Mostrando postagens com marcador Nuvens. Mostrar todas as postagens
Mostrando postagens com marcador Nuvens. Mostrar todas as postagens

sexta-feira, 7 de setembro de 2018

Telescópio mapeia raios cósmicos nas Nuvens de Magalhães

Os cientistas usaram um radiotelescópio no interior da Austrália Ocidental para observar a radiação dos raios cósmicos em duas galáxias vizinhas, mostrando áreas de formação estelar e ecos de supernovas passadas.

Grande Nuvem de Magalhães

© ICRAR (Grande Nuvem de Magalhães)

A imagem acima mostra uma composição colorida (vermelho, verde e azul) da Grande Nuvem de Magalhães feita a partir de dados de rádio a 123, 181 e 227 MHz. Nestes comprimentos de onda, é visível a emissão dos raios cósmicos e dos gases quentes que pertencem a regiões de formação estelar e remanescentes de supernova da galáxia.

O telescópio MWA (Murchison Widefield Array) foi capaz de mapear a Grande e a Pequena Nuvem de Magalhães em detalhes sem precedentes enquanto orbitam em torno da Via Láctea.

Ao observar o céu em frequências muito baixas, os astrônomos detectaram raios cósmicos e gás quente nas duas galáxias e identificaram manchas onde podem ser encontradas estrelas recém-nascidas e remanescentes de explosões estelares.

Os raios cósmicos são partículas carregadas muito energéticas que interagem com campos magnéticos para criar radiação que podemos ver com radiotelescópios.

"Estes raios cósmicos são originários de remanescentes de supernova, restos de estrelas que explodiram há muito tempo," disse o astrofísico e professor Lister Staveley-Smith, do ICRAR (International Centre for Radio Astronomy Research).

As explosões de supernova de onde são originários estão relacionadas com estrelas muito massivas, muito mais massivas do que o nosso próprio Sol. O número de raios cósmicos produzidos depende da taxa de formação destas estrelas massivas há milhões de anos.

A Grande e a Pequena Nuvem de Magalhães estão muito próximas da nossa Via Láctea, a menos de 200.000 anos-luz, e podem ser vistas no céu noturno a olho nu.

Esta é a primeira vez que as galáxias foram mapeadas em detalhe em frequências de rádio tão baixas. A observação das Nuvens de Magalhães nestas frequências muito baixas, entre 76 e 227 MHz, significa que podemos estimar o número de novas estrelas formadas nessas galáxias," disse a Dra. Bi-Qing For, astrônoma do ICRAR.

"Descobrimos que a taxa de formação estelar na Grande Nuvem de Magalhães é aproximadamente equivalente a uma nova estrela com a massa do nosso Sol a cada 10 anos. Na Pequena Nuvem de Magalhães, a taxa de formação estelar é mais ou menos equivalente a uma nova estrela com a massa do nosso Sol a cada 40 anos."

Incluídas nas observações estão 30 Dourado, uma excecional região de formação estelar na Grande Nuvem de Magalhães que é mais brilhante do que qualquer região de formação estelar na Via Láctea, e a Supernova 1987A, a supernova mais brilhante desde a invenção do telescópio.

Os resultados são um vislumbre emocionante da ciência que será possível com os radiotelescópios de próxima geração. Além disso, o futuro SKA (Square Kilometre Array), onde as linhas de base são oito vezes mais longas, fornecerá imagens excepcionalmente boas.

A pesquisa foi publicada no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: International Centre for Radio Astronomy Research

quarta-feira, 16 de maio de 2018

Rotação da Grande Nuvem de Magalhães

Esta imagem não está embaçada.

rotação da Grande Nuvem de Magalhães

© ESA/Gaia (rotação da Grande Nuvem de Magalhães)

Ela mostra em detalhes que a maior galáxia satélite da nossa Via Láctea, a Grande Nuvem de Magalhães (LMC), gira. Determinado pela primeira vez com o Hubble, a rotação da LMC é apresentada aqui com dados finos do satélite Gaia, em órbita do Sol.

O Gaia mede as posições das estrelas com tanta precisão que as medições subsequentes podem revelar pequenos movimentos próprios de estrelas não detectáveis anteriormente.

A imagem em destaque mostra, efetivamente, trilhas estelares exageradas pelos milhões de fracas estrelas da LMC.

A inspeção da imagem também mostra o centro de rotação no sentido horário: perto da parte superior da barra central da LMC. A LMC, proeminente nos céus do sul, é uma pequena galáxia espiral que foi distorcida por encontros com a maior galáxia, a Via Láctea, e a menor galáxia, a Pequena Nuvem de Magalhães (SMC).

Fonte: NASA

quinta-feira, 15 de março de 2018

Telescópio James Webb da NASA vai procurar água interestelar

A água é crucial para a vida. Mas como é que fazemos água? Para produzir H2O, não basta apenas misturar hidrogênio e oxigênio.

IC 2631

© ESO (IC 2631)

A imagem acima mostra a luz azul de uma estrela recém-nascida iluminando a nebulosa de reflexão IC 2631. Esta nebulosa faz parte da região de formação estelar de Camaleão.

Requer as condições especiais encontradas nas profundezas de nuvens moleculares frias, onde a poeira protege contra a destrutiva radiação ultravioleta e ajuda às reações químicas. O telescópio espacial James Webb da NASA examinará estes reservatórios cósmicos para obter novos conhecimentos sobre a origem e evolução da água e sobre outros blocos de construção dos planetas habitáveis.

Uma nuvem molecular é uma nuvem interestelar composta por poeira, gás e por uma variedade de moléculas que variam desde o hidrogênio molecular (H2) até compostos orgânicos complexos contendo carbono. As nuvens moleculares possuem a maioria da água no Universo e servem como berçários para estrelas recém-nascidas e seus planetas.

Dentro destas nuvens, nas superfícies de pequenos grãos de poeira, os átomos de hidrogênio ligam-se com o oxigênio para formar água. O carbono junta-se ao hidrogênio para formar metano. O nitrogênio junta-se ao hidrogênio para produzir amônia. Todas estas moléculas ligam-se à superfície de grãos de poeira, acumulando camadas geladas ao longo de milhões de anos. O resultado é uma vasta coleção de "flocos de neve" que são varridos por planetas infantis, fornecendo os materiais necessários para a vida como a conhecemos. "Se pudermos entender a complexidade química destes gelos na nuvem molecular, e como evoluem durante a formação de uma estrela e dos seus planetas, podemos avaliar se os blocos de construção da vida existem em cada sistema estelar," comenta Melissa McClure da Universidade de Amesterdã.

Para entender estes processos, um dos primeiros objetivos científicos oficiais do telescópio espacial James Webb será examinar uma região de formação estelar próxima para determinar quais os gelos aí presentes. "Nós planejamos usar uma variedade de modos e capacidades dos instrumentos do Webb, não só para investigar esta região, mas também para aprender a melhor maneira de estudar gelos cósmicos," comenta Klaus Pontoppidan do STScI (Space Telescope Science Institute). Este projeto aproveitará os espectrógrafos de alta resolução do Webb para obter as observações mais sensíveis e precisas em comprimentos de onda que medem especificamente gelos. Os espectrógrafos do Webb, NIRSpec e MIRI, fornecerão até cinco vezes a precisão de qualquer telescópio espacial anterior em comprimentos de onda do infravermelho próximo e médio.

