segunda-feira, 15 de janeiro de 2018

Buraco negro supermassivo sopra enormes bolhas de gás

Pesquisadores através de vários telescópios, incluindo o telescópio espacial Hubble, descobriram um buraco negro supermassivo soprando enormes bolhas de gás quente e brilhante.

galáxias SDSS J1354 1327 e SDSS J1354 1328

© Hubble (galáxias SDSS J1354+1327 e SDSS J1354+1328)

Uma bolha atualmente está se expandindo para fora do buraco negro, enquanto outra bolha mais velha desaparece lentamente.

Este gigante cósmico fica dentro da galáxia no fundo desta imagem, que fica a 900 milhões de anos-luz da Terra e é conhecida como SDSS J1354+1327. A galáxia maior (na parte superior da imagem) é conhecida como SDSS J1354+1328.

Os buracos negros que podem ter uma massa equivalente a bilhões de sóis, são encontrados no centro da maioria das galáxias, inclusive na Via Láctea. Estes buracos negros são capazes de absorver material em seus arredores, fazendo com que eles brilhem como Núcleos Galácticos Ativos (AGN). No entanto, este processo de absorção não é contínuo, pois depende da quantidade de matéria disponível para o buraco negro consomir; se o material circundante é irregular, um AGN pode ser visto cintilando em longos períodos cósmicos.

Esta acreção irregular pode ter acontecido com o buraco negro na SDSS J1354+1327. Os cientistas acreditam que estas duas saídas de material são o resultado do buraco negro que emana material após dois eventos de abastecimeto diferentes.

A primeira explosão criou o resquício que desvanece ao sul: um cone de gás com 33.000 anos-luz. Cerca de 100.000 anos depois, uma segunda explosão gerou a saída mais compacta e radiante que emana do topo da galáxia: um cone de gás sobressaltado com cerca de 3.300 anos-luz.

Fonte: ESA

sexta-feira, 12 de janeiro de 2018

Primeiras galáxias do Universo giravam como a Via Láctea

Os astrônomos olharam para trás no tempo, para uma época pouco depois do Big Bang, e descobriram gás turbulento em algumas das primeiras galáxias que se formaram no Universo.

ilustração da rotação de uma galáxia no Universo jovem

© Amanda Smith (ilustração da rotação de uma galáxia no Universo jovem)

Estas galáxias primordiais, observadas como eram há quase 13 bilhões de anos, giravam como um redemoinho, de modo semelhante à nossa própria Via Láctea. No início do Universo, a gravidade fez com que o gás fluísse rapidamente para as galáxias, agitando-as e formando muitas estrelas novas, as violentas explosões de supernova destas estrelas também tornaram o gás turbulento.

Uma equipe internacional liderada por Renske Smit do Instituto Kavli de Cosmologia da Universidade de Cambridge usou o ALMA (Atacama Large Millimeter/submillimeter Array) para abrir uma nova janela no Universo distante e identificou galáxias normais de formação estelar num estágio muito inicial da história cósmica.

A luz de objetos distantes leva tempo até alcançar a Terra, de modo que a observação de objetos a bilhões de anos-luz permite-nos olhar para trás no tempo e observar diretamente a formação das galáxias mais antigas. No entanto, naquela época o Universo estava repleto de uma "neblina" obscura de hidrogênio neutro, o que torna difícil ver a formação das primeiras galáxias com telescópios ópticos.

Smit e colegas usaram o ALMA para observar duas pequenas galáxias recém-nascidas, como existiam apenas 800 milhões de anos após o Big Bang. Ao analisarem o espectro da radiação infravermelha distante recolhida pelo ALMA, foram capazes de estabelecer a distância às galáxias e, pela primeira vez, ver o movimento interno do gás que abasteceu o seu crescimento.

"Até à construção do ALMA, nunca tínhamos conseguido ver a formação de galáxias em tão grande detalhe e nunca tínhamos sido capazes de medir o movimento do gás em galáxias tão cedo na história do Universo," afirma Stefano Carniani, do Laboratório Cavendish e do Instituto Kavli de Cosmologia, ambos de Cambridge.

Os cientistas descobriram que o gás nestas galáxias recém-nascidas rodava e girava num movimento parecido com o de um redemoinho, um movimento semelhante ao da nossa própria Galáxia e de outras galáxias mais maduras muito mais tarde na história do Universo. Apesar do seu tamanho relativamente pequeno, cerca de cinco vezes menores que a Via Láctea, estas galáxias formavam estrelas a um ritmo maior do que outras galáxias jovens, mas surpreendentemente foi descoberto que as galáxias não eram tão caóticas quanto o esperado.

Os dados deste projeto sobre galáxias pequenas preparam o caminho para estudos maiores de galáxias durante os primeiros bilhões de anos do tempo cósmico.

Os resultados foram apresentados na 231.ª reunião da Sociedade Astronômica Americana e divulgados na revista Nature.

