durante o período de observação, o pulsar experimentou alteração em sua rotação. Uma análise mais detalhada resolveu este mistério do pulsar J1838-0537; ele sofreu uma falha súbita, girando 38 milionésimos de um Hertz mais rápido do que antes. Essa diferença pode parecer desprezível, mas é a maior falha já medida para um pulsar de raios gama.

A causa exata das falhas observadas em muitos pulsares jovens é desconhecida. Os astrônomos consideram os "terremotos estelares" da crosta da estrela de nêutrons ou interações entre o interior superfluido estelar e a crosta possam ser as possíveis explicações.

Detectando um grande número de falhas fortes no pulsar possibilita aprender mais sobre a estrutura interna desses corpos celestes compactos.

Após a descoberta os pesquisadores apontaram o telescópio de rádio em Green Bank, West Virginia (EUA) na posição celestial do pulsar de raios gama. Na observação da fonte não encontraram quaisquer indícios de pulsações na região do rádio, indicando que o pulsar J1838-0537 é apenas um raro pulsar de raios gama.

Um artigo desta descoberta será publicado no periódico The Astrophysical Journal Letters.

Fonte: Max Planck Institute

terça-feira, 24 de julho de 2012

Tempestade de cometas ao redor de estrela

A ilustração abaixo mostra uma tempestade de cometas ao redor de uma estrela próxima da nossa conhecida como Eta Corvi.

tempestade de cometas ao redor da estrela Eta Corvi

© NASA (tempestade de cometas ao redor da estrela Eta Corvi)

Evidências que suportam essa ilustração veem de observações feitas com o telescópio espacial Spitzer da NASA, que com seus detectores infravermelhos registraram indicativos de que cometas foram recentemente disparados após a colisão de um corpo rochoso. Nessa concepção artística, um grande cometa é observado se chocando com um planeta rochoso, enviando gelo e poeira rica em carbono ao espaço, enquanto também se choca com a água e com os compostos orgânicos na superfície do planeta. Um brilhante flash vermelho  foi  registrado no momento do impacto do cometa com o planeta. A estrela amarela-branca Eta Corvi é mostrada à esquerda com muitos outros cometas indo em sua direção.

O Spitzer detectou assinaturas espectrais de gelo de água, de material orgânico e de rocha ao redor da Eta Corvi, ingredientes fundamentais para os cometas. Essa é a primeira vez que evidências como essas de uma tempestade de cometas foram registradas ao redor de uma estrela. A estrela Eta Corvi está na idade certa, cerca de um bilhão de anos, de ter a experiência de um bombardeamento de cometas como o que ocorreu no Sistema Solar quando ele tinha entre 600 e 800 milhões de anos de existência, momento esse da história planetária conhecido como Bombardeamento Denso Tardio.

Os cientistas dizem que este bombardeio foi disparado no nosso Sistema Solar pela migração dos planetas externos, que se chocaram com os cometas congelados enviando-os em direção à região interna do Sistema Solar. Os cometas se chocaram com a nossa Lua e atingiram os planetas internos. Esses cometas podem ter trazido materiais para a Terra que ajudaram a iniciar a vida.

Fonte: NASA

Uma galáxia repleta de jovens estrelas

A galáxia NGC 4700 emite sinais de que um vigoroso nascimento de muitas estrelas está em andamento na imagem a seguir registrada pelo telescópio espacial Hubble.

galáxia NGC 4700

© Hubble (galáxia NGC 4700)

As muitas nuvens brilhantes rosadas na NGC 4700 são conhecidas como regiões H II, onde a luz intensa ultravioleta proveniente das jovens estrelas quentes está fazendo com que o gás hidrogênio próximo brilhe de forma intensa. As regiões H II normalmente aparecem de forma parcial e parcelada com vastas nuvens moleculares semeando as jovens estrelas, acendendo o gás ionizado local.

Em 1610, o astrônomo francês Nicolas-Claude Fabri de Peiresc observou a galáxia através de um telescópio e descobriu o que seria a primeira região H II a ser registrada: a Nebulosa de Órion, localizada relativamente perto do nosso Sistema Solar na Via Láctea. Os astrônomos estudam essas regiões através da Via Láctea e podem facilmente observar as mesmas regiões em outras galáxias em busca da química que constitui o ambiente cósmico e sua influência na formação das estrelas.

