Um grupo de astrônomos observou em tempo real a formação de poeira estelar após uma explosão de supernova.
© ESO/M. Kornmesser (ilustração da formação de poeira em torno de uma explosão de supernova)
Mostrou-se, pela primeira vez, que estas fábricas de poeira cósmica fabricam os seus grãos de poeira num processo de duas fases, que começa pouco depois da explosão e continua muito depois desta. A equipe utilizou o Very Large Telescope (VLT) do ESO no norte do Chile para analisar a luz emitida pela supernova SN 2010jl à medida que esta se desvanecia.
A origem da poeira cósmica nas galáxias é ainda um mistério. A poeira cósmica consiste em grãos de silicatos e carbono amorfo, minerais que são também abundantes na Terra. A fuligem do pavio de uma vela é muito semelhante à poeira cósmica de carbono, embora o tamanho dos grãos de fuligem seja dez ou mais vezes maior que o tamanho típico dos grãos cósmicos.
As supernovas são provavelmente a fonte principal de poeira, especialmente no Universo primordial, no entanto ainda não é claro como e onde é que estes grãos de poeira se condensam e crescem. Também não está claro como é que os grãos de poeira evitam ser destruídos no ambiente inóspito de uma galáxia formando estrelas. Agora, no entanto, novas observações obtidas com o VLT do ESO no Observatório do Paranal, no norte do Chile, ajudaram a desvendar este mistério.
Uma equipe internacional de astrônomos utilizou o espectrógrafo X-shooter para observar a supernova SN 2010jl, nove vezes nos meses que se seguiram à explosão e uma décima vez dois anos e meio depois da explosão, tanto nos comprimentos de onda do visível como no infravermelho. Esta supernova de brilho incomum, resultado da morte de uma estrela massiva, explodiu na pequena galáxia UGC 5189A.
© ESO (galáxia anã UGC 5189A)
A luz desta supernova foi pela primeira vez observada em 2010, como se pode constatar pelo nome SN 2010jl. Esta supernova está classificada como uma supernova do Tipo IIn. As supernovas classificadas como sendo do Tipo IIn resultam da explosão violenta de uma estrela massiva, com pelo menos oito vezes a massa do Sol. O subtipo "n" do Tipo IIn - “n” significa estreito (narrow em inglês) - denota supernovas que apresentam linhas estreitas de hidrogênio no seu espectro. Estas linhas resultam da interação entre o material ejetado pela supernova e o material que já se encontrava rodeando a estrela.
“Combinando dados dos nove conjuntos anteriores de observações pudemos fazer as primeiras medições diretas de como a poeira em torno da supernova absorve as diferentes cores da luz”, disse a autora principal da pesquisa Christa Gall, da Universidade de Aarhus, Dinamarca. “Isto permitiu-nos caracterizar a poeira com mais detalhe do que tinha sido possível até agora”.
A equipe descobriu que a formação de poeira começa pouco depois da explosão e prolonga-se durante um longo período de tempo. As novas medições revelaram igualmente quão grandes são os grãos de poeira e qual a sua composição. Estas descobertas estão um passo mais além dos recentes resultados obtidos com o Atacama Large Millimeter/submillimeter Array (ALMA), o qual detectou pela primeira vez os restos de uma supernova recente, a famosa supernova 1987A transbordando de poeira recém formada.
A equipe descobriu que os grãos que têm um diâmetro maior que um milésimo de milímetro se formaram rapidamente no material denso que rodeia a estrela. Embora ainda minúsculos, este tamanho é, no entanto, grande para um grão de poeira cósmica, tornando-os assim mais resistentes a processos destrutivos. Como é que os grãos de poeira sobreviviam no ambiente violento e destrutivo dos restos de supernovas era uma das grandes questões em aberto no artigo que apresentava os resultados ALMA e agora este resultado responde a esta pergunta, os grãos são maiores do que o esperado.
“A nossa detecção de grãos com um tamanho considerável pouco depois da explosão da supernova significa que deve haver uma maneira rápida e eficiente de os criar”, disse o co-autor Jens Hjorth do Instituto Niels Bohr, Universidade de Copenhagen, Dinamarca.
No entanto, os astrônomos pensam que sabem onde é que a nova poeira se formou: no material que a estrela liberta para o espaço ainda antes de explodir. À medida que a onda de choque da supernova se expande para o exterior, cria uma concha fria e densa de gás, exatamente o tipo de ambiente onde os grãos de poeira se podem formar e crescer.
Os resultados das observações indicam que numa segunda fase, depois de várias centenas de dias, ocorre um processo acelerado de formação da poeira que envolve material ejetado pela supernova. Se a produção de poeira na SN 2010jl continuar seguindo a tendência observada, 25 anos depois da supernova explodir a massa total de poeira será cerca de metade da massa do Sol; ou seja, semelhante à massa de poeira observada em outras supernovas como por exemplo a SN 1987A.
“Anteriormente tínhamos dois fatos bastante discrepantes: os astrônomos observavam bastante poeira nos restos de supernova deixados depois das explosões mas, por outro lado, encontravam apenas evidências da formação de pequenas quantidades de poeira nestas explosões. Estas novas observações explicam como é que esta aparente contradição pode ser resolvida”, conclui Christa Gall.
Os novos resultados foram publicados na revista Nature.
Fonte: ESO
Nenhum comentário:
Postar um comentário