Três meses de observações com o Karl G. Jansky Very Large Array (VLA) permitiram determinar a explicação mais provável para o que aconteceu após a violenta colisão de um par de estrelas de nêutrons numa galáxia a 130 milhões de anos-luz da Terra.
© NRAO/D. Berry (ilustração da colisão entre duas estrelas de nêutrons)
Cenários diferentes para o rescaldo da colisão entre duas estrelas de nêutrons. À esquerda, um jato de material que se move quase à velocidade da luz é impulsionado a partir do local da colisão para uma esfera de material inicialmente expelido pela explosão resultante. Se visto a partir de um ângulo desviado do centro do jato, a emissão a longo-prazo de raios X e de ondas rádio teria ficado mais fraca. À direita, o jato não consegue furar a concha de detritos da explosão, e ao invés "varre" material para um grande "casulo", que absorve a energia do jato e emite raios X e ondas rádio num maior ângulo. Neste caso, a emissão ainda está aumentando em intensidade, tal como observado tanto com radiotelescópios como com telescópios de raios X.
No dia 17 de agosto de 2017, os observatórios de ondas gravitacionais LIGO e VIRGO juntaram forças para localizar as fracas ondulações no espaço-tempo provocadas pela fusão de duas estrelas de nêutrons superdensas. Foi a primeira detecção confirmada de uma fusão do gênero e apenas a quinta detecção direta de ondas gravitacionais, previstas há mais de um século por Albert Einstein.
As ondas gravitacionais foram seguidas por explosões de raios gama, raios X e luz visível do evento. O VLA detectou as primeiras ondas de rádio provenientes do evento no dia 2 de setembro. Esta foi a primeira vez que um objeto astronômico foi detectado tanto em ondas gravitacionais como em ondas eletromagnéticas.
A força da radiação eletromagnética, em diferentes comprimentos de onda, forneceu pistas acerca da natureza dos fenômenos criados pela colisão inicial das estrelas de nêutrons. Antes do evento de agosto, foram propostos vários modelos teóricos sobre estes fenômenos. Como a primeira colisão a ser identificada positivamente, o evento de agosto proporcionou a primeira oportunidade para comparar previsões dos modelos com observações reais.
Usando o VLA, o Australia Telescope Compact Array (ATCA) e o Giant Metrewave Radio Telescope (GMRT) na Índia, os astrônomos observaram regularmente o objeto a partir de setembro em diante. Os radiotelescópios mostraram a emissão de rádio ganhando força. Com base nisto, os astrônomos identificaram o cenário mais provável para as consequências da fusão.
"O brilho gradual do sinal de rádio indica que estamos vendo um fluxo exterior de material de grande angular, viajando a velocidades comparáveis à da luz, da fusão das estrelas de nêutrons," afirma Kunal Mooley, do National Radio Astronomy Observatory (NRAO).
As medições observadas estão ajudando a descobrir a sequência de eventos desencadeada pela colisão das estrelas de nêutrons.
A fusão inicial dos dois objetos superdensos provocou uma explosão, chamada quilonova, que impulsionou para fora uma concha esférica de detritos. As estrelas de nêutrons colapsaram num remanescente, possivelmente um buraco negro, cuja poderosa gravidade começou a puxar o material na sua direção. Este material formou um disco com rápida rotação que produziu um par de jatos estreitos e velozes expelidos a partir dos polos.
Se um dos jatos estivesse apontado na direção da Terra, teríamos visto uma explosão de raios gama de curta duração, como muitas já foram observadas antes, disseram os cientistas.
Algumas das primeiras medições do evento de agosto sugeriram, em vez disso, que um dos jatos podia estar ligeiramente desviado da direção da Terra. Este modelo explicaria a razão de que as emissões rádio e de raios X foram vistas apenas pouco tempo depois da colisão.
Os astrônomos debruçaram-se num modelo publicado em outubro por Mansi Kasliwal do Caltech, e colegas, e desenvolvido posteriormente por Ore Gottlieb, da Universidade de Tel Aviv, e colegas. Neste modelo, o jato não percorre o caminho para fora da esfera dos detritos da explosão. Ao invés, reúne material circundante enquanto se dirige para fora, produzindo um "casulo" amplo que absorve a energia do jato.
Logo após as observações iniciais do local da fusão, a viagem anual da Terra em torno do Sol colocou o objeto demasiado perto da nossa estrela, para que os telescópios de raios X e ópticos o pudessem observar. Durante semanas, os radiotelescópios foram a única maneira de continuar a obtenção de dados do evento.
O Chandra observou novamente o objeto nos dias 2 e 6 de dezembro.
"No dia 7 de dezembro, foram divulgados os resultados do Chandra, e a emissão de raio X tinha ficado mais forte, exatamente como havíamos previsto," afirma Gregg Hallinan, do Caltech.
"Uma implicação importante para o modelo de casulo é que devemos poder ver muitas mais destas colisões através da detecção das suas ondas eletromagnéticas, não apenas das suas ondas gravitacionais," realça Hallinan.
Os resultados foram divulgados na revista Nature.
Fonte: National Radio Astronomy Observatory
Nenhum comentário:
Postar um comentário