sábado, 13 de fevereiro de 2016

Ondas gravitacionais são detectadas no Universo

Após uma série de rumores nos últimos meses, um consórcio internacional de cientistas, integrado por pesquisadores do Brasil, do projeto LIGO (Laser Interferometer Gravitacional-wave Observatory), confirmou ter obtido a primeira detecção direta de ondas gravitacionais geradas pela colisão e fusão de dois buracos negros.

simulações numéricas das ondas gravitacionais

© Ames Research Center/PRL (simulações numéricas das ondas gravitacionais)

A imagem acima mostra simulações numéricas das ondas gravitacionais emitidas pela fusão de dois buracos negros. Os contornos coloridos em torno de cada buraco negro representam a amplitude da radiação gravitacional, as linhas azuis representam as órbitas dos buracos negros e, as setas verdes, suas rotações.

As ondas gravitacionais são oscilações do espaço-tempo que foram previstas há um século pelo físico Albert Einstein.

A existência de ondas gravitacionais foi demonstrada pela primeira vez nas décadas de 1970 e 1980 por Joseph Taylor Jr. e colegas. Taylor e Russell Hulse descobriram, em 1974, um sistema binário composto por um pulsar em órbita de uma estrela de nêutrons. Taylor e Joel M. Weisberg descobriram, em 1982, que a órbita do pulsar estava diminuindo ligeiramente ao longo do tempo devido à libertação de energia sob a forma de ondas gravitacionais. Pela descoberta do pulsar e pela demonstração que tornaria possível esta medição de onda gravitacional em particular, Hulse e Taylor receberam o Prêmio Nobel da Física em 1993.

A nova descoberta do LIGO é a primeira observação das próprias ondas gravitacionais, feita através da medição dos pequenos distúrbios que as ondas fazem no espaço e no tempo à medida que passam através da Terra.

Usando detectores gêmeos do projeto LIGO, situados um em Livingston, em Louisiana, e o outro em Hanford, em Washington, nos Estados Unidos, a três mil quilômetros de distância um do outro, os pesquisadores afirmaram ter observado, pela primeira vez, ondas gravitacionais a partir de um evento cataclísmico, denominado GW 150914, em uma galáxia distante mais de 1 bilhão de anos-luz da Terra.

As ondas gravitacionais foram detectadas em 14 de setembro de 2015, às 6h51 no horário de Brasília, pelos detectores do LIGO. A última tomada de dados terminou agora em janeiro e a análise completa deverá ser publicada em abril.

Os pesquisadores afirmaram que as ondas gravitacionais foram produzidas durante os momentos finais da fusão de dois buracos negros que giraram um em torno do outro, como dois piões, irradiando energia como ondas gravitacionais. Estas ondas gravitacionais têm um som característico, chamado de sinal sonoro, que pode ser usado para medir as massas de dois objetos. Após girarem em torno um do outro, os dois buracos negros se fundiram em um único e mais massivo buraco negro em rotação.

Estima-se que a energia de pico liberada sob a forma de ondas gravitacionais durante os momentos finais da fusão dos buracos negros foi dez vezes maior do que a luminosidade combinada de todas as galáxias no Universo observável.

Os buracos negros têm apenas 150 quilômetros de diâmetro, mas um com 29 e outro com 36 vezes a massa do Sol. Quando se fundem há uma grande explosão de ondas gravitacionais. A energia despendida na geração das ondas gravitacionais detectadas explica porque o buraco negro resultante da fusão ficou com 62 vezes a massa do Sol, três sóis a menos do que a soma dos dois originais.

Causadas por alguns dos fenômenos mais violentos do Cosmos, como colisões e fusões de estrelas massivas compactas, a existência das ondas gravitacionais foi prevista por Einstein, em 1915, em sua Teoria da Relatividade Geral.

O cientista postulou que objetos massivos acelerados distorciam o espaço-tempo, produzindo mudanças no campo gravitacional que se deslocam para fora da massa e viajam à velocidade da luz através do Universo, levando informações sobre suas origens, além de pistas valiosas sobre a natureza da própria gravidade. Estas ondas gravitacionais têm amplitude um milhão de vezes menor do que o diâmetro de um próton e chegam à Terra com uma amplitude muito pequena.

Para tentar detectar e localizar fontes de ondas gravitacionais, os pesquisadores usaram uma técnica conhecida como interferometria a laser, que utiliza detectores distantes entre si para medir as diferenças das observações. Por intermédio dos detectores do LIGO, que foram desenvolvidos e são operados pelo Massachusetts Institute of Technology (MIT) e o California Institute of Technology (Caltech), ambos dos Estados Unidos, foi possível observar as ondas gravitacionais produzidas pela colisão e fusão de dois buracos negros há cerca de 1,3 bilhão de anos-luz da Terra que foram convertidas em trechos de som.

Na próxima campanha de observação do LIGO, que começará nos próximos meses, também haverá a participação de outro detector de ondas gravitacionais, o italiano VIRGO.

Um artigo intitulado “Observation of Gravitational Waves from a Binary Black Hole Merger” foi publicado na revista Physical Review Letters. Os pesquisadores devem publicar nos próximos meses mais doze outros resultados da colaboração.

Uma publicação elaborada em conjunto pela Astronomy e Discovery referente ao centenário das ondas gravitacionais pode ser vista a seguir.

