segunda-feira, 16 de fevereiro de 2015

Uma galáxia espiral com um centro estranho

O que está acontecendo no centro da galáxia espiral M106?

M106

© Roberto Colombari/Robert Gendler (M106)

Um disco circular de estrelas e gás, sendo a aparência da M106 é dominada pelo azul, braços espirais e faixas de poeira vermelha perto do núcleo, como mostrado na imagem acima. O núcleo da M106 brilha intensamente em ondas de rádio e raios X, onde jatos gêmeos foram encontrados em todo o comprimento da galáxia. Um brilho central incomum faz da M106 um dos exemplos mais próximos da classe de galáxias Seyfert, onde grandes quantidades de gás brilhante aparentemente estão caindo em um buraco negro maciço central. A M106, também é designada por NGC 4258, fica relativamente perto, a cerca de 23,5 milhões de anos-luz de distância, e se estende por 60 mil anos-luz de diâmetro, podendo ser vista com um telescópio pequeno na direção da constelação do Cães de Caça (Canes Venatici).

Fonte: NASA

domingo, 15 de fevereiro de 2015

Uma tempestade inesperada no centro de uma galáxia

Astrônomos usando o Very Large Array (VLA) da National Science Foundation (NSF), encontraram uma atividade surpreendentemente energética onde eles outrora consideravam ser uma galáxia “chata”, e suas descobertas fornecem importantes ideias sobre como os buracos negros supermassivos podem ter um efeito catastrófico nas galáxias onde eles residem.

Galáxia do Bule

© NRAO/NASA (Galáxia do Bule)

“Parece que um buraco negro supermassivo está aquecendo de forma explosiva o gás ao redor nessa galáxia, e, como resultado, está transformando-a de uma galáxia ativa na formação de estrelas para uma galáxia com ausência de gás e que não pode mais formar estrelas”, disse Chris Harrison do Center for Extragalactic Astronomy na Universidade de Durham, no Reino Unido.

Os dois maiores tipos de galáxias, são espirais, ricas em gás e que formam estrelas de forma ativa, e elípticas, pobres em gás e com uma baixa atividade de formação de estrelas. As elípticas massivas começaram suas vidas como galáxias ativas de formação de estrelas. Poderosos jatos e ventos de material, energizados pelos buracos negros no centro dessas galáxias, podem remover ou destruir o material bruto necessário para dar continuidade ao processo de formação de estrelas.

“Por muitos anos, nós vimos evidências diretas disso acontecendo em galáxias que são extremamente brilhantes quando vistas através dos radiotelescópios. Essas raras galáxias brilhantes no rádio, abrigam poderosos jatos, lançados no buraco negro, que consome o gás ao redor”, disse Harrison. “Contudo, para entender como todas as galáxias no Universo se formaram, nós precisamos saber se esses mesmos processos ocorrem em galáxias menos extremas, que melhor representam sua maioridade. Esse foi o foco do nosso estudo”.

Como parte de uma pesquisa em andamento, Harrison e seus colegas usaram o VLA para estudar a galáxia chamada J1430+1339, também conhecida como Galáxia do Bule, devido ao seu formato. Localizada a cerca de 1,1 bilhões de anos-luz de distância da Terra, a galáxia tem sido identificada como tendo características das galáxias com buracos negros centrais que ativamente consomem material. Observações posteriores feitas com o telescópio espacial Hubble também revelaram evidências de que a Galáxia do Bule tem a aparência de uma galáxia elíptica mas é envolta por gás que sugere que ela ainda está em processo de transformação para uma galáxia que produz estrelas.

As observações feitas com o VLA mostraram que a galáxia possui “bolhas” que se estendem de 30.000 a 40.000 anos-luz em cada um dos lados do seu núcleo, juntamente com estruturas menores parecidas com jatos com cerca de 2.000 anos-luz de lado. Essas estruturas parecidas com jatos estão localizadas na posição onde as observações feitas com a luz visível indicam que o gás está sendo acelerado a velocidades acima de 1.000 km/s.

“Essas observações feitas nas ondas de rádio revelaram que o buraco negro central está causando uma tempestade no centro dessa galáxia lançando poderosos jatos que estão acelerando o gás na galáxia hospedeira e estão colidindo com o gás em escala maiores. Esse é o mesmo tipo do processo violento que é observado raramente em galáxias muito luminosas nas ondas de rádio. A incrível capacidade do VLA tem permitido que possamos descobrir que esses processos podem ocorrer em galáxias mais comuns nas ondas de rádio se a procura for efetuada de maneira mais enfática”, disse Alasdair Thomson, outro astrônomo da Universidade de Durham envolvido no estudo.

“Essa tempestade na Galáxia do Bule, significa que o processo que dirige os jatos onde os buracos negros removem ou destroem o material de formação de estrelas pode ser muito mais típico do que nós pensávamos anteriormente e poderia ser um pedaço crucial no quebra-cabeça para entender como as galáxias que observamos ao nosso redor, se formaram”, disse Harrison.

Harrison e seus colaboradores agora estão observando mais oito objetos desse tipo com o VLA e estão analisando os dados para ver se essas outras galáxias mostram características similares.

Fonte: Astronomy

Descoberto um novo exoplaneta classificado como Super-Júpiter

Usando dados da missão Kepler da NASA, dois times de astrônomos liderados por Mauricio Ortiz, da Universidade de Heidelberg e Simona Ciceri do Max Planck Institute for Astronomy, descobriram de forma independente um novo exoplaneta gigante gasoso que é quase seis vezes mais massivo que Júpiter, mas que tem aproximadamente o mesmo tamanho.

ilustração de um exoplaneta Super-Júpiter

© NASA/JPL-Caltech (ilustração de um exoplaneta Super-Júpiter)

O exoplaneta recém descoberto, chamado de Kepler-432b, está localizado a aproximadamente 2.850 anos-luz de distância da Terra. Ele é um dos mais densos e massivos exoplanetas já encontrados.

O exoplaneta tem uma massa 5,84 vezes maior que a massa de Júpiter e orbita sua estrela progenitora, a gigante vermelha Kepler-432, em 52 dias terrestres. A forma e o tamanho de sua órbita são incomuns para um planeta como o Kepler-432b que está em translação ao redor de uma estrela gigante.

