terça-feira, 26 de janeiro de 2021

Descoberto primeiro exoplaneta sem nuvens semelhante a Júpiter

Os astrônomos do Harvard–Smithsonian Center for Astrophysics detectaram o primeiro planeta semelhante a Júpiter sem nuvens ou neblina na sua atmosfera observável.

© CfA/M. Weiss (ilustração do exoplaneta WASP-62b)

Batizado de WASP-62b, o gigante gasoso foi detectado pela primeira vez em 2012 pelo levantamento WASP (Wide Angle Search for Planets). A sua atmosfera, no entanto, nunca havia sido estudada detalhadamente até agora.

Conhecido como um "Júpiter quente", WASP-62b fica a 575 anos-luz de distância da Terra e tem aproximadamente metade da massa de Júpiter. No entanto, ao contrário do planeta Júpiter, que leva quase 12 anos para orbitar o Sol, WASP-62b completa uma translação em torno da sua estrela em apenas quatro dias e meio. Esta proximidade com a estrela torna-o extremamente quente, daí o nome "Júpiter quente". 

Usando o telescópio espacial Hubble, os astônomos recolheram dados e observações do planeta usando espectroscopia, o estudo da radiação eletromagnética para ajudar a detectar elementos químicos. O exoplaneta WASP-62b foi monitorado quando passou três vezes em frente da sua estrela hospedeira, possibilitando observações no visível que podem detectar a presença de sódio e potássio na atmosfera de um planeta. 

Embora não houvesse evidências de potássio, a presença de sódio foi surpreendentemente clara. A equipe foi capaz de visualizar todas as linhas de absorção de sódio nos seus dados, ou a sua impressão digital completa. 

As nuvens ou neblina na atmosfera obscureceriam a assinatura completa do sódio que geralmente só é possível perceber pequenos indícios da sua presença. Os planetas sem nuvens são extremamente raros; estima-se que menos de 7% dos exoplanetas têm atmosferas limpas, de acordo com pesquisas recentes. 

Por exemplo, o primeiro e único outro exoplaneta conhecido como uma atmosfera limpa foi descoberta em 2018. Chamado WASP-96b, está classificado como um Saturno quente. Os astrônomos pensam que o estudo de exoplanetas com atmosferas sem nuvens pode levar a uma melhor compreensão de como foram formados. 

A sua raridade sugere que algo mais está acontecendo ou que se formaram de maneira diferente da maioria dos planetas. As atmosferas claras também tornam mais fácil o estudo da composição química dos planetas. 

Com o lançamento do telescópio espacial James Webb ainda este ano, a equipe espera ter novas oportunidades para estudar e melhor compreender WASP-62b. As tecnologias aprimoradas do telescópio, como maior resolução e melhor precisão, deverão ajudar a analisar a atmosfera ainda mais detalhadamente a fim de procurar a presença de mais elementos, como o silício.

As descobertas foram publicadas no periódico The Astrophysical Journal Letters.

Fonte: Harvard–Smithsonian Center for Astrophysics

Intrigante sistema de seis exoplanetas com movimentos rítmicos

Com o auxílio de vários telescópios, incluindo o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), os astrônomos descobriram um sistema com seis exoplanetas, cinco dos quais estão presos numa dança rítmica rara em torno da sua estrela central.

© ESO/L. Calçada (ilustração mostra exoplaneta do sistema TOI-178)

Os pesquisadores acreditam que o sistema poderá nos dar pistas importantes sobre como é que os planetas, incluindo os do Sistema Solar, se formam e evoluem. A primeira vez que observou TOI-178, uma estrela a cerca de 200 anos-luz de distância da Terra na direção da constelação do Escultor, os astrônomos pensaram que tinha descoberto dois planetas em torno desta estrela percorrendo essencialmente a mesma órbita. 

No entanto, um olhar mais detalhado revelou algo inteiramente diferente. “Através de mais observações percebemos que não tínhamos dois planetas em órbita da estrela praticamente à mesma distância dela, mas antes planetas múltiplos numa configuração muito especial,” explica Adrien Leleu da Universidade de Genève e da Universidade de Berna, Suíça, que liderou um novo estudo deste sistema. 

Os exoplanetas deste sistema encontram-se em ressonância, o que significa que há padrões que se repetem à medida que os planetas se deslocam ao redor da estrela, com alguns planetas se alinhando entre si ao fim de algumas órbitas. 

Observa-se uma ressonância semelhante nas órbitas de três das luas de Júpiter: Io, Europa e Ganimedes. Io, o mais próximo de Júpiter dos três, completa quatro órbitas completas em torno de Júpiter para uma única órbita de Ganimedes, o mais afastado, e completa duas órbitas completas para cada órbita de Europa. 

Os cinco exoplanetas mais exteriores do sistema TOI-178 seguem uma cadeia de ressonância muito mais complexa, uma das mais longas descobertas até hoje num sistema de planetas. Enquanto as três luas de Júpiter têm uma ressonância 4:2:1, os cinco planetas mais exteriores do sistema TOI-178 seguem a cadeia 18:9:6:4:3, ou seja, enquanto o segundo planeta a contar da estrela (o primeiro na cadeia de ressonância) completa 18 órbitas, o terceiro planeta a contar da estrela (o segundo da cadeia) completa 9 órbitas e assim por diante. De fato, inicialmente os cientistas encontraram apenas cinco planetas no sistema, mas, ao seguirem o ritmo de ressonância, calcularam onde é que estaria um planeta adicional na sua órbita quando tivessem uma janela para observar o sistema.

Mais do que uma curiosidade orbital, esta dança de planetas ressonantes nos dá pistas sobre o passado do sistema. “As órbitas neste sistema estão muito bem ordenadas, o que nos diz que o sistema evoluiu bastante suavemente desde o seu nascimento,” explica Yann Alibert, da Universidade de Berna, Suíça. 