 

Fonte: Astronomy & Discovery

quinta-feira, 11 de fevereiro de 2016

Um momento de brilho de uma estrela

Uma estrela recém formada ilumina as nuvens cósmicas à sua volta nesta nova imagem obtida no observatório de La Silla do ESO, no Chile.

jovem estrela ilumina nebulosa de reflexão IC 2631

© ESO (jovem estrela ilumina nebulosa de reflexão IC 2631)

As partículas de poeira nas enormes nuvens que rodeiam a estrela HD 97300 difundem a sua luz, tal como acontece com os faróis de um carro num nevoeiro, criando assim uma nebulosa de reflexão. Embora a estrela HD 97300 se encontre nas luzes da ribalta por agora, a própria poeira que a torna tão proeminente anuncia o nascimento de futuras estrelas, que potencialmente lhe roubarão o protagonismo.

A região resplandescente que se observa nesta nova imagem obtida com o telescópio MPG/ESO de 2,2 metros é uma nebulosa de reflexão chamada IC 2631. Estes objetos são nuvens de poeira cósmica que refletem a radiação de uma estrela próxima, criando um magnífico espetáculo de luz. A IC 2631 é a nebulosa mais brilhante situada no Complexo do Camaleão, uma enorme região de nuvens de gás e poeira que abrigam várias estrelas recém nascidas e estrelas ainda em formação. O complexo situa-se a cerca de 500 anos-luz de distância na constelação austral do Camaleão.

A IC 2631 está iluminada pela estrela HD 97300, uma das estrelas mais jovens, mais massiva e mais brilhante da vizinhança. Esta região encontra-se repleta de material adequado à formação de estrelas, como é evidente pela presença das nebulosas escuras que se vêem na imagem por cima e por baixo da IC 2631. As nebulosas escuras são tão densas em gás e poeira que bloqueiam a radiação emitida pelas estrelas de fundo.

Apesar da sua presença dominante, a importância da HD 97300 deve ser colocada em perspectiva, já que se trata de uma estrela T Tauri, a primeira fase visível para estrelas relativamente pequenas. À medida que estas estrelas vão evoluindo e atingem a fase adulta, perdem massa e diminuem. No entanto, durante a fase de T Tauri as estrelas ainda não se contraíram até ao tamanho moderado que apresentarão durante bilhões de anos como estrelas da sequência principal.

Estas estrelas têm já uma temperatura à superfície semelhante à que terão na fase de sequência principal e, uma vez que os objetos T Tauri são essencialmente versões grandes da sua fase posterior, parecem mais brilhantes na sua juventude fora de proporções do que na sua maturidade. Estes objetos ainda não começaram a queimar hidrogênio em hélio nos seus núcleos, como as estrelas normais de sequência principal, mas começam já a “movimentar os seus músculos térmicos”, gerando calor a partir da contração.

As nebulosas de reflexão, como a que foi criada por HD 97300, apenas dispersam a radiação estelar de volta para o espaço. A radiação estelar mais energética, tal como a radiação ultravioleta emitida por estrelas jovens muito quentes, pode ionizar o gás circundante, fazendo com que este emita radiação e dando assim origem a nebulosas de emissão. Estas nebulosas de emissão indicam sempre a presença de estrelas mais quentes e mais poderosas que, durante a sua vida adulta, podem ser observadas a milhares de anos-luz de distância. A HD 97300 não é tão poderosa e o seu momento de protagonismo não está destinado a durar.

Fonte: ESO

quarta-feira, 10 de fevereiro de 2016

Descobertas galáxias escondidas atrás da Via Láctea

Quase 900 galáxias próximas e escondidas têm sido estudadas por uma equipe internacional de astrônomos, levando uma nova luz sobre o entendimento do Grande Atrator, uma concentração difusa de massa a 250 milhões de anos-luz de distância, que está puxando a nossa Via Láctea, e milhares de outras galáxias em sua direção.

ilustração do Grande Atrator

© ICRAR (ilustração do Grande Atrator)

Usando um receptor instalado no rádio telescópio Parkes de 64 m, pertencente à instituição Commonwealth Scientific and Industrial Research Organisation (CSIRO) na Austrália, a equipe foi capaz de ver através das estrelas e da poeira da nossa galáxia, vasculhando assim uma região inexplorada do espaço, conhecida pelos astrônomos como “Zona de Anulação”.

“Nós descobrimos 883 galáxias, um terço das quais nunca tinham sido vistas anteriormente,” disse o Professor Lister Staveley-Smith, membro da equipe, do ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) e da University of Western Australia, um dos nós do International Centre for Radio Astronomy Research.

“A Via Láctea é muito bonita, e lógico é muito interessante estudá-la, mas ela bloqueia completamente a visão de galáxias mais distantes, atrás dela. Os cientistas têm tentado descobrir algo sobre o Grande Atrator desde que grandes desvios na expansão universal foram descobertos nos anos de 1970 e 1980,” disse Staveley-Smith.

“Nós não entendemos na verdade o que está causando essa aceleração gravitacional na Via Láctea, ou de onde essa força está vindo. Nós sabemos que nessa região existem algumas grandes coleções de galáxias que nós chamamos de aglomerados ou super aglomerados, e que a Via Láctea está se movendo na direção delas a mais de 2 milhões de quilômetros por hora”.

O Professor Staveley-Smith e seus colegas também identificaram algumas novas estruturas que poderiam ajudar a explicar o movimento da nossa Galáxia, incluindo três concentrações de galáxias e dois novos aglomerados.

“Existem novas concentrações de galáxias (chamadas de NW1, NW2 e NW3) que são fundamentais para confirmar o cruzamento diagonal da Parede do Grande Atrator, entre os Aglomerados Norma e o CIZA J1324.7-5736,” disse ele.