“A maioria dos planetas conhecidos se movem ao redor de estrelas gigantes em órbitas grandes e circulares. Com sua pequena e altamente alongada órbita, o Kepler-432b é um planeta estranho entre os corpos do mesmo tipo”, disse o Dr. Davide Gandolfi da Universidade de Heidelberg na Alemanha, que é membro da equipe de Ortiz.

“A estrela hospedeira, a Kepler-432, já exauriu seu combustível nuclear do seu núcleo e está se expandindo de forma gradativa. Seu raio é quatro vezes maior que o raio do nosso Sol, e ela ficará ainda maior no futuro”.

A órbita faz com que o planeta chegue muito perto da estrela Kepler-432 em alguns momentos e em outros faz com que ele fique muito distante, criando assim, enormes diferenças de temperaturas durante o ano nesse planeta. “Durante o inverno, a temperatura no Kepler-432b é de aproximadamente 500 graus Celsius”, disse a Dra. Sabine Reffert, também da Universidade de Heidelberg. “No curto verão, a temperatura pode alcançar, facilmente os 1.000 graus Celsius”.

“Os dias do Kepler-432b estão contados. Em menos de 200 milhões de anos, o planeta será engolido pela estrela em expansão”, disse Ortiz. “Essa pode ser a razão por que nós não encontramos outros planetas como o Kepler-432b, astronomicamente falando, eles vivem muito pouco”.

Até agora, os astrônomos descobriram somente 5 exoplanetas, incluindo o Kepler-432b, que tem a órbita perto de uma estrela gigante vermelha.

Desses, somente dois, o Kepler-432b e o Kepler-91b, foram observados suficientemente próximos para se poder determinar sua massa e o seu tamanho. Outros dois foram detectados somente pelas medidas de trânsito planetário, enquanto um deles foi descoberto por meio de medidas espectrais.

Se um fenômeno dura muito pouco, os astrônomos não esperam observar muitos desses exemplos. “Nesse ponto, existem duas possibilidades: foi realmente uma sorte muito grande ter observado esses dois exoplanetas, ou, planetas como eles vivem mais do que se pensava anteriormente”, disse Simona Ciceri.

Um modelo interativo em Flash para a curva de luz e da órbita deste planeta, pode ser visto no link: Kepler-432b.

Fonte: NASA

sábado, 14 de fevereiro de 2015

Estrela que explodiu floresce como uma flor cósmica

Por causa dos campos de destroços de estrelas que explodiram, conhecidos como remanescentes de supernovas, são muito quentes, energéticos e brilham intensamente em raios X, o observatório Chandra da NASA tem provado ser uma ferramenta valiosa no seu estudo.

remanescente de supernova G299.2-2.9

© Chandra/2MASS (remanescente de supernova G299.2-2.9)

O remanescente de supernova chamado G299.2-2.9 (ou G299) está localizado dentro da nossa Via Láctea, mas a imagem do Chandra é uma reminiscência de uma bonita flor aqui na Terra.

O G299 foi deixado por uma classe particular de supernovas chamada Tipo Ia. Os astrônomos pensam que a supernova de Tipo Ia é uma explosão termonuclear, envolvendo a fusão de elementos e a libertação de grandes quantidades de energia, de uma anã branca numa órbita íntima com uma estrela companheira. Se a parceira da anã branca for uma estrela normal, parecida com o Sol, a anã branca pode tornar-se instável e explodir quando atrair o material da sua companheira. Alternativamente, se a anã branca estiver em órbita com outra anã branca, as duas podem fundir-se e desencadear uma explosão.

Independentemente do mecanismo de desencadeamento, há muito que se sabe que as supernovas do Tipo Ia são uniformes no que tange ao seu brilho extremo, geralmente ultrapassando o brilho da galáxia onde se encontram. Isto é importante porque estes objetos são utilizados como "marcos quilométricos" cósmicos, o que lhes permite medir com precisão as distâncias de galáxias a bilhões de anos-luz e determinar a taxa de expansão do Universo.

Os modelos teóricos tradicionais das supernovas de Tipo Ia geralmente preveem que estas explosões são simétricas, criando uma esfera quase perfeita à medida que expandem. Estes modelos têm sido apoiados por resultados que mostram que os remanescentes de supernovas do Tipo Ia são mais simétricos que os remanescentes de supernovas que envolvem o colapso de estrelas maciças.

No entanto, os astrônomos estão descobrindo que algumas explosões de supernova do Tipo Ia podem não ser tão simétricas como se pensava. O G299 pode ser um exemplo desse tipo "invulgar" de supernova do Tipo Ia. Usando uma observação longa do Chandra, os pesquisadores descobriram que a concha de detritos da estrela que explodiu está expandindo-se de forma diferente em várias direções.

Nesta nova imagem do Chandra, o vermelho, verde e azul representam raios X de baixa, média e alta energia, respectivamente, detectados pelo telescópio. Os raios X de energia média incluem a emissão do ferro e os raios X altamente energéticos incluem a emissão de silício e enxofre. Os dados de raios X foram combinados com dados infravermelhos do levantamento terrestre 2MASS que mostra as estrelas no campo de visão.

Ao realizar uma análise detalhada dos raios X, os pesquisadores encontraram vários exemplos claros de assimetrias no G299. Por exemplo, a razão entre as quantidades de ferro e silício na parte do remanescente mesmo acima do centro é maior que na região do remanescente abaixo do centro. Esta diferença pode ser vista na cor mais esverdeada da secção superior em comparação com a cor mais azulada da secção inferior. Além disso, existe uma porção fortemente alongada no remanescente que estende para a direita. Nesta região, a relação ferro-silício é similar à encontrada na região sul do remanescente.

Os padrões observados nos dados do Chandra sugerem que esta supernova do Tipo Ia pode ter sido produzida por uma explosão muito desequilibrada. Também pode ser que o remanescente está se expandindo para um ambiente onde o meio que encontra é irregular. Independentemente da explicação definitiva, as observações do G299 e de outros objetos como este estão mostrando quão variadas estas flores cósmicas podem ser.

O artigo que descreve estes resultados foi publicado na revista The Astrophysical Journal.

Fonte: NASA

sexta-feira, 13 de fevereiro de 2015

Os primeiros estágios de formação de um sistema estelar múltiplo

Pela primeira vez, astrônomos apanharam um sistema estelar múltiplo nos estágios iniciais da sua formação. As suas observações diretas deste processo dão um forte apoio a um dos vários caminhos sugeridos para a produção de tais sistemas.