Se o sistema tivesse sido significativamente perturbado no início da sua existência como, por exemplo, por um impacto gigante, esta frágil configuração de órbitas não teria sobrevivido.

Apesar do arranjo das órbitas ser bem organizado e ordenado, as densidades dos planetas são muito mais desordenadas. Parece haver um planeta tão denso como a Terra mesmo ao lado de um outro planeta menos denso, com metade da densidade de Netuno, seguido por um planeta com a densidade de Netuno. 

No nosso Sistema Solar, por exemplo, os planetas estão arranjados de forma ordenada, com os planetas rochosos, mais densos, mais próximos da estrela central e os planetas gasosos, de baixa densidade, mais afastados. 

Este contraste entre a harmonia rítmica dos movimentos orbitais e as densidades desordenadas desafia claramente a nossa compreensão da formação e evolução dos sistemas planetários. 

Uma vez que os exoplanetas são extremamente difíceis de observar de forma direta através de telescópios, os astrônomos usam outras técnicas para os detectar. Os principais métodos utilizados são imagens de trânsitos - observando a luz emitida pela estrela central que diminui de intensidade quando um planeta passa na sua frente, quando observada a partir da Terra - e velocidades radiais - observando o espectro de luz da estrela em busca de pequenos sinais de oscilação que ocorrem quando os exoplanetas de deslocam nas suas órbitas. 

Ao combinar as duas técnicas, os astrônomos conseguiram reunir informações importantes sobre o sistema e os seus planetas, que orbitam a estrela central muito mais perto e com maior velocidade do que a Terra orbita o Sol. O mais rápido (o planeta mais interior) completa uma órbita em apenas alguns dias, enquanto o mais lento demora cerca de dez vezes mais.

Os seis planetas apresentam tamanhos que vão desde o tamanho da Terra até cerca de três vezes este valor, enquanto as suas massas estão entre 1,5 e 30 vezes a massa da Terra. Alguns dos planetas são rochosos, mas maiores que a Terra, os chamados Super-Terras. Outros são planetas gasosos, como os planetas exteriores do nosso Sistema Solar, mas são muito menores, os chamados Mini-Netunos. 

Apesar de nenhum destes seis exoplanetas se encontrar na zona de habitabilidade da estrela, os pesquisadores sugerem que, ao continuar a seguir a cadeia de ressonância, poderão encontrar planetas adicionais que poderão existir nesta zona ou muito perto dela. O Extremely Large Telescope (ELT) do ESO, que deverá começar a operar esta década, será capaz de observar diretamente exoplanetas rochosos na zona de habitabilidade da estrela e até caracterizar as suas atmosferas, nos dando a oportunidade de conhecer sistemas como o TOI-178 com muito mais detalhe. 

Esta pesquisa foi apresentada no artigo científico intitulado “Six transiting planets and a chain of Laplace resonances in TOI-178” publicado na revista Astronomy & Astrophysics.

Fonte: ESO

segunda-feira, 25 de janeiro de 2021

Um distribuidor interestelar

A vida das nebulosas planetárias é frequentemente caótica, desde a morte de sua estrela progenitora até a dispersão de seu conteúdo no espaço.

© Hubble (ESO 455-10)

Captada aqui pelo telescópio espacial Hubble, a ESO 455-10 é uma destas nebulosas planetárias, localizada na constelação de Scorpius (O Escorpião). 

As conchas de forma oblata da ESO 455-10, anteriormente mantidas juntas como camadas de sua estrela central, não apenas dão a esta nebulosa planetária sua aparência única, mas também oferecem informações sobre a nebulosa. 

Visto em um campo de estrelas, o arco assimétrico distinto de material sobre o lado norte da nebulosa é um sinal claro das interações entre o ESO 455-10 e o meio interestelar.

O meio interestelar é o material, consistindo de matéria e radiação, entre os sistemas estelares e as galáxias. A estrela no centro da ESO 455-10 permite que o Hubble veja a interação com o gás e a poeira da nebulosa, o meio interestelar circundante e a luz da própria estrela. 

Acredita-se que as nebulosas planetárias sejam cruciais no enriquecimento galáctico, pois distribuem seus elementos, particularmente os elementos de metal mais pesados ​​produzidos dentro de uma estrela, no meio interestelar que, com o tempo, formará a próxima geração de estrelas.

Fonte: ESA

domingo, 24 de janeiro de 2021

Um exoplaneta diferenciado

De acordo com uma equipe de astrônomos, a massa do exoplaneta gigante WASP-107b é muito menor do que se pensava ser necessária para construir o imenso invólucro gasoso que rodeia planetas como Júpiter e Saturno.

© ESA/M. Kornmesser (ilustração do exoplaneta WASP-170b)

Esta descoberta intrigante por Caroline Piaulet da Universidade de Montréal, sob a supervisão de Björn Benneke, sugere que os planetas gigantes gasosos se formam muito mais facilmente do que se pensava anteriormente. 

"Este estudo expande os limites da nossa compreensão teórica de como os planetas gigantes se formam. WASP-107b é um dos planetas mais 'inchados' que existe, e precisamos de uma solução criativa para explicar como estes pequenos núcleos podem construir invólucros de gás tão massivos," diz Eve Lee, professora assistente do Departamento de Física e do Instituto Espacial da Universidade McGill.

O WASP-107b foi detectado pela primeira vez em 2017 em torno de WASP-107, uma estrela a cerca de 212 anos-luz da Terra na direção da constelação de Virgem. 

O planeta está muito perto da sua estrela, cerca de 16 vezes mais perto do que a Terra está do Sol. Com aproximadamente o tamanho de Júpiter, WASP-107b é um dos exoplanetas menos densos conhecidos: um tipo que apelidado de "algodão doce".