“Contribuidores para a densidade acima do nomal nessa área, são dois novos aglomerados (chamados de CW1 e CW2) na chamada Parede Centaurus, um dos quais forma parte do longo filamento que domina a céu do sul a velocidades de 3.000 km/s, e a sugestão de outra Parede no Grande Atrator em longitudes levemente maiores”.

“Os astrônomos têm tentado mapear a distribuição escondida atrás da Via Láctea por décadas,”disse o Professor Renée Kraan-Korteweg, um astrônomo na University of Cape Town, na África do Sul .

“Nós usamos uma grande quantidade de técnicas mas somente as observações de rádio realmente tiveram sucesso e permitiram que nós pudéssemos enxergar através da espessa camada de estrelas e poeira”.

“Uma galáxia normal contém 100 bilhões de estrelas, portanto descobrir centenas de novas galáxias escondidas atrás da Via Láctea, aponta para uma grande quantidade de massa, que era desconhecida até agora”.

Um artigo foi publicadono periódico Astronomical Journal.

Fonte: International Centre for Radio Astronomy Research

terça-feira, 9 de fevereiro de 2016

Planetas parecidos com a Terra têm interiores similares

As crianças aprendem na escola a estrutura básica da Terra: uma fina crosta exterior, um manto espesso e um núcleo com o tamanho de Marte. Mas será que esta estrutura é universal?

  ilustração de planeta parecido com a Terra

© NASA/JPL-Caltech (ilustração de planeta parecido com a Terra)

Será que os exoplanetas em torno de outras estrelas têm as mesmas três camadas? Uma nova pesquisa sugere que a resposta é sim, que terão interiores muito semelhantes ao da Terra.

"Queríamos ver quão parecidos com a Terra são estes planetas rochosos. E parece que são muito parecidos com a Terra," afirma Li Zeng do Harvard-Smithsonian Center for Astrophysics (CfA), autor principal do estudo.

Para chegar a esta conclusão, Zeng e outros pesquisadores aplicaram um modelo computacional conhecido como Preliminary Reference Earth Model (PREM), que é o modelo padrão para o interior da Terra. Ajustaram o modelo para acomodar massas e composições diferentes, e aplicaram-no a seis exoplanetas rochosos conhecidos cujas massas e tamanhos são bem conhecidos.

Eles descobriram que todos os outros planetas, apesar das suas diferenças em relação à Terra, têm um núcleo de níquel/ferro que corresponde a cerca de 30% da massa do planeta. Em comparação, cerca de um-terço da massa da Terra está no seu núcleo. A massa restante está no manto e na crosta, tal como a Terra.

"Nós só conhecemos bem a estrutura da Terra há aproximadamente cem anos. Agora podemos calcular as estruturas de planetas em torno de outras estrelas, apesar de não os podermos visitar," acrescenta Zeng.

O novo código também pode ser aplicado a mundos gelados mais pequenos, como luas ou planetas anões no Sistema Solar exterior. Por exemplo, ao inserir a massa e o tamanho de Plutão, a equipe determina que cerca de um-terço é gelo (principalmente água gelada, mas também amônia e metano gelado).

O modelo assume que os exoplanetas distantes têm composições químicas semelhantes à da Terra. Tal é razoável com base nas abundâncias relevantes dos elementos químicos essenciais como ferro, magnésio, silício e oxigênio em sistemas próximos. No entanto, planetas que se formem em regiões mais ou menos ricas em metais da Galáxia podem mostrar estruturas interiores diferentes. A equipe espera explorar estas questões em pesquisas futuras.

O artigo que descreve este trabalho, da autoria de Li Zeng, Dimitar Sasselov e Stein Jacobsen, foi aceito para publicação na revista The Astrophysical Journal e está disponível online.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 8 de fevereiro de 2016

Fusão de galáxias em Eridanus

A imagem abaixo obtida pelo telescópio espacial Hubble da NASA e ESA, mostra uma galáxia peculiar conhecida como NGC 1487, encontrando-se cerca de 30 milhões de anos-luz de distância na constelação austral de Eridanus.

NGC 1487

© Hubble/Judy Schmidt (NGC 1487)

Ao invés de vê-la como um objeto celeste, na verdade é melhor pensar nisso como um evento. Aqui, estamos assistindo duas ou mais galáxias se unindo para formar uma única nova galáxia. Cada galáxia perdeu quase todos os vestígios de sua aparência original, onde estrelas e gás foram arrastados pela gravidade em um elaborado turbilhão cósmico.

Exceto quando uma galáxia é muito maior que a outra, elas são sempre perturbadas pela violência do processo de fusão. Como resultado, é muito difícil determinar precisamente o que as galáxias originais pareciam e, de fato, quantos delas haviam. Neste caso, é possível que nós estamos vendo a fusão de várias galáxias anãs que anteriormente foram aglutinadas em um pequeno grupo.

Embora as estrelas amarelas e vermelhas mais velhas pode ser vistas nas regiões exteriores da nova galáxia, sua aparência é dominada por grandes áreas de estrelas azuis brilhantes, iluminando as manchas de gás que lhes deu vida. Esta explosão de formação estelar provavelmente pode ter sido provocada pela fusão.