Barnard 5

© NRAO/Bill Saxton (Barnard 5)

Os cientistas observaram uma nuvem de gás a cerca de 800 anos-luz da Terra, especificamente um núcleo gasoso que contém uma jovem protoestrela e três condensações densas que entrarão em colapso para formar estrelas num astronomicamente curto prazo de 40.000 anos. Das eventuais quatro estrelas, os astrônomos preveem que três possam tornar-se num sistema triplo estável.

"A observação de um sistema múltiplo de estrelas nestas fases iniciais de formação tem sido um desafio de longa data, mas a combinação do VLA (Very Large Array) com o GBT (Green Bank Telescope) deu-nos o primeiro olhar para um sistema tão jovem," afirma Jaime Pineda, do Instituto de Astronomia, ETH Zurique, na Suíça.

Os cientistas usaram o VLA e o GBT, juntamente com o JCMT (James Clerk Maxwell Telescope) no Havaí, para estudar um núcleo denso de gás chamado Barnard 5 (B5) numa região onde estrelas jovens estão se formando na direção da constelação de Perseu. Sabia-se que este objeto tinha uma estrela jovem em formação.

Quando a equipe, liderada por Pineda, usou o VLA para mapear a emissão de rádio das moléculas de metano, descobriram que os filamentos de gás em B5 estão se fragmentando e que estes fragmentos estão começando a formar estrelas adicionais para fabricar um sistema múltiplo de estrelas.

"Nós sabemos que estas estrelas eventualmente formarão um sistema múltiplo porque as nossas observações mostram que estas condensações de gás estão gravitacionalmente ligadas," acrescenta Pineda. "Esta é a primeira vez que fomos capazes de ver um sistema tão jovem ligado pela gravidade," comenta.

"Isto fornece evidências fantásticas de que a fragmentação dos filamentos de gás é um processo que pode produzir sistemas estelares múltiplos," afirma Pineda. Outros mecanismos propostos incluem a fragmentação do núcleo principal de gás, a fragmentação dentro de um disco de material em órbita de uma estrela jovem e a captura gravitacional. "Acrescentamos agora e de forma convincente à lista a fragmentação de filamentos gasosos," explica Pineda.

As condensações em B5 que vão produzir estrelas variam no momento entre 1/10 até mais de 1/3 da massa do Sol. As suas separações vão variar desde 3.000 até 11.000 vezes a distância Terra-Sol.

Os astrônomos analisaram a dinâmica das condensações de gás e preveem que, quando coalescerem em estrelas, formarão um sistema estável de um binário interior, orbitado por uma terceira estrela mais distante. A quarta estrela, sugerem, não fará parte do sistema durante muito tempo.

"Quase metade de todas as estrelas encontram-se em sistemas múltiplos, mas a descoberta destes sistemas nos primeiros estágios de formação tem sido um desafio. Graças à combinação do VLA e do GBT, temos agora informações importantes sobre a formação de sistemas múltiplos. O nosso próximo passo será observar outras regiões de formação estelar utilizando os novos recursos do VLA e do ALMA (Atacama Large Millimeter/submillimeter Array) no Chile," conclui Pineda.

A descoberta foi relatada na revista científica Nature.

Fonte: National Radio Astronomy Observatory

quinta-feira, 12 de fevereiro de 2015

Explorando as Antenas

A cerca de 60 milhões de anos-luz de distância na constelação austral do Corvo, duas grandes galáxias estão se colidindo.

As Antenas

© Federico Pelliccia/Rolf Wahl Olsen (As Antenas)

As estrelas nas duas galáxias, catalogadas como NGC 4038 e NGC 4039, muito raramente colidem no curso do cataclismo pesado, com duração de centenas de milhões de anos. Mas as suas grandes nuvens de gás molecular e poeira muitas vezes provocam episódios furiosos de nascimento de estrelas perto do centro dos escombros cósmicos.

Abrangendo cerca de 500.000 anos-luz, esta visão deslumbrante composta revela também novos aglomerados de estrelas e material arremessado para longe do local da fusão por forças de maré gravitacional. A notável imagem é um mosaico construído usando dados de pequenos e grandes telescópios terrestres para realçar as correntes de maré tênues e de grande escala, composta também com os núcleos brilhantes fotografados em excelente detalhe pelo telescópio espacial Hubble e o telescópio Subaru.

É claro, a aparência visual sugestiva das estruturas de grandes arcos dá ao par de galáxias seu nome popular: As Antenas.

Fonte: NASA

quarta-feira, 11 de fevereiro de 2015

O hidrogênio é mais abundante em encostas do polo lunar

As viagens espaciais são difíceis e caras, custaria milhares de dólares enviar uma garrafa de água para a Lua.

Cratera Hayn

© NASA/GSFC/Arizona State University (Cratera Hayn)

A imagem acima captada pela sonda LRO mostra a Cratera Hayn, localizada ao nordeste de Mare Humboldtianum, dramaticamente iluminada pelo Sol próximo do horizonte, que provoca grandes sombras no chão da cratera.

A descoberta recente na Lua de moléculas contendo hidrogênio, possivelmente incluindo água, anima os exploradores porque estes depósitos podem ser minados caso sejam suficientemente abundantes, poupando o considerável custo de levar água da Terra. A água lunar poderia ser usada para beber ou os seus componentes - hidrogênio e oxigênio - poderiam ser usados para fabricar produtos importantes à superfície que os futuros visitantes lunares precisassem, como combustível e ar respirável.

Observações recentes pela sonda LRO (Lunar Reconnaissance Orbiter) da NASA indicam que estes depósitos podem ser um pouco mais abundantes em encostas de crateras no hemisfério sul viradas para o polo sul lunar. "Existem em média cerca de 23 partes por milhão mais hidrogênio nas encostas viradas para o polo do que nas encostas viradas para o equador," afirma Timothy McClanahan do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado americano de Maryland.

Esta é a primeira vez que se detecta uma diferença geoquímica generalizada na abundância de hidrogênio entre encostas lunares viradas para o polo e encostas viradas para o equador. É igual a uma diferença de 1% no sinal de nêutrons detetacdos pelo instrumento LEND (Lunar Exploration Neutron Detector) da LRO.