A equipe, liderada por McClue e pelos pesquisadores Adwin Boogert (Universidade do Havaí) e Harold Linnartz (Universidade de Leiden), planeja ter como alvo o Complexo de Camaleão, uma região de formação estelar visível no hemisfério sul. Está localizado a cerca de 500 anos-luz da Terra e contém várias centenas de protoestrelas, as mais antigas com aproximadamente 1 milhão de anos.

A equipe usará os sensíveis detectores infravermelhos do Webb para observar estrelas por trás da nuvem molecular. À medida que a luz destas tênues estrelas de fundo passa através da nuvem, os gelos na nuvem absorvem parte da luz. Ao observar muitas estrelas de fundo espalhadas pelo céu, os astrônomos podem mapear os gelos em toda a expansão da nuvem e localizar onde se formam os diferentes gelos. Vão também ter como alvo protoestrelas individuais dentro da própria nuvem para aprender como a radiação ultravioleta destas estrelas nascentes promove a criação de moléculas mais complexas.

Os astrônomos também vão examinar os locais de nascimento de planetas, discos rotativos de gás e poeira conhecidos como discos protoplanetários que rodeiam estrelas recém-formadas. Serão capazes de medir as quantidades e as abundâncias relativas dos gelos até 8 bilhões de quilômetros da estrela jovem, pouco mais do que a distância orbital de Plutão no nosso Sistema Solar.

"Os cometas têm sido descritos como bolas de neve empoeiradas. Pelo menos parte da água nos oceanos da Terra foi provavelmente entregue pelos impactos de cometas no início da história do nosso Sistema Solar. Nós vamos observar os locais onde os cometas se formam em torno de outras estrelas," explicou Pontoppidan.

Para entender as observações do Webb, os cientistas precisarão de realizar experiências na Terra. Os espectrógrafos do Webb vão espalhar a radiação infravermelha num espectro. As diferentes moléculas absorvem a luz em determinados comprimentos de onda, ou cores, resultando em linhas espectrais escuras. Os laboratórios conseguem medir uma variedade de substâncias para criar uma base de dados de "impressões digitais" moleculares. Quando os astrônomos veem estas impressões digitais num espectro do Webb, podem então identificar a molécula ou família de moléculas que formaram as linhas de absorção.

"Os estudos de laboratório ajudarão a abordar duas questões importantes. A primeira é quais as moléculas presentes. Mas, igualmente importante, veremos como os gelos aí chegaram. Como é que se formaram? O que encontrarmos com o Webb ajudará a informar os nossos modelos e permitirá compreender os mecanismos da formação de gelo a temperaturas muito baixas," explicou Karin Öberg do Harvard-Smithsonian Center for Astrophysics.

O telescópio espacial James Webb será o principal observatório espacial infravermelho da próxima década. O Webb ajudará a Humanidade a resolver os mistérios do nosso Sistema Solar, a olhar além para mundos distantes em torno de outras estrelas e a pesquisar as misteriosas estruturas e origens do nosso Universo.

Fonte: Astrobiology Magazine

quarta-feira, 31 de janeiro de 2018

Glória na escuridão

Nesta imagem de grande angular vemos uma nuvem escura de poeira cósmica, iluminada pela luz brilhante de estrelas jovens.

Star formation region Lupus 3

© ESO/VST (Lupus 3)

Esta nuvem densa é na realidade uma região de formação estelar chamada Lupus 3, onde estrelas extremamente quentes nascem a partir de massas de gás e poeira que estão colapsando. Esta imagem foi criada a partir de dados obtidos com o VLT Survey Telescope (VST) e com o telescópio MPG/ESO, tratando-se da imagem mais detalhada desta região obtida até hoje.

A região de formação estelar Lupus 3 situa-se na constelação do Escorpião, a apenas 600 anos-luz de distância da Terra. Faz parte de um complexo maior chamado Nuvens de Lupus, que retiram o seu nome da constelação adjacente do Lobo. As nuvens fazem lembrar fumaça ondulando contra um fundo de milhões de estrelas, no entanto o objeto é efetivamente uma nebulosa escura.

As nebulosas são enormes quantidades de gás e poeira situadas entre as estrelas, algumas prolongando-se ao longo de centenas de anos-luz. Apesar de muitas nebulosas se encontrarem completamente iluminadas pela intensa luz emitida por estrelas quentes, as nebulosas escuras envolvem a luz dos objetos celestes que se encontram dentro delas. São também conhecidas por nebulosas de absorção, uma vez que são constituídas por partículas de poeira densa e fria, que absorvem e dispersam a luz que passa através da nuvem.

Nebulosas escuras famosas incluem a Nebulosa Saco de Carvão e a Grande Fissura, que são suficientemente grandes para poderem ser vistas a olho nu, apresentando-se particularmente escuras contra o brilho da Via Láctea.

A Lupus 3 apresenta uma forma irregular, como uma cobra disforme que passeia pelo céu. Nesta imagem aparece-nos como uma região de contrastes, com trilhos escuros espessos colocados contra o brilho intenso das estrelas azuis resplandecentes situadas no centro. Tal como a maioria das nebulosas escuras, a Lupus 3 é uma região de formação estelar ativa, composta essencialmente por protoestrelas e estrelas muito jovens. Perturbações próximas podem fazer com que caroços mais densos da nebulosa se contraiam sob a sua própria gravidade, tornando-se quentes e com pressão elevada durante o processo. Eventualmente, das condições extremas destes núcleos em colapso, formam-se protoestrelas.

As duas estrelas brilhantes no centro da imagem sofreram este processo. No início das suas vidas, a luz que emitiam foi praticamente toda bloqueada pelo espesso véu da sua nebulosa hospedeira, sendo visíveis apenas com telescópios infravermelhos ou rádio. No entanto, à medida que cresciam tornando-se mais quentes e brilhantes, a sua intensa luz e fortes ventos estelares varreram o gás e a poeira da área ao redor, permitindo assim a sua emersão gloriosa da maternidade escura, e brilhando agora intensamente.

Entender as nebulosas é crucial para compreendermos os processos de formação estelar, efetivamente, pensa-se que o Sol se formou numa região de formação estelar muito semelhante a Lupus 3, há mais de 4 bilhões de anos atrás. Sendo uma das maternidades estelares mais próxima de nós, Lupus 3 tem sido objeto de muitos estudos; em 2013 o telescópio MPG/ESO de 2,2 metros, instalado no Observatório de La Silla do ESO no Chile, capturou uma imagem menor das suas colunas escuras semelhantes a fumaça e das suas estrelas brilhantes, veja: Luz vinda da escuridão.

Fonte: ESO

quinta-feira, 11 de janeiro de 2018

RCW 114: Um Coração do Dragão no Altar

Esta nuvem cósmica, grande e dramaticamente moldada com formato de um coração, abrange quase 7 graus ou 14 luas cheias no céu do planeta Terra em direção à constelação Ara (Altar) no hemisfério celestial sul.

RCW 114

© Andrew Campbell (RCW 114)

Este mosaico telescópico mostra a RCW 114, uma nebulosa filamentar que revela a emissão avermelhada de átomos de hidrogênio ionizado.