A NGC 4700 foi descoberta em Março de 1786 pelo astrônomo britânico William Herschel que a notou como sendo uma nebulosa muito apagada. A NGC 4700, juntamente com muitas outras galáxias relativamente próximas, é encontrada na constelação de Virgo (Virgem) e é classificada como uma galáxia espiral barrada, semelhante à estrutura da Via Láctea. Ela localiza-se a aproximadamente 50 milhões de anos-luz de distância da Terra e se move para longe de nós a uma velocidade de 1.400 km/s devido à expansão do Universo.

Fonte: ESA

sábado, 21 de julho de 2012

Determinada a distância de uma galáxia antiga

Uma equipe internacional de astrônomos liderada por Fabian Walter do Instituto Max Planck para a Astronomia (MPIA) em Heidelberg, na Alemanha, conseguiu pela primeira vez determinar a distância da galáxia HDF850.1.

região do Hubble Deep Field onde está a HDF850.1

© NASA/MPIA (região do Hubble Deep Field onde está a HDF850.1)

Esta galáxia é uma das mais produtivas na formação estelar no Universo observável. A galáxia está a uma distância de 12,5 bilhões de anos-luz. Assim, a vemos quando o Universo tinha menos de 10% de sua idade atual. Além disso, a HDF850.1 faz parte de um grupo de cerca de uma dúzia de protogaláxias que se formaram nos primeiros bilhões de anos de história cósmica.

A galáxia HDF850.1 foi descoberta em 1998. É famosa por produzir novas estrelas a uma taxa extraordinária, mesmo em escalas astronômicas: uma massa acumulada de mil sóis por ano. Para efeito de comparação: uma galáxia comum como a nossa não produz mais do que uma massa solar de novas estrelas por ano.

O "Hubble Deep Field", onde HDF850.1 está localizada, é uma região no céu que proporciona uma visão quase inigualável nos confins do espaço. Ele foi primeiramente estudado extensivamente usando o telescópio espacial Hubble. No entanto, observações com luz visível apenas revelam uma parte da imagem cósmica, e observações em diferentes comprimentos de onda foram exploradas. No final de 1990, os astrônomos usando o telescópio James Clerk Maxwell no Havaí pesquisaram a região usando a radiação submilimétrica. Este tipo de radiação, com comprimentos de onda entre alguns décimos de milímetro e um milímetro, é particularmente adequada para a detecção de nuvens frescas de gás e poeira.

Os pesquisadores foram pegos de surpresa quando perceberam que a HDF850.1 era a mais brilhante fonte de emissão submilimétrica neste campo, porém era completamente invisível nas observações do telescópio espacial Hubble!

A invisibilidade da galáxia não é um grande mistério. As estrelas são formadas de densas nuvens de gás e poeira. Estas nuvens densas são opacas à luz visível, escondendo a galáxia nesta região do espectro. A radiação submilimétrica passa através das densas nuvens de poeira, mostrando o seu interior. Mas, uma faixa muito estreita do espectro torna muito difícil determinar o redshift da galáxia.

Agora, a equipe conseguiu resolver o mistério. Aproveitando recentes atualizações para o interferômetro IRAM no Plateau de Bure, nos Alpes Franceses, que combina seis antenas de rádio que agem como um telescópio gigantesco milimétrico, foi possível identificar linhas espectrais necessárias para a determinação de distâncias precisas. "É a disponibilidade de instrumentos mais poderosos e sensíveis recentemente instalados no interferômetro IRAM, que nos permitiu detectar estas linhas fracas na HDF850.1 e, finalmente, encontrar o que tinha sido em vão durante os últimos 14 anos", explica Pierre Cox, diretor do IRAM.

O resultado é uma surpresa: a galáxia está a uma distância de 12,5 bilhões de anos-luz da Terra (redishit z ~ 5,2).

A combinação com as observações obtidas no National Science Foundation's Karl Jansky Very Large Array (VLA), em seguida, revelou que uma grande fração da massa da galáxia está na forma de moléculas, a matéria-prima para futuras estrelas. A fração é muito maior do que é encontrado nas galáxias do Universo local.