O material que contém hidrogênio é volátil e pode estar na forma de moléculas de água ou moléculas de hidroxila, frouxamente ligados à superfície lunar. De acordo com McClanahan, a causa da discrepância entre as crateras com encostas viradas para o polo e as encostas viradas para o equador pode ser semelhante à forma como o Sol mobiliza ou redistribui água gelada de locais mais quentes para locais mais frios na superfície da Terra.

"Aqui no hemisfério norte, se sairmos à rua num dia ensolarado depois da queda de neve, notamos que existe mais neve em encostas viradas para norte porque perdem água a taxas menores do que as encostas mais iluminadas viradas para sul," explica McClanahan. "Nós pensamos que ocorre um fenômeno parecido com os voláteis na Lua, as encostas viradas para o polo não recebem tanta luz solar como as encostas viradas para o equador, por isso este material facilmente vaporizado permanece mais tempo e, eventualmente, acumula-se em maior quantidade nas crateras com encostas viradas na direção do polo."

A equipe observou a maior abundância de hidrogênio, nas encostas viradas para o polo, na topografia do hemisfério sul da Lua, com início entre os 50 e 60 graus de latitude sul. As encostas mais perto do polo sul mostram uma maior diferença na concentração de hidrogênio. Além disso, o hidrogênio foi detetacdo em maiores concentrações nas maiores encostas viradas para o polo, cerca de 45 partes por milhão perto de ambos os polos. Encostas mais amplas fornecem sinais mais detectáveis do que encostas mais pequenas. O resultado indica que estas têm maiores concentrações de hidrogênio do que as regiões vizinhas. Por outro lado, segundo McClanahan, as medições do LEND, nas maiores encostas viradas para o equador, não contrastam com as suas regiões vizinhas, o que indica que têm concentrações iguais de hidrogênio. A equipe pensa que também poderá ser encontrado mais hidrogênio nas crateras com encostas viradas para o polo no hemisfério norte, mas estão ainda recolhendo e analisando dados do LEND para esta região.

Existem várias fontes possíveis para o hidrogênio na Lua. Os cometas e alguns asteroides contêm grandes quantidades de água e os impactos destes objetos podem transportar hidrogênio para a Lua. As moléculas que contêm hidrogênio também podem ser criadas na superfície lunar pela interação com o vento solar. O vento solar é uma fina corrente de gás constantemente soprada pelo Sol. A maior parte é hidrogênio que pode interagir com o oxigênio em rochas de silicato e na poeira lunar para formar hidroxila e possivelmente moléculas de água. Depois de chegarem à Lua, pensa-se que fiquem energizadas pela luz solar e, em seguida, ressaltem sobre a superfície; e ficam presas, pelo menos temporariamente, em áreas mais frias e à sombra.

Desde a década de 1960 que os cientistas pensam que somente as áreas permanentemente à sombra em crateras perto dos polos são frias o suficiente para acumular este material volátil, mas observações recentes por várias sondas espaciais, incluindo a LRO, sugerem que o hidrogênio na Lua está mais difundido.

Ainda não sabemos se o hidrogênio é abundante o suficiente para uma mineração economicamente viável. "As quantidades que estamos detectando são ainda menores que o deserto mais seco da Terra," comenta McClanahan. No entanto, a resolução do instrumento LEND é maior que o tamanho das maiores encostas viradas para o polo, por isso em encostas mais pequenas, talvez com vários metros, esta concentração poderá ser significativamente maior. McClanahan diz que tudo indica que as maiores concentrações de hidrogênio estão em regiões permanentemente à sombra.

A equipe fez as observações com o instrumento LEND da LRO, que detecta hidrogênio através da contagem do número de nêutrons, libertadas da superfície lunar. Os nêutrons são produzidos quando a superfície da Lua é bombardeada por raios cósmicos. O espaço é permeado por raios cósmicos, partículas de alta velocidade produzidas por eventos poderosos como erupções no Sol ou explosões de estrelas no espaço profundo. Os raios cósmicos quebram os átomos do material perto da superfície lunar, criando nêutrons que saltam de átomo para átomo como uma bola de bilhar. Alguns nêutrons conseguem saltar de volta para o espaço onde podem ser contados pelos detectores de nêutrons.

Os nêutrons das colisões de raios cósmicos têm uma gama ampla de velocidades e os átomos de hidrogênio são os mais eficientes a parar os nêutrons na sua faixa média de velocidades, os chamados nêutrons epitermais. As colisões com os átomos de hidrogênio no regolito lunar reduzem o número de nêutrons epitermais que voam para o espaço. Quanto maior a quantidade de hidrogênio, menos nêutrons epitermais o detector LEND vai contar.

A equipe percebeu uma diminuição generalizada no número de nêutrons epitermais detectados pelo LEND como sinal da presença de hidrogênio em crateras com encostas viradas para o polo. Combinaram dados do LEND com a topografia lunar e mapas de iluminação derivados do instrumento LOLA (Lunar Orbiter Laser Altimeter) e mapas de temperatura do instrumento Diviner (Diviner Lunar Radiometer Experiment), ambos a bordo da sonda LRO, para descobrir a maior abundância de hidrogênio e as condições associadas à superfície nas encostas viradas para o polo.

Além de ver se o mesmo padrão existe no hemisfério norte da Lua, a equipe quer ver se a abundância de hidrogênio muda com a transição do dia para a noite. Se assim for, dará mais força a elementos de prova de uma produção muito ativa e de um ciclo de hidrogênio na superfície lunar.

Um artigo sobre a pesquisa foi publicado na revista Icarus.

Fonte: NASA

Um filamento extremamente longo sobre o Sol

No início da semana, o Sol exibiu um dos filamentos mais longos já registrados.

filamento longo sobre o Sol

© Oliver Hardy (filamento longo sobre o Sol)

Visível como a faixa mais escura logo abaixo do centro na imagem em destaque, o enorme filamento se estendeu através da face do Sol a uma distância ainda maior do que o raio solar, mais de 700 mil quilômetros.

Um filamento é na verdade o gás quente erguido pelo campo magnético do Sol, de modo que, visto de lado, se parece com uma proeminência salientada. A imagem acima mostra o filamento na luz emitida pelo hidrogênio destacando a cromosfera do Sol. Os telescópios que acompanham o Sol, incluindo o Solar Dynamics Observatory (SDO) da NASA, estão monitorando esta característica incomum. O SDO registrou um campo magnético em espiral engolfando-o.