Fonte: National Radio Astronomy Observatory

Exoplanetas têm tamanhos semelhantes e espaçamento orbital regular

Uma equipe internacional liderada pela astrofísica Lauren Weiss da Universidade de Montreal descobriu que os exoplanetas que orbitam a mesma estrela tendem a ter tamanhos semelhantes e espaçamento orbital regular.

ilustração do exoplaneta Kepler-11

© NASA/Tim Pyle (ilustração do exoplaneta Kepler-11)

O exoplaneta Kepler-11 é uma estrela parecida com o Sol com seis planetas em órbita.

Este padrão, revelado pelas novas observações do Observatório W. M. Keck em Mauna Kea, Havaí, de sistemas planetários descobertos pelo telescópio Kepler, pode sugerir que a maioria dos sistemas planetários tem uma história de formação diferente da do Sistema Solar.

O telescópio espacial Kepler, lançado em 2009, possibilitou a descoberta de milhares de exoplanetas. Esta grande amostra permite não apenas estudar sistemas individuais, mas também tirar conclusões sobre os sistemas planetários em geral. Weiss faz parte do levantamento CKS (California-Kepler Survey), que usou o Observatório W. M. Keck para obter espectros de alta resolução de 1.305 estrelas que hospedam 2.025 planetas de trânsito originalmente descobertos pelo Kepler. A partir destes espectros, mediram os tamanhos precisos das estrelas e dos seus planetas.

Nesta nova análise liderada por Weiss, a equipe focou-se em 909 planetas pertencentes a 355 sistemas multiplanetários. Estes planetas estão localizados principalmente entre 1.000 e 4.000 anos-luz de distância da Terra. Usando uma análise estatística foram encontrados dois padrões surpreendentes. Foi descoberto que os exoplanetas tendem a ter o mesmo tamanho que os seus vizinhos. Se um planeta é pequeno, o próximo planeta ao redor da mesma estrela muito provavelmente também será pequeno. Foi descoberto também que os planetas em órbita da mesma estrela tendem a ter um espaçamento orbital regular.

Os tamanhos semelhantes e o espaçamento orbital dos planetas têm implicações para a forma como a maioria dos sistemas planetários se formam. Na teoria clássica da formação planetária, os planetas formam-se num disco protoplanetário que rodeia uma estrela recém-formada. Os planetas podem formar-se em configurações compactas com tamanhos semelhantes e um espaçamento orbital regular, de forma semelhante ao padrão recém-observado em sistemas exoplanetários. No entanto, no nosso Sistema Solar, os planetas interiores têm espaçamentos surpreendentemente grandes e tamanhos diversos. As evidências abundantes no Sistema Solar sugerem que Júpiter e Saturno perturbaram a estrutura inicial do nosso sistema, resultando nos quatro planetas terrestres amplamente espaçados que temos hoje. O fato de que os planetas na maioria dos sistemas ainda têm tamanhos parecidos e a razão de estarem regularmente espaçados sugerem que talvez tenham permanecido não perturbados desde a sua formação.

Para testar esta hipótese, Weiss está realizando um novo estudo no Observatório Keck para procurar análogos de Júpiter em torno de sistemas multiplanetários do Kepler. Os sistemas planetários estudados têm múltiplos planetas bastante perto da sua estrela. Devido à duração limitada da missão Kepler, pouco se sabe sobre o tipo de planetas que orbitam a maiores distâncias orbitais. Espera-se testar como a presença ou a ausência de planetas parecidos com Júpiter, a grandes distâncias orbitais, se relacionam com padrões nos sistemas planetários interiores.

Independentemente das suas populações exteriores, a semelhança dos planetas nas regiões internas dos sistemas extrassolares requer uma explicação. Se o fator decisivo para os tamanhos dos planetas puder ser identificado, isto poderá ajudar a determinar quais as estrelas suscetíveis de abrigar planetas terrestres adequados para a vida.

Um artigo foi publicado na revista The Astronomical Journal.

Fonte: Université de Montréal

Titã apresenta características típicas da Terra

Usando o agora completo conjunto de dados da sonda Cassini, astrônomos da Universidade de Cornell criaram um novo mapa topográfico global da lua de Saturno, Titã, que abriu novas janelas para entender os seus fluxos líquidos e os seus terrenos.

Titã

© NASA/Cassini (Titã)

A sonda Cassini usou radar e câmaras infravermelhas para observar por baixo da espessa atmosfera de Titã e mapear os detalhes à superfície.

A criação do mapa demorou cerca de um ano. Ele combina todos dados topográficos de Titã obtidos de várias fontes. Uma vez que apenas 9% de Titã foi observado em alta resolução, com 25 a 30% da topografia observada em resoluções mais baixas, o resto do satélite foi mapeado usando um algoritmo de interpolação e um processo de minimização global, que reduziu erros tais como os decorrentes da posição da nave espacial.

O mapa revelou várias características novas em Titã, incluindo novas montanhas, nenhuma superior a 700 metros. O mapa também fornece uma visão dos altos e baixos da topografia de Titã, que permitiu a confirmação que dois locais na região equatorial de Titã são depressões que podem ou ser mares antigos e secos ou fluxos criovulcânicos.

