O campo magnético que cobre o Sol e determina o seu comportamento, os ciclos de 11 anos que produzem fenômenos como manchas e tempestades solares, também tem outro lado: uma teia magnética que cobre toda a superfície do Sol em repouso e cujo fluxo magnético resultante é maior do que o das áreas ativas.
© IAA-CSIC/M. Gosic (fluxo magnético solar)
Um estudo liderado pelo Instituto de Astrofísica da Andaluzia (IAA-CSIC) revelou de onde é que o fluxo que alimenta esta teia vem.
O contorno da teia magnética solar coincide com os limites dos chamados supergrânulos, estruturas ligadas à existência de gás quente que sobe para a superfície (efeito semelhante às bolhas feitas por água fervendo) e com cerca de 20 mil km de diâmetro.
"Nós descobrimos que dentro destes supergrânulos, no que é conhecido como intra-rede, pequenos elementos magnéticos viajam para os limites exteriores e interagem com a rede," afirma Milan Gosic, pesquisador responsável pelo estudo.
O acompanhamento destes elementos até agora pouco conhecidos foi por si só um avanço considerável, mas o cálculo da sua contribuição para a teia magnética solar veio como uma grande surpresa: estes pequenos elementos podem criar e transferir, no espaço de apenas 14 horas, todo o fluxo magnético detetado na teia. "Tendo em conta que apenas cerca de 40% deste fluxo acaba na teia, nós achamos que a intra-rede pode repor o fluxo da teia em 24 horas," afirma Louis Bellot (IAA-CSIC), membro da equipe de pesquisa.
A taxa observada de transferência de fluxo magnético para a rede magnética é de 1,5 × 1024 Mx por dia ao longo de toda a superfície solar. Sendo Mx é uma unidade de medida do fluxo magnético no sistema gaussiano, onde: 1 Mx = 1 G cm2 = 10−8 Wb.
O modelo até agora dominante postulava que, por um lado, os campos magnéticos da teia resultavam da deterioração de zonas ativas como as manchas solares e, por outro, de estruturas conhecidas como regiões efêmeras, que fornecem uma série de fluxos mas que não são muito comuns.
Nesse sentido, o estudo por Gosic et al. provocou uma mudança de paradigma porque mostrou que as regiões efêmeras são demasiado escassas para ter um impacto significativo. "Ao longo de 40 horas detectamos apenas duas regiões efêmeras, pelo que a sua contribuição à teia não pode ser mais do que 10% do fluxo total. Em contraste, os pequenos elementos na intra-rede são contínuos e claramente dominantes," explica Gosic (IAA-CSIC).
A descoberta foi feita no decurso de sequências temporais extraordinariamente longas de observação (cerca de 40 horas) com o satélite japonês de alta resolução HINODE - um recorde para este tipo de instrumentos - que tornou possível o acompanhamento da evolução das células supergranulares durante toda a sua vida.
"Acredita-se que os elementos magnéticos da intra-rede e as suas interações com a teia possam ser responsáveis pelo aquecimento das camadas superiores da atmosfera solar, um dos problemas não resolvidos mais prementes da Física Solar," comenta Luis Bellot (IAA-CSIC). O estudo dos elementos magnéticos com dados do Hinode vão permitir uma utilização científica mais eficiente dos dados da missão SolO (Solar Orbiter) da ESA, para a qual a IAA-CSIC está desenvolvendo o instrumento IMAX.
Um artigo sobre a descoberta foi publicado no periódico The Astrophysical Journal.
Fonte: Instituto de Astrofísica da Andaluzia
Nenhum comentário:
Postar um comentário