A RCW 114 foi reconhecida como um remanescente de supernova. Seus extensos filamentos de emissão são produzidos à medida que a onda de choque ainda em expansão da explosão da morte de uma estrela massiva varre o meio interestelar circundante.

Estimativas consistentes indicam que sua distância é mais de 600 anos-luz, cujo diâmetro é de cerca de 100 anos-luz ou mais. A luz da explosão da supernova que criou a RCW 114 alcançou a Terra há cerca de 20 mil anos. Uma estrela de nêutrons ou pulsar foi recentemente identificada como restos colapsados do núcleo estelar.

Fonte: NASA

segunda-feira, 27 de novembro de 2017

Estrelas estão sendo geradas em Chamaeleon I

Uma nuvem escura quando observada por telescópios ópticos, a região conhecida como Chamaeleon I, se revela como uma região muito ativa onde estrelas se formam, nesta imagem em infravermelho obtida pelo observatório espacial Herschel da ESA.

Chamaeleon I

© ESA/Herschel (Chamaeleon I)

Localizada a somente 550 anos-luz de distância da Terra, na constelação de Chamaeleon, esta é uma das áreas mais próximas da Terra, onde as estrelas estão sendo produzidas.

Lançado em 2009, o Herschel observou o céu nos comprimentos de onda do infravermelho e no submilimétrico até 2013. Sensível ao calor que emana de pequenas porções de poeira fria misturada com as nuvens de gás onde as estrelas se formam, ele forneceu uma visão sem precedentes do material interestelar que permeia a Via Láctea.

O Herschel descobriu uma vasta e intrigante rede de estruturas filamentares, em todo o canto da galáxia, confirmando que os filamentos são elementos cruciais no processo de formação de estrelas.

Depois que a rede filamentar nasce dos movimentos turbulentos do gás no material interestelar, a gravidade toma conta da situação, mas somente nos filamentos mais densos que se tornam instáveis e se fragmentam em objetos compactos, que seriam as sementes para a formação de novas estrelas.

A região Chamaeleon I não é uma exceção, com algumas estruturas alongadas atravessando a nuvem. A maior parte da atividade de formação de estrelas está acontecendo na convergência dos filamentos, na área brilhante no topo da imagem e numa região mais vasta à esquerda do centro da imagem, estas regiões mostram estrelas recém-nascidas que estão aquecendo o material ao redor.

Analisando imagens parecidas, os astrônomos identificaram mais de 200 estrelas jovens nesta nuvem que tem cerca de dois milhões de anos de existência. A maior parte das estrelas ainda estão circundadas pelo disco do material que ficou nelas depois do processo de formação; sendo que tais discos podem evoluir para a formação de planetas.

Devido ao fato de estar relativamente próxima da Terra, a Chamaeleon I é um laboratório ideal para explorar os discos protoplanetários e suas propriedades usando os dados do Herschel.

Fonte: ESA

segunda-feira, 17 de julho de 2017

A nuvem molecular gigante W51

As nuvens moleculares gigantes são vastos objetos cósmicos, compostos principalmente por moléculas de hidrogênio e átomos de hélio, onde nascem novas estrelas e planetas. Estas nuvens podem conter mais massa do que um milhão de sóis e se estender em centenas de anos-luz.

nuvem molecular gigante W51

© NASA/JPL-Caltech/Chandra (nuvem molecular gigante W51)

A nuvem molecular gigante conhecida como W51 é uma das mais próximas da Terra, localizada a uma distância de aproximadamente 17 mil anos-luz. Devido à sua proximidade relativa, a W51 fornece aos astrônomos uma excelente oportunidade de estudar como as estrelas estão se formando na Via Láctea.

Uma nova imagem composta da W51 mostra este viveiro estelar, onde os raios X do obtidos pelo observatório Chandra são de cor azul. Com cerca de 20 horas de exposição através do Chandra, mais de 600 estrelas jovens foram detectadas como fontes de raios X semelhantes a pontos, e também foi observada uma emissão difusa de raios X a partir do gás interestelar com uma temperatura de um milhão de graus ou mais. A luz infravermelha observada com o telescópio espacial Spitzer da NASA aparece em laranja e amarelo esverdeado e evidenciando o gás frio e estrelas cercadas por discos de material gélido.

A W51 contém vários aglomerados de estrelas jovens. Os dados do Chandra mostram que as fontes de raios X são encontradas em pequenos grupos, com uma concentração de mais de 100 fontes no aglomerado central, chamado G49.5-0.4.

Embora a nuvem molecular gigante W51 preenche todo o campo de visão desta imagem, há grandes áreas em que o Chandra não detecta raios X difusos e de baixa energia a partir do gás interestelar quente. Presumivelmente, regiões densas de material muito frio deslocaram este gás quente ou bloquearam os raios X dele.

Uma das estrelas massivas do W51 é uma fonte brilhante de raios X que é cercada por uma concentração de fontes de raios X muito mais fracas. Isso sugere que as estrelas massivas podem se formar quase isoladamente, com apenas algumas estrelas de massa mais baixas do que o aglomerado completo com centenas de estrelas típicas.

Outro aglomerado jovem e massivo localizado perto do centro do W51 hospeda um sistema estelar que produz uma fração extraordinariamente grande dos raios X de energia mais alta detectada pelo Chandra. As teorias para a emissão de raios X de estrelas massivas únicas não podem explicar este mistério, então provavelmente requer a interação próxima de duas estrelas muito jovens e massivas. Esta radiação intensa deve mudar a química das moléculas que cercam o sistema estelar, apresentando um ambiente hostil para a formação de planetas.

Um artigo descrevendo estes resultados apareceu no The Astrophysical Journal Supplement Series.

Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 15 de junho de 2017

Telescópio capta três objetos celestes numa única imagem

Nesta enorme imagem, dois dos residentes mais famosos do céu dividem os holofotes com um vizinho menos conhecido.

três nebulosas numa só imagem

© ESO/VST (três nebulosas numa só imagem)

À direita vemos a tênue nuvem de gás brilhante conhecida por Sharpless 2-54, no centro temos a Nebulosa da Águia e à esquerda encontra-se a Nebulosa Ômega. Este trio cósmico constitui apenas uma parte do vasto complexo de gás e poeira, no qual estão se formando novas estrelas, as quais iluminam os seus arredores.

Sharpless 2-54, Nebulosa da Águia e Nebulosa Ômega situam-se a cerca de 7.000 anos-luz de distância, as duas primeiras encontram-se na constelação da Serpente, enquanto a última se situa no Sagitário. Esta região da Via Láctea abriga uma enorme nuvem de material pronto para formar estrelas. Estas três nebulosas indicam onde é que regiões desta nuvem se compactaram e colapsaram para formar novas estrelas; a radiação energética emitida pelas estrelas recém-formadas dá origem à emissão de radiação por parte do gás ambiente, o qual apresenta o característico tom rosado das regiões ricas em hidrogênio.