Os astrônomos usaram primeiro observações de WASP-107 obtidas pelo Observatório Keck no Havaí a fim de avaliar a massa do planeta com mais precisão. Utilizaram o método de velocidade radial, que permite com que os cientistas determinem a massa de um planeta observando o movimento oscilante da sua estrela hospedeira devido à atração gravitacional do planeta. Eles concluíram que WASP-107b tem aproximadamente um-décimo da massa de Júpiter, ou cerca de 30 vezes a massa da Terra. 

Ao analisar a estrutura interna mais provável do planeta, chegaram a uma conclusão surpreendente: com uma densidade tão baixa, o planeta deve ter um núcleo sólido com não mais do que quatro vezes a massa da Terra. Isto significa que mais de 85% da sua massa está incluída na espessa camada de gás que rodeia este núcleo. Em comparação, Netuno, que tem uma massa semelhante à de WASP-107b, tem apenas 5 a 15 por cento da sua massa total na camada de gás.

Os planetas formam-se no disco de poeira e gás que envolve uma jovem estrela chamado disco protoplanetário. Os modelos clássicos da formação de planetas gigantes gasosos são baseados em Júpiter e Saturno. Nestes, um núcleo sólido pelo menos 10 vezes mais massivos do que a Terra é necessário para acumular uma grande quantidade de gás antes que o disco se dissipe.

Sem um núcleo massivo, pensava-se que os planetas gigantes gasosos não eram capazes de cruzar o limiar crítico necessário para construir e reter os seus grandes invólucros de gás. Então, como é que explicamos a existência de WASP-107b, que tem um núcleo muito menos massivo?

A professora Lee, especialista mundialmente conhecida em planetas de "algodão doce" como WASP-107b, tem várias hipóteses. "Para WASP-107b, o cenário mais plausível é que o planeta se formou longe da estrela, onde o gás no disco é frio o suficiente para que a acumulação de gás possa ocorrer muito depressa," disse. "Posteriormente, o planeta foi capaz de migrar para a sua posição atual, seja por meio de interações com o disco ou com outros planetas no sistema," explica.

As observações do sistema WASP-107 pelo Keck cobriram um período de tempo muito mais longo do que os estudos anteriores, permitindo uma descoberta adicional: a existência de um segundo planeta, WASP-107c, com uma massa de cerca de 1/3 da de Júpiter, consideravelmente mais do que a de WASP-107c.

O WASP-107c também está muito mais distante da estrela central; completa uma órbita em três anos, em comparação com apenas 5,7 dias de WASP-107b. Também interessante: a excentricidade deste segundo planeta é alta, o que significa que a sua trajetória em torno da sua estrela é mais oval do que circular.

A grande excentricidade  de WASP-107c sugere um passado um tanto ou quanto caótico, com interações entre os planetas que podem ter levado a deslocamentos significativos, como aquele suspeito para WASP-107b.

Os pesquisadores planejam continuar estudando WASP-107b, esperançosamente com o telescópio espacial James Webb, com lançamento previsto ainda para este ano, que fornecerá uma ideia muito mais precisa da composição da atmosfera do planeta.

A descoberta foi descoberta publicada na revista The Astronomical Journal.

Fonte: Université de Montréal

Inclinação de Saturno provocada pelas suas luas

Dois cientistas do CNRS (Centre National de la Recherche Scientifique) e da Universidade Sorbonne que trabalham no Instituto de Mecânica Celeste e de Cálculo de Efemérides (Observatório de Paris/CNRS) acabam de mostrar que a influência dos satélites de Saturno pode explicar a inclinação do eixo de rotação do gigante gasoso.

© CNRS (ilustração da migração de Titã e da inclinação de Saturno)

O seu trabalho também prevê que a inclinação vai aumentar ainda mais nos próximos bilhões de anos. Mais ou menos como Davi contra Golias, parece que a inclinação de Saturno pode na verdade ser provocada pelas suas luas. 

Esta é a conclusão de um trabalho recente realizado por cientistas do CNRS, da Universidade Sorbonne e da Universidade de Pisa, que mostra que a atual inclinação do eixo de rotação de Saturno é provocada pela migração dos seus satélites e, principalmente, da sua maior lua, Titã. 

Observações recentes mostraram que Titã e as outras luas estão se afastando gradualmente de Saturno muito mais depressa do que era estimado anteriormente. Ao incorporar este ritmo mais elevado de migração nos seus cálculos, os pesquisadores concluíram que este processo afeta a inclinação do eixo de rotação de Saturno: à medida que os seus satélites se afastam, o planeta inclina-se cada vez mais.

Pensa-se que o evento decisivo que inclinou Saturno ocorreu há relativamente pouco tempo. Durante mais de 3 bilhões de anos após a sua formação, o eixo de rotação de Saturno permaneceu apenas ligeiramente inclinado. Foi apenas há cerca de um bilhão de anos que o movimento gradual dos seus satélites desencadeou um fenômeno de ressonância que continua até hoje: o eixo de Saturno interagiu com o percurso do planeta Netuno e inclinou-se gradualmente até atingir a inclinação de 27º observada hoje.

Estas descobertas questionam cenários anteriores. Os astrônomos já estavam de acordo sobre a existência desta ressonância. No entanto, pensavam que tinha ocorrido muito cedo, há mais de 4 bilhões de anos, devido a uma mudança na órbita de Netuno. Pensava-se que desde aquela época o eixo de Saturno estava estável. De fato, o eixo de Saturno está ainda se inclinando, e o que vemos hoje é apenas um estágio de transição nesta mudança.

Ao longo dos próximos bilhões de anos, a inclinação do eixo de Saturno pode mais que duplicar. Os pesquisadores já haviam chegado a conclusões semelhantes sobre o planeta Júpiter, que deverá sofrer inclinações comparáveis devido à migração das suas quatro principais luas e à ressonância com a órbita de Urano: nos próximos cinco bilhões de anos, a inclinação do eixo de Júpiter poderá aumentar de 3º para mais de 30º.