O mapa também revelou que Titã é um pouco mais achatado do que se sabia anteriormente, o que sugere que há mais variabilidade na espessura da crosta de Titã.

O conjunto de dados pode ser descarregado sob a forma dos dados que foram observados, bem como estes mesmos dados mais os interpolados que não foram observados. O mapa será importante para aqueles que modelam o clima de Titã, estudando a forma e gravidade de Titã, e testando os modelos do interior, bem como para aqueles que procurem compreender formas morfológicas em Titã.

Foram encontrados três resultados importantes usando os dados topográficos do novo mapa. O primeiro é que os três mares de Titã compartilham uma superfície equipotencial comum, o que significa que se formam ao nível do mar, tal como os oceanos da Terra. Ou porque existe fluxo subsuperficial entre os mares ou porque os canais entre eles permitem com que passe líquido suficiente, os oceanos em Titã estão todos à mesma elevação.

"Estamos medindo a elevação de uma superfície líquida em outro corpo a 10 UA do Sol com uma precisão de aproximadamente 40 centímetros. Dado que temos uma precisão tão incrível, fomos capazes de ver que entre estes dois mares a elevação variou suavemente cerca de 11 metros, em relação ao centro de massa de Titã, consistente com a mudança esperada no potencial gravitacional. Estamos medindo o geoide de Titã. Esta é a forma que a superfície tomaria sob a influência, apenas, da gravidade e da rotação, que é a mesma forma que domina os oceanos da Terra," comenta Alex Hayes, professor assistente de astronomia da Universidade de Cornell.

O segundo resultado prova uma hipótese que os lagos de Titã comunicam uns com os outros através da subsuperfície. Hayes e a sua equipe mediram a elevação dos lagos ainda com líquido, bem como aqueles atualmente secos, e descobriram que os lagos existem a centenas de metros acima do nível do mar e que, dentro de uma bacia hidrográfica, as bases dos lagos vazios estão todas em maiores elevações do que as dos lagos com líquido na vizinhança.

"Nós não vemos nenhum lago vazio abaixo dos lagos com líquido locais, porque se estivessem abaixo deste nível, estariam preenchidos. Isto sugere que existe um fluxo subterrâneo e que estão se comunicando uns com os outros," comenta Hayes. "Também nos diz que existem hidrocarbonetos líquidos armazenados à subsuperfície de Titã."

O resultado final levanta um novo mistério sobre Titã. Os pesquisadores descobriram que a vasta maioria dos lagos do satélite de Saturno situa-se em depressões e os lagos estão rodeados por cumes altos, em alguns casos com centenas de metros de altura.

Os lagos parecem ter sido formados da mesma maneira que os lagos do tipo cársico, na Terra, onde o material situado por baixo dissolve-se e a superfície colapsa, formando furos no chão. Os lagos em Titã, como estes lagos terrestres, são topograficamente fechados, sem canais de entrada ou de saída. Mas os da Terra não possuem orlas elevadas e acentuadas.

A forma dos lagos indica um processo chamado retiro de escarpas uniforme, onde as bordas dos lagos expandem-se a um ritmo constante. O maior lago a sul, por exemplo, parece-se com uma série de lagos vazios mais pequenos que coalesceram ou se reuniram numa única grande característica.

"Mas se estas características crescem de dentro para fora, será que isso significa que estão sempre destruindo e recriando as orlas e que as orlas se movem para fora também? Isto propiciará compreender a evolução das bacias polares de Titã," realça Hayes.

Foram publicados dois artigos descrevendo o mapa na revista Geophysical Review Letters.

Fonte: Cornell University

quinta-feira, 11 de janeiro de 2018

RCW 114: Um Coração do Dragão no Altar

Esta nuvem cósmica, grande e dramaticamente moldada com formato de um coração, abrange quase 7 graus ou 14 luas cheias no céu do planeta Terra em direção à constelação Ara (Altar) no hemisfério celestial sul.

RCW 114

© Andrew Campbell (RCW 114)

Este mosaico telescópico mostra a RCW 114, uma nebulosa filamentar que revela a emissão avermelhada de átomos de hidrogênio ionizado.

A RCW 114 foi reconhecida como um remanescente de supernova. Seus extensos filamentos de emissão são produzidos à medida que a onda de choque ainda em expansão da explosão da morte de uma estrela massiva varre o meio interestelar circundante.

Estimativas consistentes indicam que sua distância é mais de 600 anos-luz, cujo diâmetro é de cerca de 100 anos-luz ou mais. A luz da explosão da supernova que criou a RCW 114 alcançou a Terra há cerca de 20 mil anos. Uma estrela de nêutrons ou pulsar foi recentemente identificada como restos colapsados do núcleo estelar.

Fonte: NASA

Um par de galáxias em fusão

Onde as estrelas se formam quando duas galáxias colidem?