Dois dos objetos da imagem foram descobertos de forma semelhante. Os astrônomos descobriram primeiro aglomerados de estrelas brilhantes tanto em Sharpless 2-54 como na Nebulosa da Águia, identificando posteriormente as enormes e comparativamente fracas nuvens de gás ao redor dos aglomerados. No caso da Sharpless 2-54, o astrônomo britânico William Herschel notou inicialmente o seu brilhante aglomerao estelar em 1784. Este aglomerado, catalogado como NGC 6604 aparece nesta imagem à esquerda do objeto. A nuvem de gás tênue associada permaneceu desconhecida até os anos 1950, quando o astrônomo americano Steward Sharpless a descobriu em fotografias do Atlas do Céu National Geographic-Palomar.

A Nebulosa da Águia não teve que esperar tanto tempo para ser reconhecida em toda a sua glória. O astrônomo suíço Philippe Loys de Chéseaux descobriu inicialmente o seu aglomerado estelar brilhante, NGC 6611, em 1745. Algumas décadas mais tarde, o astrônomo francês Charles Messier observou esta região do céu e também documentou a nebulosidade aí presente, registrando o objeto no seu famoso catálogo com o número 16: Messier 16 (M16).

Com relação à Nebulosa Ômega, de Chéseaux conseguiu observar o seu brilho mais proeminente, tendo identificado o objeto como uma nebulosa em 1745. No entanto, como o catálogo do astrônomo suíço nunca atingiu grande notoriedade, a redescoberta da Nebulosa Ômega por Messier em 1764 levou a que o objeto ficasse conhecido por Messier 17 (M17).

As observações que deram origem a esta imagem foram obtidas pelo telescópio de rastreio do VLT (VST), instalado no Observatório do Paranal do ESO, no Chile. A enorme imagem final foi criada a partir de dezenas de imagens, cada uma com 256 milhões de pixels, captadas pela OmegaCAM, a câmera de grande formato do telescópio. O resultado final, após um longo processamento, totaliza 3,3 bilhões de pixels, uma das maiores imagens já divulgadas pelo ESO.

Fonte: ESO

domingo, 4 de junho de 2017

Órion: o Cinturão e as Nebulosas da Chama e da Cabeça de Cavalo

O que rodeia as célebres estrelas do Cinturão de Órion?

Cinturão de Órion e as Nebulosas da Chama e da Cabeça de Cavalo

© Rogelio Bernal Andreo (Cinturão de Órion e as Nebulosas da Chama e da Cabeça de Cavalo)

Uma exposição profunda mostra tudo, desde a nebulosa escura até os aglomerados de estrelas, todos embutidos em um remendo estendido de mechas gasosas no maior complexo de nuvens moleculares de Órion.

As três estrelas mais brilhantes, aparecendo diagonalmente à esquerda da imagem em destaque, são o asterismo de três estrelas famosas que compõem o Cinturão de Órion, as Três Marias: Mintaka, Alnilan e Alnitak.

Logo abaixo de Alnitak, a mais baixa das três estrelas do cinturão, está a Nebulosa da Chama, incandescente com gás de hidrogênio excitado e imersa em filamentos de poeira marrom escuro. Apenas à direita de Alnitak encontra-se a Nebulosa do Cavalo, uma escuridão de poeira densa que talvez tenha a forma mais reconhecida de nebulosas no céu.

Esta nuvem molecular escura, está a cerca de 1.500 anos-luz de distãncia, e é catalogada como Barnard 33 e é vista principalmente porque é retroiluminada pela estrela gigante próxima Sigma Orionis.

A Nebulosa da Cabeça de Cavalo mudará gradualmente a sua aparência nos próximos milhões de anos e, eventualmente, será destruída pela radiação das estrelas de alta energia.

Fonte: NASA

sábado, 20 de maio de 2017

Descoberta uma ponte magnética entre as nuvens de Magalhães

Observadores do céu no hemisfério sul têm um assento na primeira fila para verificar que a nossa galáxia, a Via Láctea, está consumindo ativamente duas galáxias anãs, as Grande e Pequena Nuvens de Magalhães (LMC e SMC). Entretanto, há mais na história, as galáxias anãs não estão apenas interagindo gravitacionalmente com a Via Láctea, mas também com outras.

Nuvens de Magalhães

© Central Michigan University/A. Mellinger (mosaico de luz visível das Nuvens de Magalhães)

Os efeitos gravitacionais evidentes a partir destas interações podem nos dizer muito sobre a história e evolução destas galáxias, bem como os ambientes que os rodeiam, mas a gravidade não é a única força em ação no local.

Agora, pela primeira vez, os pesquisadores que usam o radiotelescópio Australia Telescope Compact Array em Nova Gales do Sul, Austrália, detectaram um campo magnético no espaço entre as Nuvens de Magalhães. Chamada de Ponte de Magalhães, esta estrutura é um filamento de gás e poeira que se estende por 75.000 anos-luz da LMC para a SMC.

Campos magnéticos podem ser encontrados dentro e ao redor de planetas e estrelas, mas também em galáxias. Detectamos campos magnéticos galácticos em nossa própria galáxia e em várias outras galáxias de disco, mas um campo magnético extragaláctico é outra coisa. Este é o primeiro campo magnético detectado no exterior de uma galáxia.

Para detectar a presença de um campo magnético associado à ponte de Magalhães, Jane Kaczmarek (Universidade de Sydney) e colegas observaram 167 fontes de rádio conhecidas na mesma área do céu, localizada muito além das Nuvens de Magalhães (LMC e SMC estão a 160.000 e 200.000 anos-luz de distância, respectivamente). Algumas destas fontes de rádio ficavam diretamente atrás da ponte ao longo de nossa linha de visão e algumas delas estavam desligadas para ambos os lados.

As fontes de rádio é muitas vezes parcialmente polarizadas, de modo que as ondas de luz tendem a oscilar ao longo de uma certa direção. Mas se a luz passa através de um meio (como um grande filamento de gás) em seu caminho em direção aos telescópios, esta passagem pode mudar a polarização. O quanto isso muda diz-nos sobre o meio interveniente. A partir das observações, os astrônomos calcularam que o campo magnético era de 0,3 µG (microgauss), ou seja, um milhão de vezes mais fraco do que o campo magnético da Terra na superfície do nosso planeta.

Interpretar os dados não é simples. A Via Láctea tem seu próprio campo magnético, assim como a Terra, o Sol e vários outros planetas do Sistema Solar. Assim, a equipe teve de subtrair possíveis contribuições de todas as outras fontes para isolar o efeito devido ao gás na Ponte de Magalhães apenas.

Sabemos que a LMC e a SMC tiveram um encontro no passado, cujo evento deixou ambas deformadas. A ponte de Magalhães é provavelmente um remanescente desta interação, composta de gás deflagrado de ambas as galáxias quando elas passaram uma pela outra.

Este recém-descoberto campo magnético é similarmente composto de ambos os campos magnéticos das galáxias, que foram arrastados para a estrutura da ponte juntamente com o gás. Se verdadeiro, este resultado confirmaria a existência de um campo magnético que se espalha em ambas as galáxias.

O Square Kilometer Array (SKA), atualmente na fase final do projeto, vai sondar os campos magnéticos envolvendo as galáxias interagindo como a LMC e a SMC em mais detalhes, bem como procurar sinais potenciais de magnetismo no meio intergaláctico, quando ele estiver ativo em 2021.

Estes resultados foram publicados no periódico Monthly Notices of the Royal Astronomical Society.