Uma vez que os filamentos duram tipicamente apenas de algumas horas a dias, suas partes podem entrar em colapso ou em erupção a qualquer momento, seja devolvendo o plasma quente pelo Sol ou expelindo-o no Sistema Solar.

Será que o filamento ainda continua lá?

Você pode conferir clicando no link SDO para obter a imagem solar atual.

Fonte: NASA

segunda-feira, 9 de fevereiro de 2015

Par de estrelas em fusão produzirá uma explosão de supernova

Com o auxílio dos telescópios do ESO combinados com telescópios nas Ilhas Canárias, astrônomos identificaram duas estrelas surpreendentemente massivas no coração da nebulosa planetária Henize 2-428.

ilustração de duas estrelas anãs brancas se fundindo

© ESO/L. Calçada (ilustração de duas estrelas anãs brancas se fundindo)

À medida que orbitam em torno uma da outra, espera-se que as duas estrelas se aproximem cada vez mais e quando se fundirem, daqui a cerca de 700 milhões de anos, conterão matéria suficiente para dar origem a uma explosão de supernova.

Uma equipe de astrônomos liderada por M. Santander-García (Observatorio Astronómico Nacional, Alcalá de Henares, Espanha; Instituto de Ciencia de Materiales de Madrid, Espanha) descobriu um par de estrelas anãs brancas - minúsculos restos estelares extremamente densos - bastante próximas uma da outra, com uma massa total de cerca de 1,8 vezes a massa solar. Trata-se do par de estrelas deste tipo mais massivo descoberto até agora e quando estas duas estrelas se fundirem no futuro, darão origem a uma explosão termonuclear descontrolada que resultará numa supernova do Tipo Ia.

O limite de Chandrasekhar é a maior massa que uma estrela anã branca pode ter para resistir ao colapso gravitacional. Este valor é cerca de 1,4 vezes a massa do Sol.

As supernovas do Tipo Ia ocorrem quando a anã branca adquire massa extra, quer por acreção de massa de uma companheira quer por fusão com outra anã branca. Quando a massa excede o limite de Chandrasekhar a estrela perde a capacidade de se suportar gravitacionalmente e começa a contrair-se, o que faz com que a temperatura aumente, dando origem a uma reação nuclear descontrolada que faz com que a estrela exploda.

A equipe que descobriu este par massivo estava, na realidade, tentando resolver um outro problema, que consistia em saber como é que algumas estrelas produzem nebulosas de formas tão estranhas e assimétricas nas fases finais das suas vidas. Um dos objetos que estes astrônomos estudaram foi a nebulosa planetária conhecida pelo nome de Henize 2-428. Lembrando que, as nebulosas planetárias não têm nada a ver com planetas. O nome apareceu no século XVIII pois alguns destes objetos pareciam discos de planetas distantes quando observados através de pequenos telescópios.
“Quando observamos a estrela central deste objeto com o Very Large Telescope (VLT) do ESO, descobrimos não uma mas duas estrelas no centro desta nuvem brilhante estranhamente torta”, diz o co-autor do trabalho Henri Boffin do ESO.

nebulosa planetária Henize 2-428

© ESO/VLT (nebulosa planetária Henize 2-428)

Este fato apoia a teoria de que as estrelas duplas centrais podem explicar as estranhas formas de algumas destas nebulosas, no entanto um resultado mais interessante estava ainda para vir.
“Observações subsequentes obtidas com os telescópios nas Ilhas Canárias permitiram-nos determinar a órbita das duas estrelas e deduzir as massas e a separação entre as estrelas. Foi nesse momento que tivemos a maior surpresa”, revela Romano Corradi, outro autor do estudo e pesquisador no Instituto de Astrofísica de Canarias.
A equipe descobriu que cada uma das estrelas tem uma massa ligeiramente inferior à do nosso Sol e que orbitam uma em torno da outra a cada quatro horas. Encontram-se suficientemente perto uma da outra para que, segundo a teoria da relatividade geral de Einstein, se aproximem cada vez mais em movimento espiral, devido à emissão de ondas gravitacionais, antes de eventualmente se fundirem numa única estrela, nos próximos 700 milhões de anos.
A estrela resultante terá tanta massa que nada a impedirá de colapsar sobre si própria e subsequentemente explodir sob a forma de supernova. “Até agora, a formação de supernovas do Tipo Ia pela fusão de duas anãs brancas era puramente teórica”, explica David Jones, co-autor do artigo que descreve os resultados e bolsista do ESO na época em que os dados foram obtidos. “O par de estrelas no coração da Henize 2-428 é finalmente a observação que confirma a teoria”.
“Trata-se de um sistema bastante enigmático", conclui Santander. “Este estudo terá repercussões importantes no estudo de supernovas do Tipo Ia, as quais são muito utilizadas para medir distâncias astronômicas e foram fundamentais na descoberta de que a expansão do Universo está acelerarando devido à energia escura”.

Os resultados deste trabalho sairam hoje na versão online da revista Nature.

Fonte: ESO

domingo, 8 de fevereiro de 2015

Detectado matéria escura no lado mais distante da Via Láctea

Estas jovens estrelas da imagem abaixo não podem fazer parte da nossa galáxia porque o disco da Via Láctea termina em torno de 48 mil anos-luz; um aglomerado de estrelas jovens e pulsantes descobertas no lado mais distante da Via Láctea pode marcar a localização de uma inédita matéria escura dominada pela galáxia anã escondida atrás de nuvens de poeira.

IC 10

© Adam Black/NOAO/AURA/NSF (IC 10)

A imagem acima mostra a galáxia IC 10, que é uma galáxia anã irregular localizada a cerca de 1,8 milhões de anos-luz da Terra.

A equipe, liderada por Sukanya Chakrabarti do Rochester Institute of Technology (RIT), analisou os dados em infravermelho próximo recolhidos pelo telescópio VISTA do Observatório Europeu do Sul (ESO) para encontrar quatro jovens estrelas aproximadamente a 300.000 anos-luz de distância. Estas jovens estrelas são variáveis Cefeidas que os astrônomos utilizam para medir distâncias. De acordo com Chakrabarti, estas são as variáveis Cefeidas mais distantes encontrados perto do plano da Via Láctea.