Arp 243

© Hubble (Arp 243)

Para ajudar a descobrir isso, os astrônomos fizeram imagens do par de galáxias em fusão, conhecido como NGC 2623, usando o telescópio espacial Hubble. A análise desta imagem no visível efetuada pelo Hubble, bem como imagens da NGC 2623 realizadas em infravermelho pelo telescópio espacial Spitzer, em raios X pelo XMM-Newton e em ultravioleta pelo GALEX, indicaram que as duas galáxias espirais originais, aparecem agora muito misturadas e que seus núcleos estão unidos em um Núcleo Galáctico Ativo (AGN).

A formação de estrelas continua ao redor deste núcleo perto do centro da imagem, ao longo das caudas de marés esticadas e talvez, de forma surpreendente numa região deslocada do núcleo, na parte superior esquerda onde existem aglomerados de estrelas brilhantes e azuis. O processo de colisão entre galáxias pode levar centenas de milhões de anos, e passar por momentos gravitacionalmente destrutivos.

A NGC 2623, também conhecida como Arp 243, se estende por cerca de 50 mil anos-luz e localiza-se a cerca de 250 milhões de anos-luz de distância da Terra, na constelação do Caranguejo. Reconstruir as galáxias originais e saber como a fusão aconteceu é normalmente algo desafiador, algumas vezes impossível, mas geralmente muito importante para se entender como ocorreu a evolução do Universo.

Fonte: NASA

terça-feira, 9 de janeiro de 2018

Ondas gravitacionais medem o Universo

A detecção direta de ondas gravitacionais em pelo menos cinco fontes nos últimos dois anos fornece uma confirmação espetacular do modelo de gravidade e espaço-tempo de Albert Einstein.

NGC 4993 e GW170817

© NASA/ESA (NGC 4993 e GW170817)

A galáxia NGC 4993 hospeda o evento de onda gravitacional GW170817 que foi usado para medir a idade do Universo. A fonte deste evento é o ponto avermelhado para cima e para a esquerda do centro da galáxia; não estava aí em imagens anteriores.

A modelagem destes eventos também forneceu informações sobre a formação de estrelas massivas, explosões de raios gama, características das estrelas de nêutrons e a verificação de ideias teóricas sobre como os elementos muito pesados, como o ouro, são produzidos.

Os astrônomos usaram agora um único evento de onda gravitacional (GW170817) para medir a idade do Universo. Uma equipe composta por 1.314 cientistas de todo o mundo contribuiu para a detecção de ondas gravitacionais oriundas da fusão de um par de estrelas de nêutrons, seguida pela detecção de raios gama e depois pela identificação da origem do cataclismo numa fonte localizada na galáxia NGC4993 avistada em imagens obtidas com vários atrasos de tempo e em comprimentos de onda que vão desde os raios X até ao rádio.

A análise das ondas gravitacionais deste evento infere a sua força intrínseca. A força observada é menor, o que implica que a fonte está a aproximadamente 140 milhões de anos-luz de distância. A NGC 4993, a sua galáxia hospedeira, tem uma velocidade externa devido à expansão do Universo que pode ser medida a partir das linhas do espectro. A determinação da distância da galáxia e da velocidade com que se afasta de nós permite que os cientistas calculem o tempo desde que a expansão começou, a idade do Universo: entre aproximadamente 11,9 e 15,7 bilhões de anos, tendo em conta as incertezas experimentais.

A idade derivada deste único evento é consistente com as estimativas de décadas de observações que se baseiam em métodos estatísticos usando outras duas fontes: a radiação cósmica de fundo em micro-ondas e os movimentos das galáxias. A primeira baseia-se no mapeamento da distribuição muito fraca de luz que remonta a uma época mais ou menos 400 mil anos após o Big Bang; a segunda envolve uma análise estatística das distâncias e movimentos de dezenas de milhares de galáxias em épocas relativamente recentes. O fato de que este único evento de onda gravitacional foi capaz de determinar a idade do Universo, é incrível, e não é possível para cada detecção de ondas gravitacionais. Neste caso, houve a identificação óptica da fonte, de modo que uma velocidade pôde ser medida, e a fonte nem estava muito longe nem era muito tênue. Com uma grande amostra estatística de eventos de ondas gravitacionais de todos os tipos, o intervalo atual de valores para a idade vai ficar menor.

O novo resultado é intrigante por outro motivo. Embora tanto a radiação cósmica de fundo em micro-ondas e as medições das galáxias sejam bastante precisas, parecem discordar uma da outra em mais ou menos 10%. Esta divergência pode ser apenas um erro observacional, mas alguns astrônomos suspeitam que pode ser uma diferença real, refletindo algo que falta atualmente na nossa imagem do processo de expansão cósmica, talvez relacionada com a radiação cósmica de fundo remontar a uma época radicalmente diferente do tempo cósmico do que os dados das galáxias. Este terceiro método, os eventos de ondas gravitacionais, podem ajudar a resolver o enigma.

Fonte: Harvard–Smithsonian Center for Astrophysics

O Universo é repleto de estrelas massivas

Uma equipe internacional de astrônomos revelou uma abundância surpreendente de estrelas massivas numa galáxia vizinha.