Veja outras informações na notícia Uma ponte de estrelas conecta as Nuvens de Magalhães.

Fonte: Sky & Telescope

quinta-feira, 4 de maio de 2017

Enxergando através do véu de poeira da Pequena Nuvem de Magalhães

A Pequena Nuvem de Magalhães é uma galáxia proeminente que pode ser vista a olho nu no céu austral. No entanto, os telescópios que operam no visível não conseguem obter uma visão clara desta galáxia, devido às nuvens de poeira interestelar que a obscurecem.

Pequena Nuvem de Magalhães

© ESO/VISTA VMC (Pequena Nuvem de Magalhães)

As capacidades infravermelhas do VISTA permitiram aos astrônomos observar a miríade de estrelas nesta nossa galáxia vizinha com muito mais nitidez do que conseguido até hoje. O resultado é esta imagem recorde, a maior imagem infravermelha já obtida da Pequena Nuvem de Magalhães, repleta de milhões de estrelas.

A Pequena Nuvem de Magalhães é uma galáxia anã, a irmã menor da Grande Nuvem de Magalhães. Tratam-se de duas das nossas galáxias vizinhas mais próximas, a Pequena Nuvem de Magalhães situa-se a cerca de 200.000 anos-luz de distância, apenas 1/12 da distância a que se encontra de nós a mais famosa Galáxia de Andrômeda. No entanto, ambas as galáxias anãs apresentam formas peculiares, resultado de interações uma com a outra e com a própria Via Láctea.

A sua relativa proximidade à Terra faz com que as Nuvens de Magalhães sejam candidatas ideais para estudar a formação e evolução estelar. Porém, apesar de se saber que a distribuição e história de formação estelar nestas galáxias anãs é complexa, um dos maiores obstáculos para se obter observações claras da formação estelar é a poeira interestelar. Nuvens enormes destes grãos minúsculos dispersam e absorvem parte da radiação emitida pelas estrelas, especialmente no visível, limitando assim o que pode ser observado pelos telescópios à superfície da Terra. É a chamada extinção interestelar.

A Pequena Nuvem de Magalhães está repleta de poeira e por isso a radiação visível emitida pelas suas estrelas sofre uma extinção significativa. Felizmente, nem toda a radiação eletromagnética é afetada da mesma maneira pela poeira. A radiação infravermelha passa através da poeira interestelar muito mais facilmente que a visível, por isso ao observarmos no infravermelho podemos aprender como é que as novas estrelas se formam nas nuvens de gás e poeira.

O telescópio VISTA (Visible and Infrared Survey Telescope) foi concebido para observar a radiação infravermelha. O VISTA Survey of the Magellanic Clouds (VMC) foca-se no mapeamento da história de formação estelar da Pequena e Grande Nuvens de Magalhães, mapeando também as suas estruturas tridimensionais. Foram obtidas imagens infravermelhas de milhões de estrelas da Pequena Nuvem de Magalhães graças a este rastreio, o que nos fornece uma visão sem precedentes desta galáxia quase sem os efeitos da extinção interestelar.

Toda a imagem se encontra repleta de estrelas que pertencem à Pequena Nuvem de Magalhães e inclui também galáxias de fundo e vários aglomerados de estrelas brilhantes, como 47 Tucanae que se encontra à direita na imagem e se situa muito mais perto da Terra do que a Pequena Nuvem de Magalhães. Um zoom da imagem mostra-nos esta galáxia como nunca observada antes!

A grande quantidade de nova informação contida nesta imagem de 1,6 gigapixels foi analisada por uma equipe internacional liderada por Stefano Rubele da Universidade de Pádua, na Itália. A equipe utilizou modelos estelares de vanguarda para obter alguns resultados surpreendentes.

O rastreio mostrou que a maioria das estrelas na Pequena Nuvem de Magalhães se formaram muito mais recentemente do que as das suas galáxias vizinhas maiores. Este resultado preliminar do rastreio é apenas o aperitivo de novas descobertas que certamente surgirão, já que o rastreio continua preenchendo “buracos vazios” nos nossos mapas das Nuvens de Magalhães.

Este trabalho foi descrito num artigo científico intitulado "The VMC survey – XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud”, que foi publicado na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

sexta-feira, 7 de abril de 2017

A nebulosa escura de LDN 1622 e o Laço de Barnard

Nesta cena cósmica habita a silhueta de uma intrigante nebulosa escura.

LDN 1622 e Sh 2-276

© Leonardo Julio (LDN 1622 e Sh 2-276)

A nebulosa escura de Lynds (LDN) 1622 aparece abaixo do centro contra um fundo tênue de gás hidrogênio brilhante apenas facilmente visto em longas exposições telescópicas da região.

A LDN 1622 situa-se perto do plano de da Via Láctea, perto do Laço de Barnard (designação de catálogo: Sh 2-276), uma grande nuvem que rodeia o rico complexo de nebulosas de emissão encontradas no Cinturão e na Espada de Órion.

Os arcos ao longo de um segmento do Laço de Barnard estendem-se pelo topo da imagem. Mas a poeira obscurecida da LDN 1622 é considerada muito mais próxima do que as nebulosas mais famosas de Órion, talvez a apenas 500 anos-luz de distância. A esta distância, este campo de visão de 1 grau de largura abrangeria menos de 10 anos-luz.

Fonte: NASA

sábado, 1 de abril de 2017

Estrelas jovens e nebulosas poeirentas em Taurus

Este complexo de nebulosas empoeiradas permanece ao longo da borda da nuvem molecular Taurus, a apenas 450 anos-luz de distância.

Cederblad 30 e Barnard 7

© Lloyd L. Smith/Deep Sky West (Cederblad 30 e Barnard 7)

As estrelas estão se formando na cena cósmica. O campo de visão telescópico com 2 graus de largura, composto por quase 40 horas de dados de imagem, inclui algumas estrelas jovens da classe T-Tauri incorporadas nos restos de suas nuvens natais, à direita.

Com milhões de anos de idade e ainda atravessando a adolescência estelar, as estrelas são variáveis em brilho e estão nas fases finais de seu colapso gravitacional. Suas temperaturas centrais subirão para sustentar a fusão nuclear à medida que evoluem em estrelas da sequência principal, estáveis e de massa baixa, um estágio da evolução estelar alcançado por nosso Sol de idade mediana, com cerca de 4,5 bilhões de anos.

Outra estrela variável jovem, V1023 Tauri, pode ser observada à esquerda. Dentro de sua nuvem de poeira amarelada, fica ao lado da impressionante nebulosa de reflexão azul Cederblad 30, também conhecida como LBN 782. Logo acima da brilhante nebulosa de reflexão azulada está a nebulosa escura e empoeirada Barnard 7.