O trabalho foi publicado na revista Nature Astronomy.

Fonte: National Centre for Scientific Research

sábado, 23 de janeiro de 2021

Encontrado exoplaneta em sistema triplo

Pouco depois da missão Kepler da NASA ter começado operações em 2009, o telescópio espacial avistou o que se pensava ser um planeta com metade do tamanho de Saturno num sistema estelar múltiplo.

© Caltech/R. Hurt (ilustração do exoplaneta KOI-5Ab)

O KOI-5Ab foi apenas o segundo candidato a planeta a ser encontrado pela missão e, por mais excitante que fosse na época, acabou sendo posto de lado enquanto o Kepler acumulava cada vez mais descobertas exoplanetárias. 

No final das operações da missão, em 2018, o Kepler havia descoberto uns colossais 2.394 exoplanetas, planetas que orbitam outras estrelas que não o Sol, e 2.366 candidatos a exoplanetas adicionais que ainda precisavam de confirmação.

Graças a novas observações com a segunda missão de caça exoplanetária da NASA, o TESS (Transiting Exoplanet Survey Satellite), e com uma série de telescópios terrestres, foi possível desvendar todas as evidências em torno de KOI-5Ab e de provar a sua existência.

Existem alguns detalhes intrigantes a ponderar sobre este exoplaneta. Muito provavelmente um planeta gigante gasoso como Júpiter ou Saturno no nosso Sistema Solar, tendo em conta o seu tamanho, KOI-5Ab é incomum porque orbita uma estrela num sistema com outras duas estrelas companheiras, vagueando num plano que está desalinhado com pelo menos uma das estrelas. 

O arranjo questiona como cada membro neste sistema se formou a partir das mesmas nuvens rodopiantes de gás e poeira. 

Usando dados do Observatório W. M. Keck no Havaí, do Observatório Palomar do Caltech perto de San Diego, e do Gemini Norte no Havaí, os astrônomos determinaram que KOI-5Ab parecia estar orbitando uma estrela num sistema estelar triplo. No entanto, ainda não conseguiam descobrir se o sinal do planeta era na verdade um equívoco de uma das outras duas estrelas ou, caso o planeta fosse real, qual das estrelas orbitava. 

Então, em 2018, surgiu o TESS. Tal como o Kepler, o TESS procura o "piscar" da luz estelar produzido pelo trânsito de um exoplaneta, isto é, quando este passa em frente da sua estrela hospedeira a partir do ponto de vista do Sistema Solar. 

O TESS observou uma parte do campo de visão do Kepler, incluindo o sistema KOI-5. O TESS também identificou KOI-5Ab como um candidato a exoplaneta, embora o TESS o denomine TOI-1241b. 

Assim como o Kepler havia observado anteriormente, o TESS descobriu que o planeta completava uma órbita em torno da sua estrela aproximadamente a cada cinco dias. Utilizando uma técnica alternativa à do Kepler e do TESS, o Observatório Keck é frequentemente usado para observações de acompanhamento de exoplanetas, medindo a leve oscilação numa estrela enquanto um planeta orbita ao seu redor e exerce uma atração gravitacional. 

Os astrônomos foram capazes de distinguir uma oscilação produzida pela companheira estelar interna que orbita a estrela primária da oscilação do planeta aparente enquanto orbita a estrela primária. Juntas, as diferentes coleções de dados dos telescópios espaciais e terrestres ajudaram a confirmar que KOI-5Ab é, de fato, um planeta que orbita a estrela primária.

O KOI-5Ab orbita a Estrela A, que tem uma companheira relativamente íntima, a Estrela B. A Estrela A e a Estrela B orbitam-se uma à outra a cada 30 anos. Uma terceira estrela ligada gravitacionalmente, a Estrela C, orbita as estrelas A e B a cada 400 anos. Os dados combinados também revelam que o plano orbital do planeta não está alinhado com o plano orbital da Estrela B, a segunda estrela interna, como seria de esperar caso as estrelas e os planetas fossem todos formados a partir do mesmo disco de material circundante.

Os astrônomos não têm a certeza do que provocou o desalinhamento de KOI-5Ab, mas pensam que a segunda estrela "chutou" gravitacionalmente o planeta durante o seu desenvolvimento, inclinando a sua órbita e fazendo com que migre para dentro.

Os sistemas estelares triplos constituem cerca de 10% de todos os sistemas estelares. Esta não é a primeira evidência de planetas em sistemas duplos ou triplos. Um caso notável envolve o sistema estelar triplo GW Orionis, no qual um disco de formação planetária foi dividido em anéis distintos e desalinhados, onde os planetas podem estar sendo formados.

No entanto, apesar de centenas de descobertas de planetas em sistemas estelares múltiplos, são quantitativamente muito menos comuns do que planetas em sistemas com uma única estrela. 

Fonte: California Institute of Technology

Calculando a idade e o local de explosão de supernova

Os astrônomos estão "voltando atrás no tempo" num remanescente de supernova.

© Hubble (remanescente de supernova 1E 0102.2-7219)

Usando o telescópio espacial Hubble, refizeram o percurso dos estilhaços velozes da explosão a fim de calcular uma estimativa mais precisa da localização e do momento da detonação estelar. 

A vítima é uma estrela que explodiu há muito tempo na Pequena Nuvem de Magalhães, uma galáxia satélite da nossa Via Láctea. A estrela condenada deixou para trás um cadáver gasoso em expansão, um remanescente de supernova chamado 1E 0102.2-7219, que o Observatório Einstein da NASA descobriu pela primeira vez em raios X. 

Os pesquisadores vasculharam imagens de arquivo obtidas pelo Hubble, analisando observações no visível obtidas com 10 anos de intervalo. A equipe, liderada por John Banovetz e Danny Milisavljevic da Universidade Purdue, mediu as velocidades de 45 aglomerados de material em forma de girino, ricos em oxigênio, ejetados pela explosão de supernova. 