Nebulosa da Tarântula

© ESO/TRAPPIST (Nebulosa da Tarântula)

A descoberta, feita na gigantesca região de formação estelar 30 Doradus na Grande Nuvem de Magalhães, tem consequências importantes para a nossa compreensão de como as estrelas transformaram o Universo pristino até o atual.

"Ficamos surpreendidos quando percebemos que 30 Doradus formou muitas mais estrelas massivas do que o esperado," afirma o pesquisador Fabian Schneider, do Departamento de Física da Universidade de Oxford.

Como parte do levantamento VFTS (VLT-FLAMES Tarantula Survey), a equipe usou o VLT (Very Large Telescope) do ESO para observar quase 1.000 estrelas gigantes em 30 Doradus, um enorme berçário estelar também conhecido como Nebulosa da Tarântula. Foram efetuadas análises detalhadas de aproximadamente 250 estrelas com massas entre 15 e 200 vezes a massa do nosso Sol para determinar a distribuição de estrelas massivas nascidas em 30 Doradus, a chamada função de massa inicial.

As estrelas massivas são particularmente importantes para os astrônomos devido à sua enorme influência nos arredores. Podem explodir como espetaculares supernovas no final das suas vidas, formando alguns dos objetos mais exóticos do Universo, as estrelas de nêutrons e buracos negros.

"Nós fomos não só surpreendidos pelo grande número de estrelas massivas, mas também pela sua função de massa inicial que é densamente amostrada até às 200 massas solares," acrescenta Hugues Sana da Universidade de Leuven, na Bélgica.

Até recentemente, a existência de estrelas até 200 massas solares era altamente disputada e o estudo mostra que parece provável uma massa máxima de nascimento estelar de 200 a 300 sóis.

Na maior parte dos locais do Universo estudados pelos astrônomos até à data, as estrelas tornam-se mais raras quanto mais massivas são. A função de massa inicial prevê que a maioria da massa estelar se encontre em estrelas de baixa massa e que menos de 1% de todas as estrelas nascem com massas superiores a 10 vezes a do Sol. A medição da proporção de estrelas massivas é extremamente complexa, principalmente devido à sua escassez, e há apenas um punhado de locais no Universo onde isto pode ser feito.

A região explorada 30 Doradus, a maior região local de formação estelar, hospeda algumas das estrelas mais massivas já encontradas, possibilitando determinar as massas estelares com ferramentas observacionais, teóricas e estatísticas únicas. Esta grande amostra permitiu que os cientistas obtivessem o segmento mais preciso de massa elevada da função de massa inicial até o momento, e mostrar que as estrelas massivas são muito mais abundantes do que se pensava.

"De fato, os nossos resultados sugerem que a maioria da massa estelar, na realidade, já não está em estrelas de baixa massa, mas que uma fração significativa está em estrelas de massa elevada," acrescenta Chris Evans do Centro de Astronomia e Tecnologia do Reino Unido.

As estrelas são motores cósmicos e produziram a maioria dos elementos químicos mais pesados do que o hélio, desde o oxigênio que respiramos todos os dias até ao ferro no nosso sangue. Durante as suas vidas, as estrelas gigantes produzem grandes quantidades de radiação ionizante e energia cinética através de fortes ventos estelares. A radiação ionizante das estrelas massivas foi crucial para a reiluminação do Universo após a chamada Idade das Trevas, e o seu retorno mecânico impulsiona a evolução das galáxias.

"Os nossos resultados têm consequências de longo alcance para a compreensão do nosso cosmos: podem existir 70% mais supernovas, triplicando os rendimentos químicos e até quatro vezes a radiação ionizante das populações de estrelas massivas. Além disso, a taxa de formação de buracos negros pode aumentar 180%, traduzindo-se diretamente num aumento correspondente de fusões de buracos negros binários que foram recentemente detectados através dos seus sinais de ondas gravitacionais," complementou Fabian Schneider.

Esta pesquisa deixa muitas questões em aberto: quão universais são os achados e quais são as consequências para a evolução do nosso cosmos e para a ocorrência de supernovas e eventos de ondas gravitacionais?

Os resultados foram publicados na revista Science.

Fonte: University of Oxford

sexta-feira, 5 de janeiro de 2018

Buracos negros supermassivos controlam formação estelar em galáxias

As galáxias jovens resplandecem com novas estrelas brilhantes que se formam a um ritmo elevado, mas a formação estelar eventualmente cessa quando uma galáxia evolui.

Centauro A

© ESO-MPG/MPIfR-APEX/NASA-Chandra (Centauro A)

O poder de um buraco negro supermassivo pode ser visto nesta imagem de Centauro A, um dos núcleos galácticos ativos mais próximos da Terra. A imagem combina dados de vários telescópios em diferentes comprimentos de onda, mostrando jatos e lóbulos alimentados pelo buraco negro supermassivo no centro da galáxia.

Um novo estudo mostra que a massa do buraco negro no centro da galáxia determina quando a "extinção" de formação estelar ocorre.