Uma vez que a distância é conhecida, foi possível mostrar que a galáxia faz parte do que parece ser uma forma primitiva de aglomerado de galáxias, um dos dois únicos grupos conhecidos até o momento.

Novos interferômetros mais poderosos que operam em comprimentos de onda milimétrica e submilimétrica, tais como: o NOEMA, a futura extensão do interferômetro do Plateau de Bure, e o ALMA, uma rede de antenas que está sendo construída por um consórcio internacional no deserto do Atacama, no Chile, irão cobrir estes comprimentos de onda em detalhes sem precedentes. Eles devem permitir determinações à distância e estudo mais detalhado de galáxias, invisíveis nos comprimentos de onda ópticos, que estavam ativamente formando estrelas no Universo primordial.

Fonte: Nature

sexta-feira, 20 de julho de 2012

Uma remanescente de supernova jovem

Na galáxia próxima conhecida como a Pequena Nuvem de Magalhães, uma massiva estrela que explodiu como uma supernova e começou a dissipar o seu interior por meio de espetaculares filamentos coloridos, é vista abaixo.

remanescente de supernova E0102

© Hubble (remanescente de supernova E0102)

A remanescente de supernova, conhecida como EO102, é na verdade a concha azul esverdeada de detritos localizada um pouco abaixo do centro da imagem acima feita pelo telescópio espacial Hubble. Essa delicada estrutura, brilhando em múltiplas tonalidades de púrpura e vermelho amarelada reside na parte superior direita da imagem.

Estimada como tendo somente 2.000 anos de existência, a E0102  é relativamente nova para as escala astronômicas e está apenas começando suas interações com o meio interestelar próximo. As jovens remanescentes de supernovas como a E0102 permitem aos astrônomos examinarem os materiais dos núcleos das estrelas massivas de forma direta. Isso nos dá uma ideia de como as estrelas se formaram, e do enriquecimento químico da região ao redor. Além disso, as jovens remanescentes de supernovas são consideradas uma grande ferramenta para que se possa entender cada vez melhor a física envolvida nas explosões de supernovas.

A Pequena Nuvem de Magalhães é uma galáxia anã próxima da nossa Via Láctea. Ela é visível no hemisfério sul da Terra na direção da constelação de Tucana e localiza-se a aproximadamente a 210.000 anos-luz de distância da Terra.

Fonte: NASA

quinta-feira, 19 de julho de 2012

Achado possível exoplaneta menor que a Terra

Um exoplaneta menor que a Terra foi detectado pelo telescópio espacial Spitzer da NASA.

ilustração de exoplaneta menor que a Terra

© NASA/JPL-Caltech (ilustração de exoplaneta menor que a Terra)

O exoplaneta, denominado UCF-1.01, está a uma distância de 33 anos-luz e tem dois terços do tamanho das Terra. "Nós encontramos fortes evidências de um planeta muito pequeno, muito quente e muito próximo", diz Kevin Stevenson, da Universidade da Flórida Central.

Os exoplanetas giram em torno de estrelas além do nosso Sol, por isso, poucos menores do que a Terra foram encontrados até o momento. O Spitzer tem realizado estudos de trânsito em exoplanetas conhecidos, mas é primeira vez que o UCF-1.01 foi identificado com o telescópio.

O candidato a exoplaneta foi encontrado por acaso nas observações do Spitzer. Os pesquisadores estudavam outro exolplaneta que gira em torno da estrela anã GJ 436. Nos dados do telescópio, os astrônomos notaram mudanças constantes na quantidade de luz infravermelha emitida pela estrela, sugerindo que um outro planeta poderia estar bloqueando uma pequena fração dessa luz.

Essas observações permitiram identificar algumas propriedades do exoplaneta. O diâmetro do UCF-1.01 seria de 8.400 km, cerca de dois terços da Terra. Ele giraria em torno da estrela anã a cerca de sete vezes a distância entre a Terra e a Lua, e seu ano duraria apenas 1,4 dias terrestres. Dada a proximidade em relação à estrela - mais perto do que Mercúrio e o nosso Sol - o exoplaneta teria uma temperatura de mais de 600ºC na superfície. Se o UCF-1.01 teve uma atmosfera, ela provavelmente já evaporou. Joseph Harrington, co-autor da pesquisa, também da Universidade da Flórida Central, sugeriu que o calor poderia mesmo ter derretido a superfície do exoplaneta, que ficaria coberto de magma.

