A procura pela matéria escura do Universo podia terminar amanhã, caso houvesse uma supernova próxima e tivéssemos um pouco de sorte.
© Casey Reed (ilustração de estrela de nêutrons altamente magnetizada)
A natureza da matéria escura ilude os astrônomos há 90 anos, desde que se percebeu que 85% da matéria do Universo não é visível através dos nossos telescópios. Atualmente, o candidato mais provável à matéria escura é o áxion, uma partícula leve que está sendo desesperadamente procurada.
Os astrofísicos da Universidade da Califórnia, em Berkeley, argumentam agora que o áxion podia ser descoberto segundos após a detecção de raios gama provenientes da explosão de uma supernova próxima. Os áxions, se existirem, seriam produzidos em quantidades abundantes durante os primeiros 10 segundos após o núcleo de uma estrela massiva colapsar numa estrela de nêutrons, e esses áxions escapariam e seriam transformados em raios gama altamente energéticos no intenso campo magnético da estrela.
Uma tal detecção só é possível hoje em dia se o único telescópio de raios gama no espaço, o telescópio espacial Fermi, estiver apontando na direção da supernova no momento em que esta explode. Tendo em conta o campo de visão do telescópio, isso representa cerca de uma hipótese em 10. No entanto, uma única detecção de raios gama permitiria determinar a massa do áxion, em particular o chamado áxion QCD (Quantum ChromoDynamics), numa enorme gama de massas teóricas, incluindo intervalos de massas que estão agora sendo analisados em experiências na Terra.
Contudo, a ausência de uma detecção eliminaria uma grande quantidade de massas potenciais para o áxion e tornaria irrelevante a maioria das atuais pesquisas por matéria escura. O problema é que, para que os raios gama sejam suficientemente brilhantes para serem detectados, a supernova tem de estar próxima, ou seja, dentro da Via Láctea ou de uma das suas galáxias satélite, e as estrelas próximas só explodem, em média, de poucas em poucas décadas.
A última supernova próxima ocorreu em 1987 na Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea. Na ocasião, um telescópio de raios gama, o SMM (Solar Maximum Mission), apontava na direção da supernova, mas não era suficientemente sensível para detectar a intensidade prevista dos raios gama.
No entanto, os pesquisadores receiam que, quando a tão esperada supernova surgir no Universo próximo, não estejamos preparados para ver os raios gama produzidos pelos áxions. Os cientistas estão propondo a construção de telescópios de raios gama para avaliar a viabilidade de lançar um ou uma frota desses telescópios para cobrir 100% do céu 24 horas por dia e ter a certeza de apanhar qualquer explosão de raios gama. Até propuseram um nome para a sua constelação de satélites de raios gama de céu completo: GALAXIS (GALactic AXion Instrument for Supernova).
A procura pela matéria escura centrou-se inicialmente nos tênues MACHOs (MAssive Compact Halo Objects), teoricamente espalhados pela nossa Galáxia e pelo cosmos, mas quando estes não se materializaram, os físicos começaram a procurar partículas elementares que teoricamente estão à nossa volta e deveriam ser detectáveis em laboratórios terrestres. Estas WIMPs (Weakly Interacting Massive Particles) também não foram detectadas.
Atualmente, o melhor candidato para a matéria escura é o áxion, uma partícula que se enquadra perfeitamente no modelo padrão da física e que resolve vários outros enigmas importantes da física de partículas. Os áxions também se enquadram perfeitamente na teoria das cordas, uma hipótese sobre a geometria subjacente do Universo, e pode ser capaz de unificar a gravidade, que explica as interações em escalas cósmicas, com a teoria da mecânica quântica, que descreve o infinitesimal.
O áxion teoricamente interage com toda a matéria, embora fracamente, através das quatro forças da natureza: gravidade, eletromagnetismo, a força forte, que mantém os átomos unidos, e a força fraca, que explica a quebra dos átomos. Uma das consequências é que, num campo magnético forte, um áxion pode ocasionalmente transformar-se numa onda eletromagnética, ou fóton. O áxion é distintamente diferente de outra partícula leve e de fraca interação, o neutrino, que apenas interage através da gravidade e da força fraca e ignora totalmente a força eletromagnética.
As experiências de laboratório - como o Consórcio ALPHA (Axion Longitudinal Plasma HAloscope), o DMradio e o ABRACADABRA (A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus), todas elas envolvendo pesquisadores da UC Berkeley, utilizam cavidades compactas que, tal como um diapasão, ressoam e amplificam o fraco campo eletromagnético ou fóton produzido quando um áxion de baixa massa se transforma na presença de um forte campo magnético.
Em alternativa, os astrofísicos propuseram a procura de áxions produzidos no interior de estrelas de nêutrons imediatamente após uma supernova de colapso do núcleo, como SN 1987A. Até agora, no entanto, têm-se concentrado principalmente na detecção de raios gama resultantes da lenta transformação destes áxions em fótons nos campos magnéticos das galáxias. Porém, esse processo não é muito eficiente na produção de raios gama, ou pelo menos não o suficiente para ser detectado a partir da Terra.
Ao invés, foi explorada a produção de raios gama por áxions nos fortes campos magnéticos em torno da própria estrela que os gerou. As simulações em supercomputador mostraram que esse processo cria, de forma muito eficiente, uma explosão de raios gama que depende da massa do áxion, e que a explosão deveria ocorrer simultaneamente com uma explosão de neutrinos do interior da estrela de nêutrons quente.
As estrelas de nêutrons abrigam campos magnéticos muito fortes. Os campos magnéticos mais fortes do nosso Universo encontram-se em volta das estrelas de nêutrons, como os magnetares, que têm campos magnéticos dezenas de bilhões de vezes mais fortes do que qualquer coisa que possamos construir em laboratório. Isso ajuda a converter estes áxions em sinais observáveis.
Há dois anos, os astrofísicos estabeleceram o melhor limite superior para a massa do áxion QCD em cerca de 16 milhões de elétrons-volt, ou seja, cerca de 32 vezes menos do que a massa do elétron. Este valor baseou-se na taxa de arrefecimento das estrelas de nêutrons, que arrefeceriam mais rapidamente se os áxions fossem produzidos juntamente com os neutrinos no interior destes corpos quentes e compactos.
É previsto que uma detecção de raios gama permita identificar a massa do áxion QCD se esta for superior a 50 μeV (microelétrons-volt). Uma única detecção poderia reorientar as experiências existentes para confirmar a massa do áxion. Embora uma frota de telescópios de raios gama dedicados seja a melhor opção para detectar raios gama de uma supernova próxima, um golpe de sorte com o Fermi seria ainda melhor.
Um artigo foi publicado no periódico Physical Review Letters.
Fonte: University of California
Nenhum comentário:
Postar um comentário