Cada galáxia massiva tem um buraco negro supermassivo central, com mais de um milhão de vezes a massa do Sol, revelando a sua presença através dos efeitos gravitacionais nas estrelas da galáxia e por vezes alimentando a radiação energética de um núcleo galáctico ativo (AGN). Pensa-se que a energia que a galáxia recebe do núcleo galáctico ativo desliga a formação estelar através do aquecimento e dissipação do gás que, de outra forma, se condensaria em estrelas à medida que arrefecia.

Esta ideia já existe há décadas e os astrofísicos descobriram que as simulações da evolução galáctica devem incorporar retorno do buraco negro a fim de reproduzir as propriedades observadas das galáxias. Mas as evidências observacionais de uma ligação entre os buracos negros supermassivos e a formação estelar não existiam, até agora. Esta é a primeira evidência observacional direta onde é possível ver o efeito do buraco negro na história da formação estelar da galáxia.

Os novos resultados revelam uma interação contínua entre a atividade do buraco negro e a formação estelar ao longo da vida de uma galáxia, afetando todas as gerações de estrelas formadas à medida que a galáxia evolui.

Liderado por Ignacio Martín-Navarro, pesquisador de pós-doutorado da Universidade da Califórnia em Santa Cruz, o estudo focou-se nas galáxias massivas para as quais a massa do buraco negro central já foi medida em estudos anteriores através da análise dos movimentos das estrelas perto do centro da galáxia. Para determinar as histórias de formação estelar das galáxias, Martín-Navarro examinou os espectros detalhados da luz obtidos pelo Hobby-Eberly Telescope Massive Galaxy Survey.

A espectroscopia permite aos astrônomos separar e medir os diferentes comprimentos de onda da luz de um objeto. Martín-Navarro utilizou técnicas computacionais para analisar o espectro de cada galáxia e recuperar a sua história de formação estelar, encontrando a melhor combinação de populações estelares que mais se adequa aos dados espectroscópicos.

Quando comparou as histórias de formação estelar de galáxias com buracos negros de diferentes massas, encontrou diferenças marcantes. Estas diferenças só se correlacionaram com a massa do buraco negro e não com a morfologia, tamanho e outras propriedades galácticas.

"Para as galáxias com a mesma massa de estrelas, mas um buraco negro de massa diferente no centro, estas galáxias com buracos negros maiores 'apagaram-se' mais cedo do que aquelas com buracos negros menores. Portanto, a formação estelar durou mais tempo nas galáxias com buracos negros centrais menores," explica Martín-Navarro.

Outros pesquisadores procuraram correlações entre a formação estelar e a luminosidade dos núcleos galácticos ativos, sem sucesso. Isto pode ser devido às escalas de tempo serem tão diferentes, com a formação estelar ocorrendo ao longo de centenas de milhões de anos, enquanto as explosões dos núcleos galácticos ativos ocorrem em períodos mais curtos.

Um buraco negro supermassivo só é luminoso quando está engolindo ativamente matéria das regiões internas da sua galáxia hospedeira. Os núcleos galácticos ativos são altamente variáveis e as suas propriedades dependem do tamanho do buraco negro, da taxa de acreção de material que cai na sua direção e de outros fatores.

"Existem várias maneiras pelas quais um buraco negro lança energia para a galáxia e os teóricos têm muitas ideias sobre o modo como esta extinção acontece, mas para encaixar estas novas observações nos modelos precisamos de continuar trabalhando," conclui Aaron Romanowsky, astrônomo da Universidade Estatal de San Jose e da Universidade da Califórnia.

O estudo foi publicado dia 1 de janeiro na revista Nature.

Fonte: University of California

Uma visão profunda dos corações das estrelas

À primeira vista, parece impossível observar o interior de uma estrela.

ilustração do interior estelar

© ESA/Earl Bellinger (ilustração do interior estelar)

Uma equipe internacional de astrônomos, sob a orientação de Earl Bellinger e Saskia Hekker do Instituto Max Planck para Pesquisa do Sistema Solar em Göttingen, Alemanha, determinou pela primeira vez a estrutura interna profunda de duas estrelas com base nas suas oscilações.

O nosso Sol, e a maioria das outras estrelas, têm "pulsações" que se espalham pelo interior estelar como ondas sonoras. As frequências destas ondas são impressas na luz da estrela e podem mais tarde ser observadas pelos astrônomos aqui na Terra. Semelhante à forma como os sismólogos decifram a estrutura interna do nosso planeta através da análise de sismos, os astrônomos determinam as propriedades de estrelas a partir das suas oscilações, um campo chamado asterosismologia. Agora, pela primeira vez, uma análise detalhada destas vibrações permitiu que Earl Bellinger, Saskia Hekker e colegas medissem a estrutura interna de duas estrelas distantes.

As duas estrelas que analisaram fazem parte do sistema 16 Cygni (16 Cyg A e 16 Cyg B) e ambas são muito parecidas com o nosso Sol. "Devido à sua pequena distância de apenas 70 anos-luz, estas estrelas são relativamente brilhantes e, portanto, ideais para a nossa análise," comenta Eartl Bellinger. "Anteriormente, só era possível fazer modelos do interior das estrelas. Agora podemos medi-los."