As estrelas parecem estar associados com uma galáxia anã que Chakrabarti previu, em 2009, com base na sua análise das ondulações do disco externo da Via Láctea. Estudo anterior ao do Chakrabarti previu a localização da matéria escura na galáxia anã. A radiação emitida pelas estrelas variáveis Cefeidas lhe permitiu derivar distâncias precisas e testar sua previsão. Chakrabarti analisou a base de dados do VISTA com dezenas de milhões de estrelas para encontrar essas variáveis Cefeidas agrupadas da constelação Norma.

Partículas invisíveis conhecidas como matéria escura compõem 23% da massa do Universo. A misteriosa matéria representa um problema fundamental na astronomia porque não é compreendida.

"A descoberta das variáveis Cefeidas mostra que o nosso método de encontrar a localização da matéria escura dominada por galáxias anãs funciona", disse ela. "Pode ajudar-nos a entender em última análise do que a matéria escura é composta. Ela também mostra que a teoria da gravitação de Newton pode ser usada para os confins de uma galáxia, e que não há necessidade de modificar a nossa teoria da gravidade."

Os olhos infravermelhos do VISTA permitirá aos astrônomos estudar regiões inexploradas perto do plano galáctico que são inacessíveis para pesquisas ópticas. Comprimentos de onda ópticos pode não penetrar na poeira e no gás nessas regiões. A próxima geração de exploração do céu ajudará os astrônomos a olhar para a estrutura da galáxia e estrelas distantes em baixas latitudes. Levantamentos no infravermelho pode ajudará a resolver as discrepâncias existentes entre observações e o paradigma cosmológico atual, fornecendo uma visão mais completa da estrutura da Via Láctea.

Um documento anunciando a descoberta aparece na revista Astrophysical Journal Letters.

Fonte: Rochester Institute of Technology

sábado, 7 de fevereiro de 2015

A nebulosa Fantasma de Júpiter

Hoje está fazendo 230 anos da descoberta da nebulosa Fantasma de Júpiter.

NGC 3242

© XMM-Newton/Hubble (NGC 3242)

Esta nebulosa foi descoberta no dia 7 de Fevereiro de 1785 pelo astrônomo e compositor britânico, nascido na Alemanha, William Herschel.

Usando dois telescópios espaciais, os astrônomos captaram esta impressionante imagem da nebulosa  Fantasma de Júpiter, devido à sua aparência similar com o planeta gigante gasoso.

A nebulosa Fantasma de Júpiter, também conhecida como NGC 3242, é uma nebulosa planetária localizada na constelação de Hydra, localizada aproximadamente a 1.400 anos-luz de distância da Terra.

Em pequenos telescópios ela se mostra com um brilho azulado pálido. A magnitude total da nebulosa é 9, a estrela central, com uma magnitude de 11,4 possui uma temperatura de 90.000 Kelvin, e seu brilho é equivalente à 1.000 sóis.

A nova imagem composta revela como os ventos lançados pela estrela central, uma anã branca, estão formando a estrutura de dupla concha da nebulosa.

O brilho azul preenchendo a bolha interna representa a emissão de raios X do gás quente, aquecido a mais de 2 milhões graus pelo choque gerado pelo rápido vento estelar, que é soprado a cerca de 2.400 km/s contra o ambiente gasoso.

O brilho verde marca a concentração de gás mais frio visto na luz óptica por meio da emissão de oxigênio, revelando a borda da concha interna em contraste com o gás mais difuso que marca a concha externa.

As duas estruturas em forma de chama, visíveis em vermelho na parte superior direita e na parte inferior esquerda da bolha mais interna, são pacotes de gás ainda mais frio, visto também na luz óptica através da emissão de nitrogênio.

Fonte: ESA & NASA

quinta-feira, 5 de fevereiro de 2015

M104: a Galáxia do Sombrero

A impressionante galáxia espiral M104 é famosa por seu perfil quase de lado que destaca um largo anel com faixas de poeira obscuras.

M104

© Hubble/Subaru (M104)

Vistas em silhueta contra um extenso bojo de estrelas, as faixas de poeira cósmica dão uma aparência de um grande chapéu de abas largas à galáxia, sugerindo o seu apelido mais popular, a Galáxia do Sombrero.

Dados do telescópio espacial Hubble e do telescópio Subaru foram reprocessados com dados de imagem em cores, feitas por amadores, para criar essa visão nítida da galáxia bem conhecida. O processamento resulta numa aparência de cor natural e preserva os detalhes muitas vezes perdidos no esmagador brilho do bojo central luminoso de M104, quando vista com instrumentos terrestres menores.

Também conhecida como NGC 4594, a Galáxia do Sombrero pode ser vista em todo o espectro e provavelmente abriga um buraco negro supermaciço central. Com cerca de 50.000 anos-luz de diâmetro e a 28 milhões de anos-luz de distância, a M104 é uma das maiores galáxias na borda sul do aglomerado de galáxias de Virgem.

Fonte: NASA

quarta-feira, 4 de fevereiro de 2015

Nebulosa Trífida revela novas estrelas variáveis

Uma nova imagem obtida com o telescópio de rastreio VISTA revela a famosa Nebulosa Trífida de maneira diferente e fantasmagórica.

Nebulosa Trífida no infravermelho

© ESO/VVV Consortium/D. Minniti (Nebulosa Trífida)

Ao observar no infravermelho, os astrônomos podem ver para além das regiões centrais da Via Láctea obscurecidas por poeira e descobrir muitos objetos invisíveis a outros comprimentos de onda. Numa pequena parte de um dos rastreios do VISTA, os astrônomos descobriram duas estrelas variáveis Cefeidas, desconhecidas até agora e muito distantes, que se situam quase diretamente por detrás da Trífida. Estas são as primeiras estrelas deste tipo a serem descobertas no plano central da Via Láctea localizadas além do bojo central.