O oxigênio ionizado é um excelente rastreador porque brilha mais forte no visível. Para calcular uma idade precisa da explosão, foram escolhidos os 22 aglomerados de ejeção mais rápidos. 

Os cientistas determinaram que estes alvos eram os menos prováveis de verem a sua velocidade diminuída pela passagem pelo material interestelar. Então traçaram o movimento para trás no tempo até que o material ejetado se aglutinasse num ponto, identificando o local da explosão. Uma vez conhecido, foi calculado o tempo necessário para as ejeções velozes viajarem do centro da explosão até à sua posição atual. 

De acordo com a sua estimativa, a luz da explosão chegou à Terra há 1.700 anos, durante o declínio do Império Romano. No entanto, a supernova só seria visível para os habitantes do Hemisfério Sul. Infelizmente, não existem registos conhecidos deste evento titânico. Os resultados diferem das observações anteriores do local da explosão de supernova e da idade. Estudos anteriores, por exemplo, chegaram a idades da explosão de 2.000 e 1.000 anos. 

No entanto, Banovetz e Milisavljevic dizem que a sua análise é mais robusta. "Um estudo anterior comparou imagens obtidas com anos de intervalo e com duas câmaras do Hubble, a WFPC2 (Wide Field Planetary Camera 2) e a ACS (Advanced Camera for Surveys)."

Os astrônomos também aproveitaram as imagens nítidas do instrumento ACS para selecionar quais os aglomerados de material ejetado para análise. Em estudos anteriores, os pesquisadores calcularam a média da velocidade de todos os detritos gasosos para calcular a idade da explosão. No entanto, os dados do ACS revelaram regiões onde o material ejetado desacelerou porque estava chocando com o material mais denso "derramado" pela estrela antes de explodir como supernova. 

Os cientistas precisavam do material ejetado que melhor refletisse as suas velocidades originais da explosão, usando-os para determinar uma estimativa precisa da idade da explosão de supernova. O Hubble também cronometrou a velocidade de uma estrela de nêutrons suspeita que foi expelida pela explosão. 

Com base nas suas estimativas, a estrela de nêutrons deve estar se movendo a mais de 3,2 milhões de quilômetros por hora do centro da explosão para chegar à sua posição atual. A estrela de nêutrons foi identificada em observações com o VLT (Very Large Telescope) do ESO no Chile, em combinação com dados do observatório de raios X Chandra da NASA.

Investigações mais recentes questionam se o objeto é realmente a estrela de nêutrons sobrevivente da explosão de supernova. É potencialmente apenas um amontoado compacto do material ejetado pela supernova que foi iluminado, e os resultados geralmente apoiam esta conclusão. Portanto, a caça à estrela de nêutrons ainda está em andamento. O estudo não resolve o mistério, mas dá uma estimativa da velocidade da estrela de nêutrons candidata.

Fonte: Space Telescope Science Institute

segunda-feira, 18 de janeiro de 2021

O remanescente de supernova da Nebulosa da Medula

O que alimenta esta nebulosa incomum?

© Russell Croman (CTB-1)

A CTB-1 ou Abell 85, apelidada de Nebulosa da Medula por sua forma semelhante a um cérebro, é a camada de gás em expansão que foi deixada quando uma estrela massiva em direção à constelação de Cassiopeia explodiu há cerca de 10.000 anos. 

A estrela provavelmente detonou quando ficou sem elementos, perto de seu núcleo, que poderiam criar pressão estabilizadora com a fusão nuclear. O remanescente de supernova resultante ainda brilha na luz visível pelo calor gerado por sua colisão com o gás interestelar confinante. 

No entanto, por que a nebulosa também brilha na luz de raios X permanece um mistério. Uma hipótese sustenta que um pulsar energético alimenta a nebulosa com um vento que se move rapidamente para fora. 

Seguindo este exemplo, um pulsar foi recentemente encontrado em ondas de rádio que parece ter sido expelido pela explosão de uma supernova a mais de 1.000 quilômetros por segundo. 

Embora a Nebulosa da Medula pareça tão grande quanto uma lua cheia, é tão tênue que levou 130 horas de exposição com dois pequenos telescópios no Novo México, EUA, para criar a imagem apresentada.

Fonte: NASA

domingo, 17 de janeiro de 2021

Descoberta de quasar estabelece novo recorde de distância

Uma equipe internacional de astrônomos descobriu o quasar que é até à data o mais distante, localizado a mais de 13 bilhões de anos-luz da Terra alimentado por um buraco negro supermassivo mais de 1,6 bilhões de vezes mais massivo do que o Sol e mais de 1.000 vezes mais brilhante do que a Via Láctea.

© NOIRLab/J. da Silva (ilustração do quasar J0313–1806)

O quasar, chamado J0313–1806, é visto quando o Universo tinha apenas 670 milhões de anos e está fornecendo informações valiosas sobre como as galáxias massivas e os buracos negros supermassivos nos seus núcleos se formaram no início do Universo. 

A nova descoberta bate o recorde anterior de distância para um quasar, estabelecido há três anos. As observações com o ALMA (Atacama Large Millimeter/submillimeter Array) no Chile confirmaram a medição da distância com alta precisão. 

Os quasares ocorrem quando a poderosa gravidade de um buraco negro supermassivo no núcleo de uma galáxia atrai o material circundante que forma um disco orbital de material superaquecido em torno do buraco negro. O processo libera uma quantidade enorme de energia, tornando o quasar extremamente brilhante, muitas vezes ofuscando o resto da galáxia. O buraco negro no centro de J0313-1806 é duas vezes mais massivo do que o recordista anterior. 