Para fazer um modelo do interior de uma estrela, os astrofísicos variam os modelos de evolução estelar até que um deles encaixe no espectro de frequência observado. No entanto, as oscilações dos modelos teóricos diferem frequentemente daquelas das estrelas, provavelmente devido a alguma física estelar ainda desconhecida.

Bellinger e Hekker decidiram, portanto, usar o método inverso. Aqui, derivaram as propriedades locais do interior estelar a partir das frequências observadas. Este método depende menos dos pressupostos teóricos, mas requer uma excelente qualidade dos dados medidos e é matematicamente complexo.

Usando o método inverso, os pesquisadores analisaram mais de 500.000 km para o interior das estrelas, e descobriram que a velocidade do som nas regiões centrais é maior do que a prevista pelos modelos. "No caso de 16 Cyg B, estas diferenças podem ser explicadas corrigindo a massa e o tamanho da estrela," explica Bellinger. No entanto, no caso de 16 Cyg A, a causa das discrepâncias não pôde ser identificada.

É possível que fenômenos físicos ainda desconhecidos não sejam suficientemente levados em consideração pelos modelos evolutivos atuais. "Os elementos que foram criados nos estágios iniciais da evolução da estrela podem ter sido transportados desde o núcleo da estrela até às suas camadas exteriores," acrescenta Bellinger. "Isso mudaria a estratificação interna da estrela, o que então afeta a forma como oscila."

Esta primeira análise estrutural das duas estrelas será seguida por mais. "Dez a vinte estrelas adicionais, adequadas para esta análise, podem ser encontradas nos dados do telescópio espacial Kepler," comenta Saskia Hekker, que lidera o grupo de pesquisa SAGE (Stellar Ages and Galactic Evolution) no Instituto Max Planck. No futuro, a missão TESS (Transiting Exoplanet Survey Satellite) da NASA e o telescópio espacial PLATO (Planetary Transits and Oscillation of Stars) planejado pela ESA vão recolher ainda mais dados para este campo de pesquisa.

O método inverso fornece novas informações que ajudarão a melhor entender a física no interior das estrelas. Isto levará a melhores modelos estelares, que aperfeiçoarão a nossa capacidade de prever a evolução futura do Sol e de outras estrelas na nossa Galáxia.

Fonte: Max Planck Institute for Solar System Research

quarta-feira, 3 de janeiro de 2018

A Nebulosa da Hélice

Será que o nosso Sol terá a aparência desta nebulosa no futuro?

Nebulosa da Hélice

© CFHT (Nebulosa da Hélice)

A Nebulosa da Hélice é um dos exemplos mais brilhantes e mais próximos de uma nebulosa planetária, uma nuvem de gás criada no final da vida de uma estrela parecida com o Sol. Os gases externos da estrela expulsos no espaço aparecem do nosso ponto de vista com o aspecto de uma hélice. O núcleo estelar central remanescente, destinado a tornar-se uma estrela anã branca, brilha em luz tão enérgica que faz com que o gás anteriormente expulso fique fluorescente.

A Nebulosa da Hélice, cuja designação é NGC 7293, fica a cerca de 700 anos-luz de distância em direção à constelação de Aquarius e abrange cerca de 2,5 anos-luz. A imagem acima foi obtida com o Telescópio Canadá-França-Havaí (CFHT) localizado no cume do vulcão adormecido Mauna Kea no Havaí, EUA. Uma imagem vista de perto da borda interna da Nebulosa da Hélice mostra nós de gás complexos de origem desconhecida.

Fonte: NASA

A galáxia anã Kiso 5639

Esta imagem realizada pelo telescópio espacial Hubble mostra a galáxia anã Kiso 5639, onde está acontecendo uma grande formação de estrelas.

galáxia anã Kiso 5639

© Hubble (galáxia anã Kiso 5639)

A Kiso 5639 tem uma forma parecida com uma panqueca, mas como está inclinada em relação à Terra, ela lembra um foguete, com uma ponta brilhante e uma longa cauda. Sua aparência faz com que ela seja classificada como sendo uma galáxia do tipo um girino.

A parte que lembra a cabeça brilha devido ao hidrogênio, iluminado pela explosão de novas estrelas. A massa destas jovens estrelas é de cerca de 1 milhão de vezes a massa do Sol. As estrelas estão agrupadas em grandes aglomerados que se formaram a menos de um milhão de anos atrás.

As estrelas consistem principalmente de hidrogênio e hélio, mas produzem também elementos mais pesados como oxigênio e carbono. Quando as estrelas morrem, elas lançam estes elementos mais pesados para o espaço e enriquecem o gás circundante. Na Kiso 5639, o gás brilhante na cabeça da galáxia é mais deficiente em elementos pesados, do que o resto da galáxia. Os astrônomos acreditam que o último evento de formação de estrelas, aconteceu quando a galáxia capturou gás primordial de seus arredores.

As cavidades no gás existem devido à numerosas detonações de supernovas, que acontecem como explosões de fogos de artifício no céu, cavando buracos no gás superaquecido.