No âmbito de um dos maiores rastreios do céu austral, o telescópio VISTA instalado no Observatório do Paranal do ESO, no Chile, encontra-se mapeando as regiões centrais da Via Láctea no infravermelho, em busca de novos objetos. Este rastreio VVV (sigla de Variáveis VISTA na Via Láctea) observa várias vezes as mesmas regiões do céu no intuito de descobrir objetos que variam de brilho ao longo do tempo. 
Foi utilizada uma pequena fração da enorme base de dados do VVV para criar esta nova imagem de um objeto famoso, a região de formação estelar Messier 20 (M20) ou NGC 6514, habitualmente chamada Nebulosa Trífida, devido às linhas escuras fantasmagóricas que a dividem em três partes, quando observada através de um telescópio.

Nebulosa Trífida no visível

© R. Jay GaBany (Nebulosa Trífida no visível)

Nas imagens mais familiares da Trífida, no visível, a nebulosa brilha intensamente tanto na emissão cor de rosa do hidrogênio ionizado como no nevoeiro azulado da radiação dispersa por estrelas quentes jovens. São também proeminentes enormes nuvens de poeira que absorvem a radiação. No entanto, a imagem infravermelha do VISTA é muito diferente. A nebulosa aparece-nos apenas como uma sombra da sua imagem habitual no visível. As nuvens de poeira encontram-se muito menos proeminentes e o brilho intenso das nuvens de hidrogênio, assim como a estrutura em três partes, são praticamente invisíveis.
Na nova imagem, como que compensando o desvanecer da nebulosa, vemos um panorama completamente diferente mas bastante espetacular. As nuvens espessas de poeira no disco da nossa Galáxia, que absorvem a radiação visível, deixam passar a maior parte da radiação infravermelha que é observada pelo VISTA. Em vez de termos uma visão bloqueada pela poeira, o VISTA consegue observar muito além da Trífida e detectar objetos no outro lado da Galáxia, que nunca foram observados antes.
Por acaso, esta imagem mostra um exemplo perfeito das surpresas que podem ser reveladas quando obtemos imagens no infravermelho. Aparentemente próximo da Trífida no céu, mas na realidade sete vezes mais distante, descobriu-se nos dados VISTA um par de estrelas variáveis. Tratam-se de variáveis Cefeidas, um tipo de estrelas brilhantes instáveis que, com o tempo, aumentam lentamente de brilho e depois desvanecem. Este par de estrelas, que os astrônomos pensam ser os membros mais brilhantes de um aglomerado de estrelas, são as únicas variáveis Cefeidas detectadas até hoje que se encontram próximo do plano central, mas do outro lado da Galáxia. Estas estrelas aumentam de brilho e diminuem num período de tempo de onze dias.

A Nebulosa Trífida situa-se a cerca de 5.200 anos-luz de distância da Terra, o centro da Via Láctea está a cerca de 27.000 anos-luz de distância, praticamente na mesma direção, e as Cefeidas recém descobertas encontram-se a uma distância de cerca de 37.000 anos-luz.

Estes resultados foram descritos no artigo científico intitulado “Discovery of a Pair of Classical Cepheids in an Invisible Cluster Beyond the Galactic Bulge”, de I. Dekany et al., que foi recentemente publicado na revista especializada Astrophysical Journal Letters.

Fonte: ESO

terça-feira, 3 de fevereiro de 2015

As ondas gravitacionais permanecem elusivas

Apesar de relatos anteriores de uma possível detecção, a análise conjunta de dados do satélite Planck da ESA e das experiências terrestres BICEP2 e Keck Array não encontraram provas conclusivas de ondas gravitacionais primordiais.

orientação do campo magnético galáctico

© ESA/Planck (orientação do campo magnético galáctico)

Esta imagem mostra uma região do céu do hemisfério sul e tem por base observações efetuadas pelo satélite Planck da ESA em micro-ondas e em comprimentos de onda submilimétricos. A escala de cores representa a emissão da poeira, um componente menor mas crucial do meio interestelar que permeia a Via Láctea. A textura, por sua vez, indica a orientação do campo magnético galáctico.
É baseado em medições da direção da luz polarizada emitida pela poeira. A emissão de poeira é mais forte no plano da Galáxia (topo da imagem), mas que não pode ser negligenciada nas outras regiões do céu. A pequena nuvem visível em vermelho, na direção do canto superior direito do campo BICEP2, mostra a emissão da poeira da Pequena Nuvem de Magalhães, uma galáxia satélite da Via Láctea.

O Universo começou há cerca de 13,8 bilhões de anos e evoluiu a partir de um estado extremamente quente, denso e uniforme até ao cosmos rico, complexo e repleto de galáxias, estrelas e planetas que vemos hoje em dia.

A radiação cósmica de fundo em micro-ondas (em inglês, Cosmic Microwave Background, ou CMB) é uma extraordinária fonte de informações sobre a história do Universo, o legado da radiação emitida apenas 380.000 anos após o Big Bang.

O satélite Planck da ESA observou este pano de fundo em todo o céu numa precisão sem precedentes e uma ampla variedade de novas descobertas acerca do início do Universo já foram reveladas ao longo dos últimos dois anos.

Mas os astrônomos "escavam" cada vez mais fundo na esperança de explorar ainda mais para trás no tempo: estão à procura de uma assinatura específica da "inflação" cósmica, uma breve expansão acelerada que, segundo a teoria atual, o Universo sofreu quando tinha apenas uma minúscula fração de segundo.

Esta assinatura seria permeada por ondas gravitacionais, pequenas perturbações no tecido do espaço-tempo que podem ter sido geradas durante a fase inflacionária.

Curiosamente, estas perturbações deveriam deixar uma marca em outra característica da radiação cósmica de fundo: a sua polarização. Quando as ondas de luz vibram preferencialmente numa certa direção, dizemos que a luz é polarizada.

A CMB é polarizada, exibindo um arranjo complexo pelo céu. Isto surge a partir da combinação de dois padrões básicos: circulares e radiais (conhecidos como modos-E) e encaracolados ou torcidos (modos-B).

Vários fenômenos do Universo produzem ou modos-E ou modos-B em diferentes escalas angulares e a identificação das várias contribuições requer medições extremamente precisas. Os modos-B podem conter o incrediente da inflação no início do Universo.

"A procura deste registo único do Universo muito jovem é tão difícil quanto emocionante, uma vez que o sinal sutil está escondido na polarização da CMB, que por si só representa apenas uma pequena percentagem da luz total," afirma Jan Tauber, cientista do projeto Planck da ESA.