A enorme massa do buraco negro de J0313-1806, num momento tão precoce na história do Universo, descarta dois modelos teóricos de como estes objetos se formaram. No primeiro destes dois modelos, as estrelas massivas individuais explodem como supernovas e colapsam em buracos negros que então coalescem em buracos negros maiores. No segundo, densos aglomerados de estrelas colapsam num enorme buraco negro. 

No entanto, em ambos os casos, o processo leva demasiado tempo para produzir um buraco negro tão massivo quanto o de J0313-1806 no momento em que o vemos. Neste caso, é um mecanismo que envolve grandes quantidades de gás hidrogênio frio e primordial que colapsa diretamente para um buraco negro primordial.

As observações de J0313-1806 pelo ALMA forneceram detalhes tentadores sobre a galáxia hospedeira do quasar, que está formando novas estrelas a um ritmo 200 vezes maior do que o da Via Láctea. 

Esta é uma taxa de formação estelar relativamente alta em galáxias de idade semelhante, e indica que a galáxia hospedeira do quasar está crescendo muito depressa. O brilho do quasar indica que o buraco negro está engolindo o equivalente a 25 sóis todos os anos. 

A energia liberada por esta alimentação rápida provavelmente está gerando um poderoso fluxo de gás ionizado que é visto se movendo a cerca de 20% da velocidade da luz. Pensa-se que tais fluxos sejam o que, em última análise, para a formação de estrelas na galáxia.

Provavelmente estes buracos negros supermassivos foram a razão pela qual muitas das grandes galáxias pararam de formar estrelas em algum ponto. Este quasar é a primeira evidência de que a extinção pode ter acontecido em tempos muito antigos. Este processo também deixará o buraco negro sem nada para se abastecer e interromperá o seu crescimento. 

Além do ALMA, os astrônomos usaram o telescópio Magellan Baade de 6,5 metros, o telescópio Gemini Norte e o Observatório W. M. Keck, ambos no Havaí, e o telescópio Gemini Sul no Chile. Os astrônomos planejam continuar estudando J0313-1806 e outros quasares com telescópios terrestres e espaciais.

Os cientistas apresentaram os seus achados na reunião da Sociedade Astronômica Americana, realizada virtualmente, e num artigo científico aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

quarta-feira, 13 de janeiro de 2021

Encontrados ventos e correntes em anã marrom mais próxima

Astrônomos encontraram bandas e listras na anã marrom mais próxima da Terra, sugerindo processos que agitam o interior de sua atmosfera.

© Daniel Apai (ilustração da anã marrom Luhman 16B)

As anãs marrons são objetos celestes misteriosos que não são exatamente estrelas nem planetas. São aproximadamente do tamanho de Júpiter, mas normalmente dezenas de vezes mais massivas. Ainda assim, são menos massivas do que as estrelas menores, de modo que os seus núcleos não têm pressão suficiente para fundir átomos como as estrelas. Ficam quentes quando se formam e gradualmente arrefecem, têm brilho fraco que diminuem lentamente ao longo das suas vidas, o que as torna difíceis de encontrar. Nenhum telescópio pode ver claramente a atmosfera destes objetos. 

"Será que as anãs marrons se parecem com Júpiter, com as suas bandas regulares formadas por grandes jatos paralelos e longitudinais, ou são dominadas por um padrão em constante mudança de tempestades gigantescas conhecidas como vórtices como aqueles encontrados nos polos de Júpiter?," disse Daniel Apai, pesquisador na Universidade do Arizona. 

Ele e a sua equipe descobriram que as anãs marrons se parecem muito com Júpiter. Os padrões na atmosfera revelam ventos velozes que correm paralelos ao equador das anãs marrons. Estes ventos estão misturando as atmosferas, redistribuindo o calor que emerge do interior quente destes astros. Além disso, tal como Júpiter, os vórtices dominam as regiões polares. 

Alguns modelos atmosféricos previram este padrão atmosférico, onde o vento e a circulação atmosférica em grande escala muitas vezes têm efeitos profundos nas atmosferas planetárias, desde o clima da Terra até ao aspeto de Júpiter, e agora estes jatos atmosféricos de grande escala também moldam as atmosferas das anãs marrons. 

O grupo de Apai na Universidade do Arizona é líder mundial no mapeamento das atmosferas das anãs marrons e exoplanetas usando telescópios espaciais e um novo método. A equipe usou o TESS (Transiting Exoplanet Survey Satellite), um telescópio espacial da NASA, para estudar as duas anãs marrons mais próximas da Terra. 

A apenas 6,5 anos-luz de distância, as anãs marrons são chamadas Luhman 16A e Luhman 16B. Embora ambas tenham aproximadamente o mesmo tamanho de Júpiter, ambas são mais densas e, portanto, contêm mais massa. Luhman 16A tem cerca de 34 vezes a massa de Júpiter, e Luhman 16B tem cerca de 28 vezes a massa de Júpiter e é cerca de 800 ºC mais quente. 

Com algoritmos avançados foram obtidas medições muito precisas das mudanças de brilho conforme as duas anãs marrons giravam. Elas ficam mais brilhantes quando as regiões atmosféricas giram para o nosso ponto de vista e mais escuras quando giram para fora de vista.

Os resultados mostram que há muita semelhança entre a circulação atmosférica dos planetas do Sistema Solar e as anãs marrons. Como resultado, as anãs marrons podem servir como análogos mais massivos de planetas gigantes existentes fora do nosso Sistema Solar em estudos futuros. 

Os astrônomos esperam explorar ainda mais as nuvens, sistemas de tempestade e zonas de circulação presentes nas anãs marrons e exoplanetas para aprofundar a nossa compreensão das atmosferas localizadas além do Sistema Solar.

O novo estudo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Arizona

segunda-feira, 11 de janeiro de 2021

Galáxias distantes em colisão perdendo capacidade de gerar estrelas

As galáxias começam a “morrer” quando param de formar estrelas, mas até agora os astrônomos nunca tinham observado claramente o início deste processo numa galáxia distante.