Fonte: NASA

quinta-feira, 5 de janeiro de 2017

Nuvens da galáxia de Andrômeda

A bela galáxia de Andrômeda é muitas vezes fotografada por astrônomos baseados na Terra.

galáxia de Andrômeda_Rogelio Bernal Andreo

© Rogelio Bernal Andreo (galáxia de Andrômeda)

A galáxia de Andrômeda é também conhecida como M31, sendo a maior galáxia espiral mais próxima da Terra. Ela é uma galáxia familiar com faixas de poeira escura, núcleo amarelado brilhante e braços espirais marcados pela luz azulada das estrelas. O mosaico foi realizado usando dados de banda larga e estreita, onde o retrato colorido e primoroso de nossa galáxia vizinha oferece características surpreendentemente desconhecidas, porém, as apagadas nuvens avermelhadas de gás de hidrogênio ionizado brilham no mesmo campo amplo de visão. Ainda assim, as nuvens de hidrogênio ionizado provavelmente estão em primeiro plano nesta imagem, no interior da Via Láctea. Elas podem estar associadas com as nuvens interestelares empoeiradas que se espalham por centenas de anos-luz acima do plano galáctico. Se elas estivessem localizadas a uma distância de 2,5 milhões de anos-luz da Galáxia de Andrômeda, elas seriam enormes, já que a própria galáxia de Andrômeda tem 200 mil anos-luz de extensão.

Fonte: NASA

quarta-feira, 4 de janeiro de 2017

Os segredos escondidos das Nuvens de Órion

Esta bela imagem é um dos maiores mosaicos em alta resolução no infravermelho próximo da nuvem molecular Órion A, a fábrica de estrelas massivas mais próxima que se conhece, situada a cerca de 1.350 anos-luz de distância da Terra.

nuvem molecular Órion

© ESO/VISION (nuvem molecular Órion)

Esta nova imagem composta do rastreio VISION (VIenna Survey In Orion) é uma montagem de imagens obtidas na região do infravermelho próximo pelo telescópio de rastreio VISTA (Visible and Infrared Survey Telescope for Astronomy), instalado no Observatório do Paranal do ESO no Chile, revelando muitas estrelas jovens e outros objetos que normalmente se encontram enterrados profundamente no núcleo das nuvens de poeira. A imagem cobre toda a nuvem molecular Órion A, uma de duas nuvens moleculares gigantes que fazem parte do complexo da Nuvem Molecular de Órion. Orion A estende-se para sul da familiar região de Órion conhecida como a espada, ao longo de cerca de 8 graus. A outra nuvem molecular gigante da Nuvem Molecular de Órion é a Órion B, que se situa a este do cinturão de Órion.

O VISTA é o maior telescópio de rastreio do mundo. Possui um enorme campo de visão o qual observa com detectores infravermelhos muito sensíveis, o que o torna ideal na obtenção de imagens infravermelhas profundas de alta qualidade, indispensáveis a este rastreio ambicioso.

O rastreio VISION resultou num catálogo com cerca de quase 800.000 estrelas, objetos estelares jovens e galáxias distantes individuais identificadas, o que representa uma melhor profundidade e cobertura do que as conseguidas até à data por qualquer outro rastreio desta região.

coleção de imagens da nuvem molecular Órion

© ESO/VISION (coleção de imagens da nuvem molecular Órion)

O VISTA observa radiação que o olho humano não vê, permitindo aos astrônomos identificar muitos objetos na maternidade estelar, de outro modo invisíveis. Estrelas muito jovens que não podem ser observadas em imagens obtidas no visível são reveladas quando observadas nos maiores comprimentos de onda do infravermelho, onde a poeira que as rodeia se torna mais transparente.

Esta nova imagem representa um passo em frente na obtenção de uma fotografia completa dos processos de formação estelar em Órion A, tanto para estrelas de pequena massa como para estrelas massivas. O objeto mais espectacular é a gloriosa Nebulosa de Órion, também chamada Messier 42 (M42), que pode ser vista do lado esquerdo da imagem. Esta região forma parte da espada da famosa constelação brilhante do caçador Órion.

A nebulosa de Órion foi inicialmente descoberta no início do século XVII, embora a identidade do seu descobridor permaneça incerta. O caçador de cometas francês Messier fez um desenho esquemático preciso das suas estruturas principais em meados do século XVIII, tendo-lhe atribuído o número 42 no seu famoso catálogo. Messier atribuiu também o número 43 à região mais pequena separada situada a norte da parte principal da nebulosa. Mais tarde William Herschel especulou que a nebulosa poderia ser “o material caótico de futuros sóis” e os astrônomos descobriram entretanto que a neblina é de fato gás brilhando devido à intensa radiação ultravioleta emitida por estrelas quentes jovens recentemente formadas no local.

O catálogo VISTA cobre tanto objetos familiares como novas descobertas. Estes novos objetos incluem cinco candidatos a objetos estelares jovens e dez candidatos a aglomerados de galáxias.

No resto da imagem podemos ver as nuvens escuras de Órion A e encontrar muitos tesouros escondidos, como discos de material que poderão dar origem a novas estrelas (discos protoestelares), nebulosidades associadas a estrelas recém-nascidas (objetos de Herbig Haro), aglomerados de estrelas menores e até aglomerados de galáxias situados muito além da Via Láctea. O rastreio VISION permite o estudo sistemático das fases de evolução mais precoces das estrelas jovens no coração de nuvens moleculares próximas.

Esta imagem muito detalhada de Órion A estabelece uma nova base observacional para estudos futuros de formação de estrelas e aglomerados, destacando uma vez mais o poder do telescópio VISTA na obtenção de imagens de vastas áreas do céu, rápida e profundamente, na região do infravermelho próximo do espectro eletromagnético. O bem sucedido rastreio VISION de Órion será seguido por um novo rastreio público maior de outras regiões de formação estelar chamadas VISIONS, que será efetuado pelo VISTA e terá início em abril de 2017.

Este trabalho foi descrito no artigo científico intitulado “VISION - Vienna survey in Orion I. VISTA Orion A Survey”, de S. Meingast et al., que foi publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

sábado, 29 de outubro de 2016

O fantasma da labareda de Cepheus

Formas fantasmagóricas parecem assombrar esta vastidão estrelada, à deriva durante a noite na constelação real de Cepheus.

VDB 141

© Thomas Lelu (VDB 141)

Claro, as formas são nuvens de poeira cósmica ligeiramente visíveis na luz fracamente refletida das estrelas. Longe de sua própria vizinhança no planeta Terra, elas se escondem na borda do complexo de nuvens moleculares conhecido como Labareda de Cepheus localizado a aproximadamente 1.200 anos-luz de distância. Com mais de 2 anos-luz de diâmetro a nebulosa fantasmagórica e o relativamente isolado glóbulo de Bok, também conhecido como VDB 141 ou Sh2-136, aparece perto do campo estrelado. O núcleo da nuvem escura à direita está colapsando e é provavelmente um sistema estelar binário nos estágios iniciais de formação.

Feliz Dia das Bruxas!

Fonte: NASA

domingo, 9 de outubro de 2016

Detectado colapso de nuvens interestelares gerando novas estrelas

Pesquisadores utilizaram SOFIA (Stratospheric Observatory for Infrared Astronomy) da NASA, para observar o colapso de seis nuvens interestelares para se tornarem novas estrelas que serão muito maiores do que o nosso Sol.

W43

© NASA/JPL-Caltech/2MASS (W43)

A imagem acima em infravermelho mostra a região W43 de formação de estrelas localizada a 20.000 anos-luz de distância na direção da constelação de Aquila.

O SOFIA é um avião Boeing 747SP modificado para transportar um telescópio com 100 polegadas de diâmetro.