Além do UCF-1.01, os pesquisadores acreditam que possa haver um terceiro planeta, apelidado de UCF-1.02, orbitando a estrela GJ 436. Os supostos exoplanetas têm uma massa muito pequena para serem medidas, e a massa é uma das informações necessárias para confirmar uma descoberta, por isso, eles ainda são chamados cautelosamente de "candidatos".

Fonte: NASA

Descoberta antiga galáxia em forma de espiral

Um grupo de astrônomos descobriu por acaso uma galáxia em forma de espiral parecida com a nossa Via Láctea, mas única em sua espécie pela distância a que se encontra do planeta Terra.

ilustração da galáxia BX442

© Joe Bergeron (ilustração da galáxia BX442)

"Foi realmente um acidente. Nosso grupo estava estudando as galáxias geradoras de estrelas dos primórdios do Universo, a 10,7 bilhões de anos-luz. E, de repente, surgiu a BX442, com sua estrutura em espiral", explicou Alice Shapley, da Universidade da Califórnia, Los Angeles.

Graças ao telescópio espacial Hubble, Alice Shapley e seus colegas descobriram a galáxia BX442, um achado considerado único devido a sua antiguidade, 3 bilhões de anos depois do Big Bang.

imagem da galáxia BX442 em cores falsas

© Hubble/Keck (imagem da galáxia BX442 em cores falsas)

A peculiaridade da galáxia BX442 reside no fato da existência de outra galáxia anã junto a ela.

As duas estão tão próximas que a BX442 parece estar absorvendo a menor. A interação das forças de gravitação que unem os corpos é o elemento que dá à BX442 sua forma de espiral.

Fonte: Nature

quarta-feira, 18 de julho de 2012

O coração de um quasar brilhante

Uma equipe internacional de astrônomos observou o coração de um quasar distante com uma precisão sem precedentes.

ilustração do quasar 3C 279

© ESO (ilustração do quasar 3C 279)

As observações, obtidas ao ligar pela primeira vez o telescópio Atacama Pathfinder Experiment (APEX) com dois outros telescópios situados em continentes diferentes, são um passo crucial em direção ao objetivo científico do projeto “Telescópio de Horizonte de Eventos”: obter imagens de buracos negros de grande massa situados no centro da nossa própria Galáxia e de outras galáxias.

Os astrônomos ligaram o APEX, no Chile, com o Submillimeter Array (SMA), no Havaí, EUA e o Submillimeter Telescope (SMT), no Arizona, EUA. Deste modo, conseguiram fazer a observação direta mais precisa até hoje do centro de uma galáxia distante, o quasar brilhante 3C 279, que contém um buraco negro de elevada massa - cerca de um bilhão de vezes a do Sol - e encontra-se tão distante da Terra que a sua radiação demorou mais de 5 bilhões de anos para chegar até nós. O APEX é uma colaboração entre o Instituto Max Planck para a Rádio Astronomia (MPIfR), o Observatório Espacial Onsala (OSO) e o ESO. A operação do APEX está a cargo do ESO.

Os telescópios foram ligados usando a técnica conhecida como Interferometria de Linha de Base Muito Longa (VLBI, sigla do inglês Very Long Baseline Interferometry). Telescópios maiores obtêm observações mais precisas e a interferometria permite que vários telescópios trabalhem como um só, tão grande como a separação entre eles. Utilizando a técnica VLBI, conseguimos obter as observações mais precisas ao tornar a separação entre telescópios tão grande quanto possível. Para as observações do quasar, a equipe usou três telescópios para criar o interferômetro com distâncias intercontinentais de 9.447 km do Chile ao Havaí, 7.174 km do Chile ao Arizona e 4.627 km do Arizona ao Havaí. Ligar o APEX no Chile à rede foi crucial, já que este telescópio contribuiu com as maiores distâncias.