Fonte: ESA

domingo, 7 de fevereiro de 2016

Encontrado seis novos pulsares de milissegundo

Uma equipe de astrônomos utilizou o catálogo de fontes de raios gama do telescópio espacial Fermi, compilado com base em 4 anos de observações, para identificar 34 das 1.000 fontes de raios gama de origem desconhecida como potenciais pulsares com períodos de rotação na ordem dos milissegundos.

ilustração de um pulsar de milissegundo

© NASA (ilustração de um pulsar de milissegundo)

Observações subsequentes obtidas com o radiotelescópio de 305 metros de Arecibo, em Porto Rico, permitiram a identificação conclusiva de 6 dos candidatos como pulsares com períodos de rotação entre 1,99 e 4,66 milissegundos, ou seja, giram entre 502 e 215 vezes por segundo. Um dos pulsares faz parte de um sistema triplo, orbitando à distância um par de anãs brancas. Os restantes fazem parte de sistemas binários compactos com estrelas companheiras normais e períodos orbitais inferiores a 8 horas.

Pulsares são estrelas de nêutrons que emitem pulsos de radiação periódicos quando observadas a partir da Terra. Esta radiação tem origem numa região da superfície ou da vizinhança da estrela de nêutrons, provavelmente junto aos pólos magnéticos, e é normalmente emitida em várias bandas do espectro electromagnético. Em algumas estrelas de nêutrons, durante a rotação, esta região emissora fica alinhada com a nossa linha de visão, dando origem aos referidos pulsos de radiação com um intervalo igual ao período de rotação da estrela. A periodicidade destes pulsos é incrivelmente precisa, superando os melhores relógios atômicos.

Os pulsares perdem energia rotacional gradualmente ao longo de milhões de anos. Essa energia é transferida através do intenso campo magnético da estrela para um vento de partículas e radiação que dele emana. Como resultado, a maioria dos pulsares conhecidos têm períodos de rotação modestos, entre o décimo de segundo e alguns segundos. No início dos anos 80, foi descoberto um pulsar que girava 642 vezes por segundo, ou seja, com um período de rotação de 1,5 milissegundos. Desde então foram descobertos mais de 200 destes pulsares de milissegundo, estando o recorde em 761 rotações por segundo. Isto é metade da velocidade rotacional necessária para desintegrar o pulsar devido à ação da força centrífuga. Os pulsares que giram tão rapidamente ficam achatados nos pólos, assumindo a forma de um elipsóide. Esta alteração da simetria esférica e a sua grande massa em movimento propicia a perda de uma fração importante da sua energia por emissão de ondas gravitacionais.

A explicação para a existência destes pulsares começou a ser esboçada com a observação de que todos eles faziam parte de sistemas binários muito compactos com estrelas normais, anãs brancas ou mesmo outras estrelas de nêutrons. Em particular, os astrônomos notaram que estes pulsares de milissegundo eram particularmente abundantes em aglomerados globulares, tais como: M5 e M28 que têm 8 cada. A densidade estelar nestes aglomerados é das mais elevadas na Via Láctea e a probabilidade de um pulsar capturar uma estrela vizinha para formar um sistema binário compacto é significativa.

Num destes sistemas binários o pulsar “canibaliza” a sua estrela companheira, capturando material das suas camadas exteriores. Este material forma um disco que gira a grande velocidade em torno do pulsar e transfere momento angular para o mesmo, fazendo o pulsar rodar mais depressa. Este processo de amplificação da velocidade de rotação termina quando a estrela companheira, consumida pelo vento de partículas e radiação intensa provenientes do pulsar, fica reduzida a um cadáver estelar.

De acordo com os cientistas, 17 outras fontes ainda não identificadas indicadas pelo LAT são provavelmente pulsares de milissegundo e precisam de observações de acompanhamento para eliminar as incertezas. Em geral, 30% dos pulsares de milissegundo conhecidos ao longo do disco têm sido detectados em fontes anteriormente não identificados em raios gama apontado pelo Fermi. Estes resultados precursores necessitam de mais descobertas futuras em relação à rotação rápida das estrelas de nêutrons.

Fonte: Phys.org

sexta-feira, 5 de fevereiro de 2016

Lua foi gerada por colisão frontral entre a Terra e planeta em formação

Segundo geoquímicos da Universidade da Califórnia, Los Angeles (UCLA), a Lua foi formada por uma violenta colisão de frente entre a Terra primitiva e um "embrião planetário" chamado Theia aproximadamente 100 milhões de anos depois da formação do nosso planeta.

ilustração do evento que produziu a Lua

© William K. Hartmann (ilustração do evento que produziu a Lua)

Os cientistas já sabiam deste acidente a alta velocidade, que ocorreu quase há 4,5 bilhões de anos atrás, mas muitos pensavam que a Terra colidiu com Theia a um ângulo de 45 graus ou mais, uma poderosa colisão de lado. Novas evidências divulgadas agora reforçam consideravelmente o caso de um choque frontal.

Os pesquisadores analisaram sete rochas trazidas para a Terra da Lua pelas missões Apollo 12, 15 e 17, bem como seis rochas vulcânicas do manto da Terra, cinco do Havaí e uma do estado americano do Arizona.

A chave para a reconstrução do impacto gigante foi uma assinatura química revelada nos átomos de oxigênio das rochas (o oxigênio constitui 90% do volume das rochas e 50% do seu peso). Mais de 99,9% do oxigênio da Terra é 16O, assim chamado porque cada átomo contém 8 prótons e 8 nêutrons. Mas também existem pequenas quantidades de isótopos de oxigênio mais pesados: 17O, que tem um nêutron extra, e 17O, que tem dois nêutrons extra.

A Terra, Marte e outros corpos planetários no nosso Sistema Solar têm, cada um, uma taxa única de 17O para 16O, cada um, uma "impressão digital" distinta.

Em 2014, uma equipe de cientistas alemães divulgou na revista Science que a Lua também tem o sua própria e única taxa de isótopos de oxigênio, diferente do da Terra. A nova pesquisa descobriu que tal não é o caso.