Quando uma nuvem de gás entra em colapso sobre si mesma, a própria gravidade da nuvem faz com que ela se contraia e devido ao atrito produz calor. O calor da contracção eventualmente faz com que o núcleo produza as reações de fusão de hidrogênio que criam uma estrela.

Estas observações através do SOFIA permitiram a confirmação dos modelos teóricos sobre como as nuvens interestelares em colapso se tornam estrelas e o ritmo em que elas entram em colapso. Na verdade observar este colapso é extremamente desafiador porque acontece de forma relativamente rápida em termos astronômicos.

"Detectando o colapso em proto-estrelas é muito difícil de observar, mas é fundamental para confirmar a nossa compreensão geral da formação de estrelas", disse Erick Young, da Universities Space Research Association.

Usando instrumento GREAT (German Receiver for Astronomy at Terahertz Frequencies) do observatório, os cientistas procuraram este estágio de desenvolvimento em nove estrelas embrionárias, chamadas de proto-estrelas, medindo os movimentos do material dentro delas. Eles descobriram que seis das nove proto-estrelas estavam colapsando ativamente, aumentando substancialmente a lista anterior de menos de uma dúzia de proto-estrelas diretamente determinada que estavam neste estágio de colapso.

Durante várias semanas a cada ano, a equipe do SOFIA operando a partir de Christchurch, na Nova Zelândia, estudou objetos a partir de latitudes do sul que são melhores observados, incluindo o centro da Via Láctea, onde existem muitas regiões de formação estelar. Nos meses de inverno do hemisfério sul, quando as noites são longas e o bloqueio infravemelho de vapor de água é especialmente baixo, propiciando boas condições de observação.

"Com as observações do SOFIA no hemisfério sul, o interior pleno da Via Láctea entra em alcance para estudos de formação de estrelas. Isso é crucial para observações das primeiras fases de formação de estrelas de alta massa, uma vez que este é um evento relativamente rápido e raro," disse Friedrich Wyrowski, astrônomo do Instituto Max-Planck para Radioastronomia, em Bonn, Alemanha.

Os resultados das observações feitas no hemisfério sul em 2015 foram publicados no início deste ano no periódico Astronomy and Astrophysics.

Fonte: SOFIA Science Center

sexta-feira, 30 de setembro de 2016

Descoberto casulo estelar com química estranha

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), uma equipe de astrônomos japoneses descobriu uma massa densa e quente de moléculas complexas envolvendo uma estrela recém-nascida.

ilustração do núcleo molecular quente descoberto na Grande Nuvem de Magalhães

© U. Tohoku (ilustração do núcleo molecular quente descoberto na Grande Nuvem de Magalhães)

Este núcleo molecular quente único é o primeiro do seu tipo a ser detectado fora da Via Láctea e apresenta uma composição molecular muito diferente de objetos semelhantes encontrados na nossa Galáxia, uma pista que aponta para o fato da química que ocorre no Universo poder ser muito mais diversa do que o esperado.

A equipe de pesquisadores japoneses observou uma estrela massiva conhecida por ST11, que se situa na nossa galáxia vizinha anã, a Grande Nuvem de Magalhães. Foi detectada radiação emitida por uma variedade de gases moleculares, o que indica que a equipe descobriu uma região concentrada de gás molecular denso relativamente quente em torno da estrela recém-nascida ST11. O nome completo da ST11 é 2MASS J05264658-6848469. Esta jovem estrela de nome estranho está classificada como um “Objeto Estelar Jovem”. Embora pareça atualmente uma única estrela, é possível que prove ser um aglomerado estelar compacto ou um sistema estelar múltiplo. Este objeto foi o alvo de estudo das observações da equipe científica e os resultados obtidos mostraram que a ST11 se encontra rodeada por um núcleo molecular quente. Núcleos moleculares quentes têm que: ser (relativamente) pequenos, com um diâmetro menor que 0,3 ano-luz; ter uma densidade maior que um trilhão de moléculas por metro cúbico (muito mais baixa que a atmosfera terrestre, mas suficientemente alta para o meio interestelar); ter uma temperatura relativamente elevada, superior a -173º Celsius, o que os torna pelo menos 80º Celsius mais quentes do que uma nuvem molecular normal, apesar da densidade semelhante. Estes núcleos quentes formam-se cedo no ciclo de evolução de estrelas massivas e desempenham um papel crucial na formação de elementos químicos complexos no espaço.

Takashi Shimonishi, astrônomo na Universidade de Tohoku, Japão, reitera: “Esta é a primeira detecção de um núcleo molecular quente extragaláctico, o que demonstra a grande capacidade da nova geração de telescópios no estudo de fenômenos astroquímicos para além da Via Láctea.”

As observações ALMA revelaram que este núcleo tem uma composição muito diferente de objetos semelhantes encontrados na Via Láctea. As assinaturas químicas mais proeminentes deste núcleo incluem moléculas familiares, tais como dióxido de enxofre, óxido nítrico e formaldeído, assim como a sempre presente poeira.

No entanto, vários compostos orgânicos, incluindo metanol (a mais simples molécula do álcool), aparecem com uma abundância muito baixa neste núcleo molecular quente. Em contraste, núcleos semelhantes observados na Via Láctea apresentam uma grande variedade de moléculas orgânicas complexas, incluindo metanol e etanol.

As observações sugerem que as composições moleculares da matéria que forma as estrelas e os planetas são muito mais diversas do que é estabelecido atualmente.

A Grande Nuvem de Magalhães tem uma baixa abundância de elementos que não são hidrogênio ou hélio. As reações de fusão nuclear que ocorrem após uma estrela ter queimado todo seu hidrogênio em hélio dão origem a elementos mais pesados. Estes elementos são lançados para o espaço quando as estrelas massivas moribundas explodem sob a forma de supernovas. Por isso, à medida que o Universo envelheceu, a abundância de elementos pesados aumentou. Graças à sua baixa abundância de elementos pesados, a Grande Nuvem de Magalhães fornece-nos pistas sobre os processos químicos que ocorriam quando o Universo era mais jovem.

O spesquisadores sugerem que este meio galáctico muito diferente afeta os processos de formação de moléculas que ocorrem em torno da estrela recém-nascida ST11, o que pode explicar as diferenças nas composições químicas observadas.

Não é ainda claro se as moléculas grandes e complexas detectadas na Via Láctea existem também em núcleos moleculares quentes  em outras galáxias. As moléculas orgânicas complexas têm especial interesse pois algumas delas estão ligadas a moléculas pré-bióticas que se formam no espaço. Este objeto recém-descoberto numa das galáxias mais próximas de nós é um alvo excelente para estudar este tópico e levanta também outra questão: poderá a diversidade química nas galáxias afetar o desenvolvimento de vida extragalática?

Este trabalho foi descrito no artigo científico intitulado “The Detection of a Hot Molecular Core in the Large Magellanic Cloud with ALMA”, que foi publicado na revista especializada Astrophysical Journal.