As observações foram feitas em ondas de rádio, em um comprimento de onda de 1,3 milímetros. Esta é a primeira vez que observações em um comprimento de onda tão curto foram feitas utilizando distâncias tão grandes. As observações atingiram uma precisão, ou resolução angular, de 28 microsegundos de arco - valor 8 bilhões de vezes menor que um grau angular. Com este valor é possível distinguir detalhes dois milhões de vezes mais precisos do que o conseguido pelo olho humano. As observações foram tão precisas que se observaram escalas menores que um ano-luz ao longo do quasar, o que é um feito extraordinário tendo em conta que o objeto que se encontra a vários bilhões de anos-luz de distância.

Estas observações representam um passo importante no sentido de obter imagens de buracos negros de elevada massa e das regiões que os rodeiam. No futuro pensa-se ligar entre si ainda mais telescópios, de modo a criar o chamado Telescópio de Horizonte de Eventos. Ele será capaz de obter imagens da sombra do buraco negro de elevada massa que se situa no centro da nossa Via Láctea, assim como de outros buracos negros situados em outras galáxias próximas. A sombra, uma região escura vista em contraste com um fundo mais brilhante, é causada pela curvatura da luz devido ao buraco negro e seria a primeira evidência observacional direta da existência do horizonte de eventos de um buraco negro, a fronteira a partir da qual nem mesmo a luz consegue escapar.

A experiência marca a primeira vez que o APEX fez parte de observações VLBI e é o ápice de três anos de trabalho árduo no local onde está instalado o APEX, a uma altitude de 5.000 metros, no planalto do Chajnantor nos Andes chilenos, onde a pressão atmosférica é apenas metade da pressão ao nível do mar. Para que o APEX estivesse pronto para o VLBI, cientistas da Alemanha e da Suécia instalaram novos sistemas digitais de aquisição de dados, um relógio atômico muito preciso e gravadores de dados pressurizados capazes de gravar 4 gigabits por segundo durante muitas horas sob condições ambientais muito adversas. Os dados - 4 terabytes para cada telescópio - foram enviados para a Alemanha em discos rígidos e processados no Instituto Max Planck para a Rádio Astronomia, em Bonn.

A bem sucedida contribuição do APEX é também importante por outra razão. O APEX partilha a sua localização e muitos aspectos da sua tecnologia com o novo telescópio Atacama Large Millimeter/submillimeter Array (ALMA). O ALMA encontra-se atualmente em construção e no final será uma rede de 54 antenas com 12 metros de diâmetro, como a antena do próprio APEX, mais 12 antenas menores com um diâmetro de 7 metros. A possibilidade de ligar o ALMA à rede está atualmente sendo estudada. Com a área coletora das antenas do ALMA, que tem aumentado cada vez mais, as observações poderiam atingir uma sensibilidade 10 vezes melhor do que a destes testes iniciais, o que colocaria a sombra do buraco negro de elevada massa da Via Láctea ao nosso alcance em futuras observações.

Fonte: ESO

sábado, 14 de julho de 2012

Ilhas na fotosfera solar

Navegando num mar de plasma e ancoradas nos campos magnéticos, as manchas solares são ilhas escuras de tamanhos planetários localizadas na fotosfera solar, a superfície brilhante do Sol.

ilustração da ejeção de massa coronal

© NASA (ilustração da ejeção de massa coronal)

Elas são escuras pois elas são levemente mais frias do que a superfície ao redor. A imagem acima mostra em detalhe um grupo de manchas solares registrado em 11 de Julho de 2012. O campo de visão da imagem acima se espalha por aproximadamente 160.000 quilômetros. Esse grupo de manchas está localizado no centro da chamada região ativa AR1520, que atualmente cruza a face visível do Sol.

região AR 1520

© Alan Friedman (região AR 1520)

De fato, uma flare solar de classe X 1.4 e uma ejeção de massa coronal entraram em erupção na AR1520 no dia 12 de Julho de 2012 lançando ao espaço parte da energia armazenada nos campos magnéticos dessa região. Como foi lançada em direção a Terra, espera-se que essa ejeção de massa coronal chegue hoje na Terra disparando tempestades geomagnéticas. Como resultado dessa interação auroras podem ocorrer durante o final de semana em alguns pontos da Terra e esse fenômeno pode-se juntar à conjunção de brilhantes planetas e da Lua crescente, que irá acontecer também durante o fim de semana.

Lua-Júpiter-Vênus-Aldebaran

© Cosmonovas (Lua, Júpiter, Vênus e Aldebaran)

Fonte: NASA