"Nós não vemos nenhuma diferença entre os isótopos de oxigênio da Terra e da Lua; são indistinguíveis," afirma Edward Young, autor principal do novo estudo e professor de geoquímica e cosmoquímica na UCLA.

A equipe de pesquisa de Young usou tecnologia de ponta para fazer medições extraordinariamente precisas e cuidadosas, e verificou-as com o novo espectrõmetro de massa da universidade.

O fato de que o oxigênio nas rochas da Terra e da Lua partilham assinaturas químicas foi muito revelador. Caso a Terra e Theia tivessem colidido num golpe lateral, a vasta maioria da Lua seria principalmente constituída pelo corpo Theia, e a Terra e a Lua teriam diferentes isótopos de oxigênio. Uma colisão de frente, no entanto, provavelmente teria resultado na composição química semelhante da Terra e da Lua.

"Theia foi bem misturado tanto na Terra como na Lua e uniformemente disperso entre os dois," comenta Young. "Isto explica porque é que não vemos uma assinatura diferente de Theia na Lua em relação à Terra."

Theia, que não sobreviveu à colisão (exceto que agora compõe grande parte da Terra e da Lua), estava crescendo e provavelmente ter-se-ia tornado um planeta caso a colisão não tivesse ocorrido. Young e outros cientistas pensam que o corpo tinha aproximadamente o mesmo tamanho que a Terra; outros acham que era mais pequeno, talvez parecido com Marte.

Outra questão interessante é saber se a colisão com Theia removeu qualquer água que a Terra primitiva pudesse conter. Depois da colisão, talvez dezenas de milhões de anos mais tarde, pequenos asteroides provavelmente atingiram a Terra, incluindo aqueles ricos em água. As colisões de corpos em crescimento ocorreram com muita frequência naquela época, embora Marte tivesse evitado grandes colisões.

A colisão frontal foi inicialmente proposta em 2012 por Matija Cuk, agora no Instituto SETI, e Sarah Stewart, professora na Universidade Davis da Califórnia; e, separadamente durante o mesmo ano, por Robin Canup do SwRI (Southwest Research Institute).

O recente estudo foi publicado na revista Science.

Fonte: University of California, Los Angeles

Estrelas massivas em nebulosa

Estrelas massivas se encontram dentro da NGC 6357, uma extensa nebulosa de emissão a cerca de 6.500 anos luz na direção da constelação do Escorpião (Scorpius).

NGC 6357

© Johannes Schedler (nebulosa NGC 6357)

De fato, posicionado próximo ao centro desta imagem da NGC 6357, o aglomerado estelar Pismis 24 inclui algumas das mais massivas estrelas conhecidas na galáxia, estrelas com cerca de 100 vezes a massa do Sol.

A brilhante região central da nebulosa também contêm pilares de poeira de gás molecular, provavelmente escondendo massivas protoestrelas dos curiosos olhos que se utilizam de instrumentos ópticos.

As formas intrincadas da nebulosa são esculpidas pelos ventos estelares e pela energética radiação emanada pelas recém-formadas estrelas massivas que limpam o gás e poeira original e abastecem o brilho nebular.

Melhorando a aparência cavernosa da nebulosa, os dados de imagem de banda estreita foi incluído nesta imagem composta em um esquema da paleta de cores do Hubble.

A emissão dos elementos enxofre, hidrogênio e oxigênio são mostradas, respectivamente, em tons de vermelho, verde e azul.

Esta visão telescópica sedutora se estende por cerca de 50 anos-luz à distância estimada da nebulosa NGC 6357.

Fonte: NASA

quinta-feira, 4 de fevereiro de 2016

Explosão de buraco negro na radiogaláxia Pictor A

No filme Guerra nas Estrelas protagoniza a fictícia “Estrela da Morte”, que pode disparar raios poderosos de radiação no espaço. No entanto, no Universo existem fenômenos que muitas vezes ultrapassam a ficção científica.

radiogaláxia Pictor A

© Chandra/ATCA (radiogaláxia Pictor A)

A galáxia Pictor A, é um destes objetos impressionantes. Esta galáxia localiza-se a cerca de 500 milhões de anos-luz da Terra e possui um buraco negro supermassivo no seu centro. Uma grande quantidade de energia gravitacional é lançada à medida que o material cai em direção ao horizonte de eventos, o ponto sem volta ao redor do buraco negro. Esta energia produz um enorme jato de partículas que viajam com velocidade próxima da velocidade da luz no espaço intergaláctico.

Para obter imagens deste jato, os cientistas usaram o observatório de raios X Chandra da NASA várias vezes durante 15 anos. Os dados do Chandra, em azul, foram combinados com os dados obtidos em ondas de rádio a partir do Australia Telescope Compact Array (ATCA), em vermelho, nesta nova imagem composta.

Ao estudar os detalhes da estrutura vista tanto em raios X como em ondas de rádio, os cientistas esperam entender melhor estas imensas explosões colimadas.

O jato emitido para a direita na Pictor A, é um dos mais próximo de nós. Este jato representa uma emissão contínua de raios X por uma distância de 300.000 anos-luz. Por comparação, a Via Láctea como um todo tem 100.000 anos-luz de diâmetro. Devido à sua relativa proximidade e à capacidade do Chandra de fazer imagens detalhadas em raios X, os cientistas estão conseguindo ver aspectos detalhados dos jatos e testar as ideias de como as emissões de raios X são produzidas.