A cauda alongada com brilhantes estrelas azuis, vista na imagem se esticando para longe da cabeça da galáxia, contém no mínimo 4 distintas regiões de formação de estrelas. Estas estrelas parecem ser mais velhas do que a região de formação de estrelas na cabeça da galáxia.

Os filamentos compostos de gás e de algumas estrelas se estendem também a partir do corpo principal deste girino cósmico.

A Kiso 5639 está localizada a aproximadamente 82 milhões de anos-luz de distância da Terra, e só a cabeça da galáxia tem cerca de 2.700 anos-luz de diâmetro.

Fonte: ESA

segunda-feira, 1 de janeiro de 2018

Faixas de gás e poeira repletas de pérolas cósmicas

A fotografia abaixo mostra faixas de gás e poeira em torno do centro da galáxia NGC 1398.

NGC 1398

© ESO/VLT (NGC 1398)

A NGC 1398 é uma galáxia espiral barrada e situa-se na constelação da Fornalha, a aproximadamente 65 milhões de anos-luz de distância da Terra.

Em vez de começarem no meio da galáxia e espiralarem para o exterior, os braços em espiral da galáxia NGC 1398 têm origem numa barra reta, formada de estrelas, que corta a região central da galáxia. Uma grande parte das galáxias em espiral, cerca de dois terços, apresenta esta estrutura, no entanto ainda não é claro se e como é que estas barras afetam o comportamento e o desenvolvimento das suas galáxias.

Esta imagem foi criada a partir de dados obtidos pelo instrumento FORS2 (FOcal Reducer/low dispersion Spectrograph 2), montado no Very Large Telescope (VLT) do ESO no Observatório do Paranal, no Chile, e mostra a NGC 1398 em grande detalhe, dos escuros trilhos de poeira que sarapintam os braços em espiral às regiões de formação estelar em tons rosa que aparecem nas regiões mais externas.

A imagem foi criada no âmbito do programa Jóias Cósmicas do ESO, o qual visa obter imagens de objetos interessantes, intrigantes ou visualmente atrativos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrônomos através do arquivo científico do ESO.

Fonte: ESO

Maser e buraco negro supermassivo

A imagem abaixo captada pela Wide Field Camera 3 (WFC3) do telescópio espacial Hubble, mostra uma galáxia chamada UGC 6093.

UGC 6093

© Hubble (UGC 6093)

A UGC 6093 é uma galáxia espiral barrada, que tem belos braços que curvam para fora de uma barra que corta o centro da galáxia. É classificada como uma galáxia ativa, o que significa que ela hospeda um núcleo galáctico ativo (AGN), ou seja, uma região compacta no centro de uma galáxia, dentro da qual o material é arrastado para um buraco negro supermassivo. Como este buraco negro devora a matéria circundante, ele emite radiação intensa, fazendo com que ela brilhe intensamente.

Mas a UGC 6093 é ainda mais exótica. A galáxia essencialmente atua como um laser astronômico gigante que expande a luz no micro-ondas, este comprimentos de onda não é visível, sendo este tipo de objeto denominado megamaser (o que é o termo para um laser de micro-ondas). Os megamasers como o UGC 6093 podem ser cerca de 100 milhões de vezes mais brilhantes do que os masers encontrados em galáxias como a Via Láctea.

A câmara do Hubble observa a luz que abrange os comprimentos de onda do infravermelho próximo, através do alcance visível, até o ultravioleta próximo. Tem dois canais que detectam e processam luz diferente, permitindo que os astrônomos estudem uma variedade notável de fenômenos astrofísicos; por exemplo, o canal UV-visível pode estudar galáxias submetidas à formação de estrelas mssivas, enquanto o canal do infravermelho próximo pode estudar a luz vermelha de galáxias no Universo distante. Esta imagem multibanda torna o Hubble inestimável no estudo das galáxias megamaser, pois é capaz de desvendar sua complexidade intrigante.

Fonte: ESA

A nebulosa M78 na constelação de Órion

As nuvens de poeira interestelar e as nebulosas brilhantes abundam na fértil constelação de Órion.

M78

© Fabian Neyer (M78)

Uma das nebulosas mais brilhantes é a M78, que aparece no centro da imagem acima, vista em campo amplo cobrindo uma área ao norte do Cinturão de Órion. Localizada a uma distância de cerca de 1.500 anos-luz, a nebulosa de reflexão azulada tem aproximadamente 5 anos-luz de diâmetro.

Sua tonalidade é devido à poeira refletindo preferencialmente a luz azul emitida pelas estrelas quentes e jovens. A nebulosa de reflexão NGC 2071 está logo à esquerda da M78. À direita, e muito mais compacta, está a intrigante Nebulosa de McNeil que é uma nebulosa variável recentemente reconhecida associada a uma jovem estrela parecida com o Sol.

As manchas avermelhadas mais profundas das emissões dos objetos Herbig-Haro, são jatos energéticos emitidos pelas estrelas em processo de formação, e se destacam contra as faixas escuras de poeira. A exposição também evidencia o brilho mais apagado persuasivo do gás hidrogênio atômico da região.

Fonte: NASA