Quão pequenos são os objetos celestes menores que se formam como estrelas, mas que não produzem a sua própria luz? Quão comuns são em comparação com estrelas de pleno direito? E que dizer dos "planetas fugitivos", que se formam em torno de estrelas antes de serem lançados para o espaço interestelar?
© NASA/JPL-Caltech (NGC 1333)
Quando o telescópio espacial James Webb da NASA for lançado em 2021, lançará luz sobre estas questões.
A sua resposta vai definir um limite entre objetos que se formam como estrelas, que nascem de nuvens de gás e poeira em colapso gravitacional e aqueles que se formam como planetas, criados quando o gás e a poeira se aglomeram num disco em torno de uma estrela jovem. Também vai distinguir, entre ideias concorrentes, as origens das anãs marrons, objetos com massas entre 1% e 8% a massa do Sol que não conseguem sustentar a fusão de hidrogênio nos seus núcleos.
Num estudo liderado por Aleks Scholz da Universidade de St. Andrews no Reino Unido, pesquisadores vão usar o telescópio espacial James Webb para descobrir os residentes menores e mais tênues de um berçário estelar próximo chamado NGC 1333. O agloemerado estelar está localizado a cerca de 1.000 anos-luz de distância na direção da constelação de Perseu. Também é muito compacto e contém muitas estrelas jovens. Estes três fatores tornam-no no local ideal para estudar a formação estelar em ação, particularmente para aqueles interessados em objetos muito fracos e flutuantes.
"As anãs marrons menos massivas identificadas até agora têm apenas cinco a dez vezes a massa do planeta Júpiter," explicou Scholz. "Ainda não sabemos se objetos ainda mais leves se formam nos berçários estelares. Com o Webb, esperamos identificar pela primeira vez membros do aglomerado tão pequenos quanto Júpiter. Os seus números, em relação às mais massivas anãs marrons e estrelas, vão lançar luz sobre as suas origens e também fornecer pistas importantes sobre o processo mais amplo de formação estelar."
Objetos de massa muito baixa são frios, o que significa que emitem a maior parte da sua luz em comprimentos de onda infravermelhos. A observação da radiação infravermelha com telescópios terrestres é complexa por causa da interferência da atmosfera da Terra. Devido ao seu tamanho e à capacidade de ver a radiação infravermelha com uma sensibilidade sem precedentes, o Webb é ideal para encontrar e caracterizar objetos fugitivos (ou flutuantes) com massas inferiores a cinco vezes a massa de Júpiter.
A distinção entre as anãs marrons e os planetas gigantes é imprecisa.
"Existem alguns objetos com massas abaixo da marca dos 10 Júpiteres que flutuam livremente pelo aglomerado. Dado que não orbitam nenhuma estrela em particular, podemos chamá-los de anãs marrons, ou objetos de massa planetária, pois não os conhecemos melhor," disse Koraljka Muzic da Universidade de Lisboa em Portugal. "Por outro lado, alguns planetas gigantes e massivos podem ter reações de fusão. E algumas anãs marrons podem formar-se num disco."
Há também a questão dos planetas "fugitivos", objetos que se formam como planetas e mais tarde são expelidos dos seus sistemas solares. Estes corpos flutuantes estão condenados a vaguear para sempre entre as estrelas.
A equipe irá usar o instrumento NIRISS (Near Infrared Imager and Slitless Spectrograph) do telescópio espacial James Webb para estudar estes vários objetos de baixa massa. Um espectrógrafo divide a luz de uma única fonte nas suas cores componentes, da mesma maneira que um prisma divide a luz branca num arco-íris. Esta luz transporta impressões digitais produzidas quando o material emite ou interage com a luz. Os espectrógrafos permitem que os pesquisadores analisem estas impressões digitais e descubram propriedades como a temperatura e composição.
O NIRISS vai fornecer informações simultâneas para dúzias de objetos. "Isto é fundamental. Para uma confirmação inequívoca de uma anã marron ou de um planeta flutuante, precisamos de ver as assinaturas de absorção de moléculas, água ou metano, principalmente, no espectro," explicou Ray Jayawardhana da Universidade de Cornell.
O telescópio espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele.
Fonte: Space Telescope Science Institute
Nenhum comentário:
Postar um comentário