Além do proeminente jato observado apontando para o lado direito, os pesquisadores reportaram a evidência de outro jato apontando na direção oposta, conhecido como “jato contrário”. Os dados obtidos pelo Chandra, foram os primeiros a confirmarem a presença deste jato contrário. O motivo de o jato contrário ser muito mais fraco do que o jato para a direita se deve provavelmente ao fato do seu movimento ser para longe da linha de visão da Terra.

As propriedades detalhadas do jato e do jato contrário observadas com o Chandra mostram que suas emissões de raios X provavelmente veem dos elétrons que fazem um movimento espiral ao redor das linhas do campo magnético, um processo chamado de emissão síncroton. Neste caso, os elétrons precisam ser continuamente reacelerados à medida que eles se movem ao longo do jato. Como isto ocorre ainda é algo não muito bem entendido.

Ao testarem as hipóteses, os pesquisadores descartaram um mecanismo diferente para produzir a emissão de raios X dos jatos. Neste cenário, os elétrons voando para longe do buraco negro no jato a uma velocidade próxima da velocidade da luz, se movem através de um oceano de radiação cósmica de fundo (CMB), a radiação remanescente da fase quente inicial do Universo depois do Big Bang. Quando um elétron em alta velocidade colide com um destes fótons da CMB, ele pode aumentar drasticmanete a energia do fóton na banda dos raios X.

O brilho dos raios X do jato depende da potência no feixe de elétrons e na intensidade da radiação de fundo. O brilho relativo dos raios X emanado do jato e do jato contrário na Pictor A não se ajustam com o que é esperado neste processo envolvendo a CMB e isto, efetivamente elimina esta hipótese como sendo a fonte da produção de raios X no jato.

Fonte: Marshall Space Flight Center

quarta-feira, 3 de fevereiro de 2016

O disco voador frígido

Os astrônomos usaram o Atacama Large Millimeter/submillimeter Array (ALMA) e os telescópios do Institut de Radio Astronomie Millimétrique (IRAM) para fazer a primeira medição direta da temperatura dos grãos de poeira grandes situados nas regiões periféricas de um disco de formação planetária que se encontra em torno de uma estrela jovem.

disco protoplanetário em torno de estrela

  © Digitized Sky Survey 2/Hubble (disco protoplanetário em torno de estrela)

Ao observar de forma inovadora um objeto cujo nome informal é Disco Voador, os astrônomos descobriram que os grãos de poeira são muito mais frios do que o esperado: -266º Celsius. Este resultado surpreendente sugere que os modelos teóricos destes discos precisam de ser revistos.

Uma equipe internacional liderada por Stephane Guilloteau do Laboratoire d’Astrophysique de Bordeaux, França, mediu a temperatura de enormes grãos de poeira localizados em torno da jovem estrela 2MASS J16281370-2431391 na região de formação estelar Rho Ophiuchi, a cerca de 400 anos-luz de distância da Terra.
Esta estrela encontra-se rodeada por um disco de gás e poeira, chamado disco protoplanetário, uma vez que se situa na fase inicial da formação de um sistema planetário. Este disco é visto de perfil quando observado a partir da Terra e a sua aparência em imagens no visível levou a que se lhe desse o nome informal de Disco Voador.
Foi observado através do ALMA o brilho emitido pelas moléculas de monóxido de carbono no disco da 2MASS J16281370-2431391. As imagens revelaram-se extremamente nítidas e descobriu-se algo estranho, em alguns casos o sinal recebido era negativo. Normalmente um sinal negativo é fisicamente impossível, mas neste caso existe uma explicação, que leva a uma conclusão surpreendente.
O autor principal Stephane Guilloteau explica: “Este disco não se observa sobre um céu noturno escuro e vazio mas sim em silhueta, frente ao brilho da Nebulosa Rho Ophiuchi. O brilho difuso é demasiado extenso para ser detectado pelo ALMA, no entanto é absorvido pelo disco. O sinal negativo resultante significa que partes do disco estão mais frias do que o fundo. Na realidade, a Terra encontra-se na sombra do Disco Voador!”
A equipe combinou medições do disco obtidas pelo ALMA com observações do brilho de fundo obtidas pelo telescópio IRAM de 30 metros, situado em Espanha. As medições do IRAM foram necessárias uma vez que o ALMA não é sensível ao sinal extenso do fundo. Derivou-se uma temperatura para os grãos de poeira do disco de apenas -266º Celsius (ou seja, apenas 7 Kelvin) à distância de cerca de 15 bilhões de km da estrela central. Esta é a primeira medição direta da temperatura de grãos de poeira grandes (com tamanhos de cerca de 1 milímetro) em tais objetos.
A temperatura medida é muito mais baixa dos que os -258 a -253º Celsius (15 a 20 Kelvin) que a maioria dos modelos teóricos prevê.  Para explicar esta discrepância, os grãos de poeira grandes devem ter propriedades diferentes das que se assumem atualmente, de modo a permitirem o seu arrefecimento até temperaturas tão baixas.
“Para compreendermos qual o impacto desta descoberta na estrutura do disco, temos que descobrir que propriedades da poeira, que sejam plausíveis, podem resultar de tão baixas temperaturas. Temos algumas ideias, por exemplo, a temperatura pode depender do tamanho dos grãos, com os maiores a apresentarem temperaturas mais baixas do que os mais pequenos. No entanto, ainda é muito cedo para termos certezas,” acrescenta o co-autor do trabalho Emmanuel di Folco, do Laboratoire d’Astrophysique de Bordeaux.
Se estas temperaturas baixas da poeira forem encontradas como sendo uma característica normal dos discos protoplanetários, este fato pode ter muitas consequências na compreensão de como é que estes objetos se formam e evoluem.
Por exemplo, propriedades diferentes da poeira afetarão o que se passa quando as partículas colidem e portanto afetarão também o seu papel na criação das sementes da formação de planetas. Ainda não sabemos se esta alteração das propriedades da poeira é ou não significativa relativamente a este exemplo.
Temperaturas baixas da poeira podem também ter um grande impacto nos discos de poeira mais pequenos que se sabe existirem. Se estes discos forem majoritariamente compostos por grãos maiores e mais frios do que o que se supõe atualmente, isto pode significar que estes discos compactos são arbitrariamente massivos e por isso podem ainda formar planetas gigantes relativamente próximos da estrela central.
São claramente necessárias mais observações, no entanto parece que a poeira mais fria descoberta pelo ALMA poderá ter consequências significativas na compreensão dos discos protoplanetários.