Fonte: ESO

quarta-feira, 21 de setembro de 2016

Os segredos de uma bolha espacial gigante

Uma equipe internacional de astrônomos usou o Atacama Large Millimeter/submillimeter Array (ALMA), o Very Large Telescope (VLT) do ESO e outros telescópios, para descobrir a verdadeira natureza de um objeto raro no Universo distante, chamado Bolha de Lyman-alfa.

simulação de computador de uma Bolha de Lyman-alfa

© J.Geach/D.Narayanan/R.Crain (simulação de computador de uma Bolha de Lyman-alfa)

Até agora, os astrônomos não compreendiam o que é que fazia estas enormes nuvens de gás brilhar tão intensamente, mas o ALMA viu agora duas galáxias no coração de um destes objetos, galáxias estas que estão formando estrelas a um ritmo muito acelerado, fazendo brilhar todo o meio ao seu redor. Estas enormes galáxias estão por sua vez no centro de um conjunto de galáxias menores, no que parece ser a fase inicial de formação de um aglomerado de galáxias massivo. As duas fontes ALMA deverão evoluir numa única galáxia elíptica gigante.

As Bolhas de Lyman-alfa são enormes nuvens de hidrogênio gasoso com dimensões que podem ir até às centenas de milhares de anos-luz e que se encontram a grandes distâncias cósmicas. O nome reflete o comprimento de onda característico da radiação ultravioleta que emitem, conhecida por radiação de Lyman-alfa.

Os elétrons carregados negativamente que orbitam os núcleos carregados positivamente de um átomo possuem níveis de energia quantificados, isto é, apenas podem existir em determinados estados de energia, e apenas podem transitar entre os diversos níveis ganhando ou perdendo quantidades precisas de energia. A radiação de Lyman-alfa é produzida quando elétrons nos átomos de hidrogênio descem do segundo nível de energia mais baixo para o primeiro nível mais baixo. A quantidade exata de energia perdida é emitida sob a forma de radiação num comprimento de onda particular, na região ultravioleta do espectro, a qual os astrônomos conseguem detectar com telescópios no espaço ou com telescópios na Terra, no caso de objetos que se encontrem desviados para o vermelho. Desde a descoberta destes objetos, os processos que lhes dão origem têm constituído um quebra-cabeças astronômico. Novas observações obtidas agora com o ALMA acabam de resolver o mistério.

Uma das maiores Bolhas de Lyman-alfa conhecidas e estudadas com muito detalhe é a SSA22-Lyman-alfa 1, ou LAB-1. Situada no núcleo de um enorme aglomerado de galáxias na fase inicial de formação, este foi o primeiro objeto do tipo a ser descoberto, em 2000, e localiza-se tão longe que a sua luz demorou 11,5 bilhões de anos para chegar até nós. Para LAB-1, com um desvio para o vermelho de z ~ 3, a radiação de Lyman-alfa é observada na região do visível.

Uma equipe de astrônomos, liderada por Jim Geach, do Centre for Astrophysics Research of the University of Hertfordshire, RU, utilizou a capacidade sem precedentes do ALMA para investigar a LAB-1, observando a radiação emitida por nuvens de poeira fria em galáxias distantes, o que permitiu localizar e resolver várias fontes de emissão submilimétrica.

A equipe combinou em seguida as imagens ALMA com observações obtidas com o instrumento Multi Unit Spectroscopic Explorer (MUSE), montado no VLT, as quais mapeiam a radiação Lyman-alfa. Isto mostrou que as fontes ALMA estão localizadas mesmo no centro da Bolha de Lyman-alfa, onde se encontram formando estrelas a uma taxa cerca de 100 vezes maior que a da Via Láctea.

Adicionalmente, imagens profundas obtidas com o telescópio espacial Hubble da NASA/ESA e espectroscopia do observatório W. M. Keck mostraram que as fontes ALMA estão rodeadas por numerosas galáxias companheiras muito fracas, que podem estar bombardeando-as com material, ajudando assim a aumentar as taxas de formação estelar nas fontes ALMA centrais.

A equipe fez em seguida uma sofisticada simulação de formação galáctica para demonstrar que a enorme nuvem brilhante de emissão Lyman-alfa pode ser explicada se radiação ultravioleta produzida pela formação estelar nas fontes ALMA for dispersada pelo hidrogênio gasoso ao seu redor. Este efeito daria origem à Bolha de Lyman-alfa que observamos.

Jim Geach, autor principal do novo estudo, explica: “Pensemos nas luzes da rua numa noite de nevoeiro, vemos um brilho difuso porque a luz é dispersada pelas minúsculas gotas de água. Algo semelhante acontece aqui, exceto que a luz da rua é uma galáxia formando estrelas com muita intensidade e o nevoeiro é uma enorme nuvem de gás intergaláctico. As galáxias iluminam o meio ao seu redor.”

Compreender como é que as galáxias se formam e evoluem é um enorme desafio. Os astrônomos pensam que as Bolhas de Lyman-alfa são importantes porque parecem ser os locais onde a maioria das galáxias massivas do Universo se formam. Em particular, o brilho extenso de Lyman-alfa fornece informações sobre o que está acontecendo nas nuvens de gás primordial que rodeiam as jovens galáxias, uma região muito difícil de estudar, mas critica para a compreensão destes fenômenos.

Jim Geach conclui, “O que é excitante nestas Bolhas é que estamos vendo o que se passa em torno destas jovens galáxias em crescimento. Durante muito tempo, a origem desta radiação extensa de Lyman-alfa permaneceu controversa. No entanto, combinando novas observações e simulações de vanguarda, pensamos ter resolvido um mistério de 15 anos: a Bolha de Lyman-alfa 1 é o local de formação de uma galáxia elíptica gigante, que um dia será o coração de um enorme aglomerado de galáxias. Estamos vendo uma fotografia da formação dessa galáxia há 11,5 bilhões de anos atrás.”

Este trabalho foi descrito no artigo científico intitulado “ALMA observations of Lyman-α Blob 1: Halo sub-structure illuminated from within” de J. Geach et al., que será publicado na revista especializada Astrophysical Journal.

Fonte: ESO

segunda-feira, 12 de setembro de 2016

Espreitando uma tormenta na Grande Nuvem de Magalhães

A imagem abaixo efetuada pela Advanced Camera for Surveys a bordo do telescópio espacial Hubble, mostra um turbilhão de gás brilhante e poeira escura dentro de uma das galáxias satélites da Via Láctea, a Grande Nuvem de Magalhães.

N159

© Hubble (N159)

Esta cena tempestuosa mostra um berçário estelar conhecido como N159, uma região HII com mais de 150 anos-luz de diâmetro. A N159 contém muitas estrelas jovens e quentes. Estas estrelas estão emitindo intensa radiação ultravioleta, que faz com que o gás hidrogênio próximo brilhe intensamente e os torrenciais ventos estelares possam cavar arcos, cadeias e filamentos no materal ao redor.

No interior desta nuvem cósmica localiza-se a Nebulosa Papillon, uma região de nebulosidade em forma de borboleta. Esse objeto pequeno e denso é classificado como uma Bolha de Alta-Excitação, e acredita-se que ela esteja ligada às fases iniciais da formação de estrelas massivas.

A N159 localiza-se a mais de 160.000 anos-luz de distância. Ela reside logo ao sul da Nebulosa da Tarântula, outro complexo de formação de estrelas massivas dentro da Grande Nuvem de Magalhães.

Fonte: ESA