© ESO/M. Kornmesser (ilustração da galáxia ID2299)

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), do qual o Observatório Europeu do Sul (ESO) é um parceiro, os astrônomos observaram uma galáxia ejetar quase metade de seu gás de formação estelar.

Os astrônomos pensam que este evento terá sido desencadeado pela colisão com outra galáxia, o que poderá modificar o modo como as galáxias param de formar novas estrelas. “Esta é a primeira vez que observamos uma galáxia com formação estelar massiva típica no Universo distante prestes a 'morrer' devido a uma ejeção massiva de gás frio,” disse Annagrazia Puglisi, pesquisadora principal do novo estudo, da Universidade de Durham, Reino Unido, e do Centro de Investigação Nuclear de Saclay (CEA-Saclay), França.

A galáxia, ID2299, está tão distante que a sua luz demora 9 bilhões de anos a chegar até nós; vemos isso quando o Universo tinha apenas 4,5 bilhões de anos. A ejeção de gás está acontecendo a uma taxa equivalente a 10.000 sóis por ano, removendo incríveis 46% do gás frio total existente na ID2299.

Como a galáxia também está formando estrelas muito rapidamente, centenas de vezes mais rápido que a Via Láctea, o gás restante será rapidamente consumido em apenas algumas dezenas de milhões de anos. 

O evento responsável pela perda espetacular de gás é uma colisão entre duas galáxias, que eventualmente se fundiram para formar o ID2299. A pista elusiva que apontou os cientistas para este cenário foi a associação do gás ejetado com uma “cauda de maré”. As caudas de maré são correntes alongadas de estrelas e gás que se estendem para o espaço interestelar e que são criadas quando duas galáxias se fundem, mas que são normalmente muito tênues para poderem ser observadas em galáxias distantes.

No entanto, a equipe conseguiu observar esta estrutura relativamente brilhante exatamente quando estava se lançando ao espaço e foi capaz de identificá-la como uma cauda de maré. A maioria dos astrônomos acredita que os ventos causados pela formação estelar e a atividade de buracos negros nos centros de galáxias massivas são responsáveis por lançar para o espaço material que, de outro modo, seria utilizado na formação estelar, terminando assim com a capacidade das galáxias de formar novas estrelas. 

Contudo, o novo estudo sugere que as fusões galácticas podem também ser responsáveis por ejetar para o espaço este "combustível" de formação estelar. 

Esta descoberta surpreendente foi feita por acaso quando a equipe estava analisando um levantamento de galáxias obtido pelo ALMA com o objetivo de estudar as propriedades do gás frio em mais de 100 galáxias distantes.

A ID2299 foi observada pelo ALMA durante apenas alguns minutos, mas o poderoso observatório, localizado no norte do Chile, permitiu à equipe coletar dados suficientes para detectar a galáxia e a sua cauda de ejeção.

No futuro, a equipe poderá usar o ALMA para fazer observações com maior resolução e mais profundas desta galáxia, para tentar compreender melhor a dinâmica do gás ejetado. Observações com o futuro Extremely Large Telescope (ELT) do ESO permitirão à equipe explorar as ligações entre as estrelas e o gás na ID2299, o que poderá nos dar novas pistas sobre a evolução das galáxias. 

Esta pesquisa foi apresentada no artigo intitulado “A titanic interstellar medium ejection from a massive starburst galaxy at z=1.4” que será publicado na revista Nature Astronomy.

Fonte: ESO

Formação estelar em torno de um longínquo buraco negro supermassivo

Esta imagem da distante galáxia espiral NGC 1097, captada pelo instrumento MUSE montado no Very Large Telescope (VLT) do ESO, mostra um exemplo típico de um anel nuclear de formação explosiva de estrelas.

© ESO/VLT (NGC 1097)

Localizado a 45 milhões de anos-luz de distância da Terra, na constelação da Fornalha, este anel se encontra mesmo no centro da galáxia e tem um tamanho de apenas 5.000 anos-luz, o que o torna minúsculo quando comparado com o tamanho total da galáxia hospedeira, que se estende ao longo de dezenas de milhares de anos-luz além do seu centro. 

As faixas mais escuras vistas nesta imagem mostram poeira, gás e restos da galáxia (ou possivelmente de uma galáxia satélite), que estão sendo canalizados para o buraco negro situado no seu centro. 

Este processo aquece a matéria circundante, formando um disco de acreção em torno do buraco negro e levando à ejeção de enormes quantidades de energia para o meio circundante. Consequentemente, a poeira próxima aquece e a formação estelar acelera na região em torno do buraco negro supermassivo, dando origem ao anel nuclear de formação estelar explosiva que vemos em tons de rosa e violeta na imagem. 

O instrumento MUSE (Multi Unit Spectroscopic Explorer) está montado no Yepun, um dos quatro telescópios de 8,2 metros que compõem o VLT, instalado no Observatório do Paranal do ESO. O seu design único permite aos astrônomos mapear mecanismos complexos no seio de muitas galáxias e analisar a formação de estrelas e aglomerados estelares.

Fonte: ESO

quinta-feira, 7 de janeiro de 2021

Descobertas centenas de estrelas de alta velocidade

Uma equipe de pesquisa liderada por astrônomos do NAOC (National Astronomical Observatories of Chinese Academy of Sciences) descobriu 591 estrelas de alta velocidade com base em dados do LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) e do Gaia, e 43 delas podem até escapar da nossa Galáxia.

© NAOC/Xiao Kong (ilustração das posições e órbitas de 591 estrelas de alta velocidade)

Desde que a primeira estrela de alta velocidade foi descoberta em 2005, mais de 550 outras foram descobertas com vários telescópios ao longo de 15 anos. "As 591 estrelas de alta velocidade descobertas desta vez duplicaram o número total anterior, elevando o total atual a mais de 1000," disse a Dra. Yin-Bi Li, autora principal do estudo. 