Este trabalho foi descrito num artigo científico intitulado “The shadow of the Flying Saucer: A very low temperature for large dust grains”, de S. Guilloteau et al., que foi publicado na revista da especialidade Astronomy & Astrophysics Letters.

Fonte: ESO

Abertura do concurso Apanhe uma Estrela

Os alunos de todo o mundo estão sendo convidados a participar do concurso de escrita de astronomia Apanhe uma Estrela 2016.

Apanhe uma Estrela

© ESO (Apanhe uma Estrela)

Para participar os alunos devem submeter um relatório escrito sobre um tema astronômico à sua escolha, por exemplo: um objeto astronômico, um fenômeno, uma observação, um problema científico ou uma teoria. Os relatórios devem ser escritos em inglês e não podem ter mais de 5.000 palavras. Os alunos podem concorrer em grupos, no máximo de três elementos, mais um líder de grupo que não seja estudante.

As submissões devem ser feitas por email, enviando o relatório em ficheiro pdf para astro.edu@gmail.com. O prazo de entrega de todas as contribuições é o dia 30 de novembro de 2016.

O ESO entregará imagens emolduradas de belos objetos astronômicos aos cinco primeiros lugares. E além destes quadros, os cinco vencedores poderão ainda fazer observações remotas no Observatório Nacional Astronômico Rozhen, na Bulgária, ou participar de uma video-conferência com um astrônomo profissional.

Apanhe uma Estrela é um concurso organizado por uma colaboração entre a European Association for Astronomy Education (EAAE) e European Southern Observatory (ESO). Esta iniciativa pretende estimular a criatividade e o trabalho autónomo dos estudantes de modo a fortalecer e expandir o seu conhecimento astronómico e as suas várias competências.

Encontram-se disponíveis da página internet do Apanhe uma Estrela mais informações sobre o concurso.

Fonte: ESO

terça-feira, 2 de fevereiro de 2016

Nuvem monstruosa é observada retornando à Via Láctea

Astrônomos utilizando telescópio espacial Hubble estão descobrindo que o velho ditado "o que sobe tem que descer" até se aplica a uma nuvem imensa de hidrogênio fora da Via Láctea.

ilusttração da Nuvem Smith caindo na Via Láctea

  © NASA/ESA/A. Feild (ilustração da Nuvem Smith caindo na Via Láctea)

A nuvem invisível está caindo em direção à nossa Galáxia a 1,1 milhões de quilômetros por hora.

Apesar de se conhecerem centenas de nuvens gigantes e velozes de gás em torno da periferia da nossa Galáxia, esta denominada "Nuvem Smith" é única porque a sua trajetória é bem conhecida. As novas observações do Hubble sugerem que foi lançada das regiões exteriores do disco galáctico há cerca de 70 milhões de anos atrás. A nuvem foi descoberta no início da década de 1960 pela estudante de doutoramento em astronomia Gail Smith, que detectou ondas de rádio emitidas pelo seu hidrogênio.

A nuvem está retornando numa rota de colisão e espera-se que "lavre" o disco da Via Láctea daqui a 30 milhões de anos. Quando isso acontecer, os astrônomos acreditam que vai dar início a uma espetacular explosão de formação estelar, talvez fornecendo gás suficiente para fabricar 2 milhões de sóis.

"A nuvem é um exemplo de como a Galáxia muda com o tempo," explica Andrew Fox, líder da equipe e do Space Telescope Science Institute (STScI) em Baltimore, no estado americano de Maryland. "Diz-nos que a Via Láctea é um lugar muito ativo e borbulhante onde o gás pode ser expelido para fora de uma parte do disco e, depois, regressar para outra."

"A nossa Galáxia recicla o seu gás através de nuvens, sendo a Nuvem Smith um exemplo, e irá formar estrelas em lugares diferentes do que no passado. As medições da Nuvem Smith pelo Hubble ajudam-nos a visualizar quão ativos são os discos das galáxias," afirma Fox.

Os astrônomos determinaram que esta região de gás em forma de cometa mede cerca de 11.000 anos-luz de comprimento e 2.500 anos-luz de largura. Se pudesse ser observada no visível, teria um diâmetro aparente no céu 30 vezes maior que a Lua Cheia.

Os astrônomos há muito que pensavam que a Nuvem Smith podia ser uma galáxia falhada, sem estrelas, ou gás que caía para a Via Láctea oriundo do espaço intergaláctico. Se qualquer um destes cenários fosse verdadeiro, a nuvem deveria conter principalmente hidrogênio e hélio, não os elementos mais pesados fabricados pelas estrelas. Mas se viesse de dentro da Galáxia, ela conteria mais dos elementos encontrados no nosso Sol.