O Planck não está sozinho nesta pesquisa. No início de 2014, uma outra equipe de astrõnomos apresentou resultados baseados em observações da radiação cósmica de fundo polarizada numa pequena zona de céu realizadas entre 2010 e 2012 com o telescópio BICEP2, uma experiência localizada no Pólo Sul. A equipe também usou dados preliminares de outra experiência no Pólo Sul, o Keck Array.

Encontraram algo novo: modos-B encaracolados na polarização observada ao longo de zonas do céu poucas vezes maiores que a Lua Cheia.

A equipe BICEP2 apresentou evidências privilegiando a interpretação de que este sinal era originário de ondas gravitacionais primordiais, o que provocou uma resposta enorme na comunidade acadêmica e no público em geral.

No entanto, a poeira interestelar na Via Láctea pode produzir um efeito semelhante. A Via Láctea é permeada por uma mistura de gás e poeira que brilha a frequências semelhantes àquelas da CMB e esta emissão em primeiro plano afeta a observação da luz cósmica mais antiga. É necessária uma análise muito cuidadosa a fim de separar a emissão, no plano da frente, da emissão do fundo cósmico. Criticamente, a poeira interestelar também emite luz polarizada, afetando assim a polarização da CMB.

"Quando detectamos pela primeira vez este sinal nos nossos dados, contamos com os modelos da emissão de poeira galáctica disponíveis no momento," afirma John Kovac, pesquisador principal do BICEP2 na Universidade de Harvard, EUA. "Estes pareciam indicar que a região do céu escolhida para as nossas observações tinham uma polarização de poeira muito mais baixa do que o sinal detectado."

As duas grandes experiências terrestres recolheram dados numa única frequência de micro-ondas, tornando difícil a separação das emissões oriundas da Via Láctea das do fundo cósmico.

Por outro lado, o Planck observou o céu em nove canais de frequência de micro-ondas e sub-milimétricos, sete dos quais também foram equipados com detectores sensíveis à polarização. Com uma análise meticulosa, estes dados multifrequência podem ser usados para separar as várias contribuições.

A equipe BICEP2 escolheu um campo onde acreditavam que a emissão de poeira seria baixa e, portanto, interpretaram o sinal como provavelmente cosmológico.

No entanto, assim que os mapas da emissão polarizada da poeira galáctica foram divulgados pelo Planck, ficou claro que esta contribuição de primeiro plano podia ser maior do que o anteriormente esperado.

Em Setembro de 2014 o Planck revelou pela primeira vez que a emissão polarizada da poeira é significativa ao longo de todo o céu e comparável com o sinal detectado pela experiência BICEP2 mesmo nas regiões mais limpas.

Assim, as equipes do Planck e da experiência BICEP2 uniram forças, combinando a capacidade do satélite para lidar com primeiros planos usando observações em diversas frequências, incluindo aquelas onde a emissão de poeira é mais forte, com a maior sensibilidade das experiências terrestres sobre áreas limitadas do céu, graças à sua tecnologia recentemente melhorada. Nesse momento, a gama completa de dados do Keck Array para 2012 e 2013 já estavam também disponíveis.

"Este trabalho conjunto mostrou que a deteção dos modos-B primordiais já não é robusta após a remoção da emissão da poeira galáctica," afirma Jean-Loup Puget, pesquisador principal do instrumento HFI do Planck e do Institut d’Astrophysique Spatiale em Orsay, França. "Por isso, infelizmente, não fomos capazes de confirmar que o sinal é um traço da inflação cósmica."

Outra fonte de polarização de modos-B, que remonta ao início do Universo, foi detectada neste estudo, mas em escalas muito menores no céu.

Este sinal, descoberto pela primeira vez em 2013, não é uma exploração direta da fase inflacionária, é induzido pela teia cósmica de estruturas gigantescas que povoam o Universo e que mudam o percurso dos fótons da CMB no seu caminho até nós.

Este efeito é chamado de "lente gravitacional", uma vez que é provocado por objetos maciços que dobram o espaço circundante e assim desviam a trajetória da luz como uma lupa. A detecção deste sinal com o Planck, BICEP2 e Keck Array, é o mais forte até agora.

Quanto aos sinais do período de inflação, a questão permanece em aberto.

"Embora ainda não tenhamos encontrado fortes evidências do sinal de ondas gravitacionais primordiais nas melhores observações da polarização da CMB atualmente disponíveis, isso não significa que temos que excluir a inflação," explica Reno Mandolesi, pesquisador principal do instrumento LFI do Planck e da Universidade de Ferrara, Itália.

De fato, o estudo conjunto estabelece um limite máximo para a quantidade de ondas gravitacionais da inflação, que podem ter sido criadas no momento mas a um nível demasiado baixo para serem confirmadas com esta análise.

"Este estudo mostra que o número de ondas gravitacionais pode, provavelmente, não ser mais do que metade do sinal observado," afirma Clem Pryke, pesquisador principal da experiência BICEP2 na Universidade de Minnesota, EUA.

"O novo limite superior para o sinal devido a ondas gravitacionais é compatível com o limite superior que obtivemos anteriormente com o Planck usando as flutuações de temperatura da CMB," comenta Brendan Crill, membro das equipes do Planck e da BICEP2 no JPL da NASA.

Fonte: ESA

domingo, 1 de fevereiro de 2015

NGC 4676: quando Camundongos colidem

Estas duas galáxias poderosas estão puxando uma à outra. Conhecidas como os “Camundongos”, porque elas têm essas caudas longas, cada galáxia espiral provavelmente já tem passado através da outra.

NGC 4676

© Hubble (NGC 4676)

As caudas longas são criadas pela diferença relativa entre as forças gravitacionais nas partes próximas e distantes de cada galáxia.

Como as distâncias são tão grandes, a interação cósmica acontece em movimento lento, ao longo de centenas de milhões de anos. Catalogadas conjuntamente como NGC 4676, elas estão a cerca de 300 milhões de anos-luz de distância na direção da constelação Coma Berenices, e são membros prováveis do aglomerado de galáxias Coma.

A imagem acima foi tirada com a Advanced Camera for Surveys, a bordo do telescópio espacial Hubble, em 2002. Esses camundongos galácticos provavelmente colidirão repetidas vezes nos próximos bilhões de anos até que ocorra a fusão para formar uma única galáxia.

Fonte: NASA