As estrelas de alta velocidade são uma classe de estrelas que se movem rapidamente e que podem até escapar da Via Láctea. "Embora sejam raras na Via Láctea, as estrelas de alta velocidade, com cinemática única, podem fornecer mais informações sobre uma ampla gama da ciência Galáctica, desde o buraco negro supermassivo central até ao distante halo Galáctico," disse o professor You-Jun Lu do NAOC. 

O LAMOST, o maior telescópio óptico da China, tem a maior taxa de aquisição espectral do mundo e pode observar cerca de 4.000 alvos estelares numa única exposição. Começou os seus levantamentos regulares em 2012 e estabeleceu a maior base de dados espectrais do mundo. 

O Gaia é uma missão espacial do programa de ciências da ESA, lançado em 2013. Forneceu parâmetros astrométricos para mais de 1,3 bilhões de fontes, a maior base de dados de parâmetros astrométricos. 

Com base na cinemática e na química, os pesquisadores descobriram que as 591 estrelas de alta velocidade eram estrelas do halo interno. "As suas metalicidades baixas indicam que a maior parte do halo estelar foi formado como consequência da acreção e da perturbação de maré de galáxias anãs," disse o professor Gang Zhao do NAOC. 

A descoberta destas estrelas de alta velocidade diz-nos que a combinação de vários grandes levantamentos vai, no futuro, ajudar-nos a descobrir mais estrelas de alta velocidade e outras estrelas raras, que serão usadas para estudar este mistério não resolvido da nossa Galáxia.

O estudo foi publicado no periódico The Astrophysical Journal Supplement Series.

Fonte: Chinese Academy of Sciences

sábado, 2 de janeiro de 2021

Como as galáxias próximas formam as suas estrelas

O modo como as estrelas se formam nas galáxias permanece uma grande questão em aberto na astrofísica.

© Robert Feldmann (gás em galáxia com formação estelar)

A imagem mostra uma visualização do gás dentro e em torno de uma galáxia parecida com a Via Láctea (centro) no Universo atual como previsto por uma simulação computacional. O denso hidrogênio atômico e molecular tipicamente forma um grande disco, visto aqui a azul-roxo no centro da imagem. As estrelas (branco) formam-se no disco. Formação estelar adicional pode ter lugar em galáxias satélite, vistas aqui em cima e para a direita e em baixo e para a esquerda. Gás quente e pouco denso (tons verde e vermelho) pode ser encontrado a grandes distâncias, perto da fronteira do halo de matéria escura que rodeia a galáxia principal (círculo branco na imagem maior). A imagem também mostra um grande número de estruturas de matéria escura (púrpura), a maioria das quais estão desprovidas de gás e estrelas.

Um novo estudo da Universidade de Zurique apresenta nova evidência sobre este tópico com a ajuda de uma reanálise baseada em dados de medições observacionais. Descobriu-se que a atividade de formação estelar de galáxias próximas típicas é proporcional à quantidade de gás presente nestas galáxias. Isto aponta para o suprimento de gás a distâncias cósmicas como o principal impulsionador da formação estelar.

As estrelas nascem em nuvens densas de hidrogênio molecular que permeia o espaço interestelar da maioria das galáxias. Embora a física da formação estelar seja complexa, nos últimos anos houve um progresso substancial no sentido de compreender como as estrelas se formam num ambiente galáctico. O que em última análise determina o nível de formação estelar nas galáxias, no entanto, permanece uma questão em aberto. 

Em princípio, dois fatores principais influenciam a atividade da formação das estrelas: a quantidade de gás molecular que está presente nas galáxias e o tempo que o reservatório de gás demora para se esgotar ao converter-se em estrelas. Embora a massa de gás das galáxias seja regulada por uma competição entre fluxos internos e externos de gás, e o consumo de gás, a física da conversão gás-estrela atualmente não é bem compreendida. Considerando a sua função potencialmente crítica, muitos esforços têm sido empreendidos para determinar observacionalmente a escala de tempo do esgotamento de gás. No entanto, estes esforços resultaram em descobertas contraditórias, em parte devido ao desafio em medir as massas de gás de forma confiável, dados os limites de detecção atuais. 

O presente estudo do Instituto para Ciência Computacional da Universidade de Zurique usa um novo método estatístico baseado em modelagem Bayesiana para contabilizar adequadamente as galáxias com quantidades não detectadas de hidrogênio molecular ou atômico para minimizar o viés observacional. Esta nova análise revela que, em típicas galáxias formadoras de estrelas, o hidrogênio molecular e o hidrogênio atômico são convertidos em estrelas em escalas de tempo aproximadamente constantes de 1 e 10 bilhões de anos, respectivamente. No entanto, as galáxias extremamente ativas têm escalas de tempo de esgotamento de gás muito mais curtas. 

"Estas descobertas sugerem que a formação estelar está, de fato, diretamente ligada ao reservatório geral de gás e, portanto, é definida pela taxa na qual o gás entra ou sai de uma galáxia," diz Robert Feldmann, professor do centro para Astrofísica Teórica e Cosmologia. Em contraste, a formação estelar muito mais intensa destas galáxias provavelmente tem uma origem física diferente, como interações galácticas ou instabilidades em discos galácticos. 

Esta análise é baseada em dados observacionais de galáxias próximas. Observações com o ALMA (Atacama Large Millimeter/Submillimeter Array), com o SKA (Square Kilometer Array) e com outros observatórios prometem sondar o conteúdo de gás de um grande número de galáxias ao longo da história cósmica. Será fundamental continuar o desenvolvimento de métodos estatísticos e da ciência de dados para extrair com precisão o conteúdo físico destas novas observações e para descobrir completamente os mistérios da formação estelar nas galáxias.

Um artigo foi publicado no periódico Communications Physics.

Fonte: University of Zurich