A equipe usou o Hubble para medir pela primeira vez a composição química da Nuvem de Smith e para determinar de onde veio. Observaram, no ultravioleta, os núcleos brilhantes de três galáxias ativas que residem a bilhões de anos-luz por trás da nuvem. Usando o instrumento COS (Cosmic Origins Spectrograph) do Hubble, mediram como esta luz é filtrada através da nuvem.

Em particular, procuraram enxofre na nuvem, que pode absorver a luz ultravioleta. "Ao medir o enxofre, podemos aprender quão enriquecida em átomos de enxofre é a nuvem, em comparação com o Sol," explica Fox. O enxofre é um bom indicador da quantidade de elementos mais pesados que residem na nuvem.

Foi descoberto que a Nuvem Smith é tão rica em enxofre como o disco exterior da Via Láctea, uma região a cerca de 40.000 anos-luz do centro da Galáxia (aproximadamente 15.000 anos-luz mais para a periferia da Via Láctea do que o Sol e o Sistema Solar). Isto significa que a Nuvem Smith foi enriquecida por material das estrelas. Isto não acontecia se fosse hidrogênio pristino de fora da Galáxia, ou se fosse o remanescente de uma galáxia falhada e desprovida de estrelas. Em vez disso, a nuvem parece ter sido expulsa de dentro da Via Láctea e está agora de volta como um bumerangue.

Embora isto resolva o mistério da origem da Nuvem de Smith, levanta novas questões: como é que a nuvem chegou onde está agora? Que evento desastroso a catapultou para fora do disco da Via Láctea, e como é que permaneceu intacta? Será que uma região de matéria escura, uma forma invisível de matéria, passou pelo disco e capturou gás da Via Láctea? As respostas poderão ser encontradas em investigações futuras.

A pesquisa foi publicada na edição de 1 janeiro de 2016 da revista The Astrophysical Journal Letters.

Fonte: Space Telescope Science Institute

segunda-feira, 1 de fevereiro de 2016

Uma beleza muitas vezes ignorada

A imagem a seguir mostra a galáxia espiral NGC 986 situada na constelação da Fornalha.

NGC 986

© ESO (NGC 986)

A galáxia, que foi descoberta em 1826 pelo astrônomo escocês James Dunlop, não costuma ser fotografada muitas vezes devido à sua proximidade com o rico e famoso aglomerado de galáxias da Fornalha, o que não deixa de ser uma pena já que esta galáxia, além de ser um grande objeto científico, é também muito bonita.
A NGC 986 situa-se a cerca de 56 milhões de anos-luz de distância e parece quase perfeita vista de face. A sua posição no céu permite-nos observar os dois braços espirais principais e também uma estrutura central em forma de barra, composta por estrelas e poeira, que faz com que este objeto seja classificado como uma galáxia espiral barrada.
Rastreios astronômicos mostraram que cerca de dois terços de todas as galáxias espirais contêm uma barra, incluindo a Via Láctea, e por isso a NGC 986 é um objeto perfeito para estudar a estrutura das galáxias e descobrir mais sobre a nossa própria casa galáctica, a qual se torna difícil de estudar a partir do interior.
Esta imagem, captada pelo instrumento FORS montado no Very Large Telescope (VLT), no Observatório do Paranal, no norte do Chile, foi obtida no âmbito do programa Jóias Cósmicas do ESO, o qual visa obter imagens de objetos interessantes, intrigantes ou visualmente atrativos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrônomos através do arquivo científico do ESO.

Fonte: ESO

MWC 922: A Nebulosa do Quadrado Vermelho

O que poderia fazer com que uma nebulosa parecesse quadrada?

MCW 922

© Peter Tuthill & James Lloyd (MCW 922)

Ninguém sabe ao certo. O sistema de estrelas quentes conhecido como MWC 922 parece fazer parte de uma nebulosa exatamente neste formato. A imagem acima combina exposições em infravermelho do telescópio Hale no Monte Palomar, na Califórnia, e do telescópio Keck-2 em Mauna Kea, no Havaí­. Uma das principais hipóteses precursoras para a nebulosa quadrada é que a estrela central ou estrelas de alguma forma expeliram cones de gás durante um estágio de desenvolvimento tardio. Na nebulosa MWC 922, esses cones coincidentemente incorporam ângulos quase retos e são visíveis de lado. As evidências que respaldam a hipótese dos cones incluem raios radiais na imagem que podem percorrer as paredes dos cones. Pesquisadores especulam que os cones, quando vistos de outro ângulo, poderiam parecer semelhantes aos gigantescos anéis da supernova SN 1987A, possivelmente indicando que uma estrela na MWC 922 poderia um dia explodir em uma supernova semelhante.

Fonte: NASA

A galáxia oculta IC 342

Semelhante em tamanho às grandes e brilhantes galáxias espirais da nossa vizinhança, IC 342 está a apenas 10 milhões de anos luz de distância na direção da constelação boreal da Girafa (Camelopardalis).

  IC 342

  © Fabiomassimo Castelluzzo (IC 342)

A galáxia IC 342 é um universo particular que seria um objeto proeminente nos nossos céus noturnos, mas está obscurecida por um véu de estrelas, gases e poeira cósmica ao longo do plano da Via Láctea.

Mesmo que a luz da galáxia IC 342 esteja reduzida pelas nuvens cósmicas intervenientes, esta imagem telescópica profunda retrata seus aglomerados estelares azuis, a poeira e o brilho em tons de rosa das regiões de formação estelar, imersas nos braços espirais que se espalham a partir do núcleo da galáxia.

A IC 342 pode ter sofrido uma explosão recente de formação estelar e está perto o suficiente para ter influenciado gravitacionalmente a evolução do grupo local de galáxias e a nossa Via Láctea.

Fonte: NASA