Mostrando postagens com marcador Supernovas. Mostrar todas as postagens
Mostrando postagens com marcador Supernovas. Mostrar todas as postagens

quarta-feira, 28 de janeiro de 2026

Esta estrela é nova ou velha?

Esta imagem mostra um inesperado ciclo completo de uma estrela.

© ESO (Ve 7-27 e Vela Junior)

O objeto visto na imagem, Ve 7–27, foi durante muito tempo considerado uma nebulosa planetária, a fase final da vida de uma estrela semelhante ao Sol.

No entanto, o Very Large Telescope (VLT) do ESO revelou-nos agora que se trata, na verdade, de uma estrela recém formada. Durante anos, a verdadeira natureza desta nebulosa foi debatida, mas o instrumento MUSE montado no VLT captou agora a primeira imagem detalhada deste objeto, que mostra que a Ve 7-27 está lançando jatos energéticos, algo típico em estrelas recém nascidas.

Em vez de ser o “último suspiro” de uma estrela moribunda, a Ve 7-27 é uma estrela recém nascida. Há, no entanto, uma estrela morta real muito perto. A nuvem verde-amarelada compacta, que é vista no centro e um pouco à esquerda, abriga uma estrela de nêutrons criada quando uma estrela massiva explodiu sob a forma de supernova.

Esta nebulosa faz parte de uma nuvem maior ejetada durante a explosão, o resto da supernova Vela Junior. As observações do MUSE revelaram que a estrela recém nascida, a Ve 7-27, está incrustada no material expelido por esta supernova. A distância até à Vela Junior nunca tinha sido determinada anteriormente com precisão, mas agora sabe-se que este objeto se encontra muito perto da Ve 7-27. Uma vez que a Ve 7-27 está a cerca de 4.500 anos-luz de distância da Terra, o mesmo se aplica à Vela Junior.

Saber a distância a que se situa a Vela Junior implica que é possível finalmente determinar o seu tamanho, a velocidade a que está se expandindo e, por conseguinte, há quanto tempo a supernova explodiu, resolvendo-se assim décadas de inconsistências.

Portanto, esta descoberta fornece pistas não apenas sobre a estrela bebê muito energética, mas também sobre a verdadeira natureza da supernova Vela Junior, representando um caso notável de nascimento e morte estelares coexistindo lado a lado no mesmo meio.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: ESO

sexta-feira, 9 de janeiro de 2026

Evolução do remanescente da Supernova de Kepler

Um novo vídeo mostra a evolução do remanescente da Supernova de Kepler.

© Chandra / Pan-STARRS (Supernova de Kepler)

O vídeo mostra as alterações no remanescente da Supernova de Kepler, utilizando dados do Observatório de raios X Chandra da NASA, captados ao longo de mais de duas décadas e meia, com observações efetuadas em 2000, 2004, 2006, 2014 e 2025. Neste vídeo, que é o mais abrangente com dados coletados pelo Chandra, os raios X (azul) do telescópio foram combinados com uma imagem óptica (vermelho, verde e azul) do Pan-STARRS.

A Supernova de Kepler, cujo nome honra o astrônomo alemão Johannes Kepler, foi observada pela primeira vez no céu noturno em 1604. Atualmente, sabemos que uma estrela anã branca explodiu quando excedeu uma massa crítica, depois de ter retirado material de uma estrela companheira ou de se ter fundido com outra anã branca. Este tipo de supernova é conhecido como Tipo Ia, e os cientistas utilizam-no para medir a expansão do Universo. Os remanescentes de supernova, os campos de detritos deixados para trás depois de uma explosão estelar, brilham frequentemente em raios X, porque o material foi aquecido a milhões de graus devido à explosão.

O remanescente está localizado na nossa Galáxia, a cerca de 17.000 anos-luz da Terra, permitindo ao Chandra obter imagens detalhadas dos detritos e da forma como muda com o tempo. Foi mostrado que as partes mais rápidas do remanescente estão viajando a cerca de 22,2 milhões de quilômetros por hora (2% da velocidade da luz), movendo-se em direção à parte inferior da imagem. Entretanto, as partes mais lentas estão viajando em direção ao topo a cerca de 6,4 milhões de quilômetros por hora (0,5% da velocidade da luz). Esta grande diferença de velocidade deve-se ao fato de o gás no qual o remanescente está penetrando, na parte superior da imagem, ser mais denso do que o gás na parte inferior.

A equipe também examinou a largura das orlas que formam a onda de choque da explosão. A onda de choque é a borda principal da explosão e a primeira a encontrar material fora da estrela. Ao medir a sua largura e a velocidade a que se desloca, os astrônomos obtêm mais informações sobre a explosão estelar e sobre os seus arredores.

Fonte: Harvard–Smithsonian Center for Astrophysics

sexta-feira, 2 de janeiro de 2026

Uma estrela tão incrível que explode duas vezes

Uma equipe de astrônomos, utilizando diversos telescópios, incluindo o Observatório W. M. Keck em Maunakea, na Ilha Havaí, descobriu uma possível "superkilonova" que explodiu não uma, mas duas vezes.

© Caltech (ilustração de uma superkilonova)

A ilustração retrata um evento hipotético conhecido como superquilonova. Inicialmente, uma estrela massiva explode em uma supernova, gerando elementos como carbono e ferro (esquerda). Em seguida, duas estrelas de nêutrons nascem, sendo que pelo menos uma delas acredita-se ser menos massiva que o nosso Sol (centro). As estrelas de nêutrons espiralam em direção uma à outra, enviando ondas gravitacionais que se propagam pelo cosmos, antes de se fundirem em uma dramática kilonova (direita). As kilonovas semeiam o Universo com os elementos mais pesados que brilham em luz vermelha.

Essa descoberta sugere que o evento incomum pode ser a primeira superkilonova desse tipo, ou seja, uma kilonova desencadeada por uma supernova. Tal evento nunca havia sido observado. Quando as estrelas mais massivas chegam ao fim de suas vidas, elas explodem em espetaculares explosões de supernova, que semeiam o Universo com elementos mais pesados, como carbono e ferro. Outro tipo de explosão, a kilonova ocorre quando um par de estrelas densas e mortas, chamadas estrelas de nêutrons, colidem, forjando elementos ainda mais pesados, como ouro, platina e urânio. Os elementos pesados criados por ambas as explosões estão entre os blocos de construção básicos das estrelas e dos planetas.

Até o momento, apenas uma kilonova foi confirmada de forma inequívoca: um evento histórico conhecido como GW170817, ocorrido em 2017. Nesse caso, duas estrelas de nêutrons colidiram, enviando ondulações no espaço-tempo, conhecidas como ondas gravitacionais, bem como ondas de luz, através do cosmos. A explosão cósmica foi detectada em ondas gravitacionais pelo Laser Interferometer Gravitational-Wave Observatory (LIGO) e seu parceiro europeu, o detector de ondas gravitacionais Virgo, na Itália, e em ondas de luz por dezenas de telescópios terrestres e espaciais ao redor do mundo.

O curioso caso da candidata a kilonova, AT2025ulz, é complexo e acredita-se que tenha se originado de uma explosão de supernova ocorrida horas antes, obscurecendo a visão dos astrônomos naquela ocasião e tornando o caso ainda mais complicado. Em agosto de 2025, um novo sinal de onda gravitacional foi captado pelo LIGO e pelo Virgo. Em poucos minutos, um alerta foi emitido para a comunidade astronômica contendo um mapa aproximado da fonte, sinalizando aos pesquisadores que ondas gravitacionais haviam sido registradas a partir do que parecia ser uma fusão entre dois objetos, sendo pelo menos um deles excepcionalmente pequeno.

As observações confirmaram que a erupção de luz havia se dissipado rapidamente e brilhado em comprimentos de onda vermelhos, assim como a GW170817 oito anos antes. No caso da kilonova GW170817, as cores vermelhas provinham de elementos pesados como o ouro; esses átomos possuem mais níveis de energia eletrônica do que elementos mais leves, bloqueando a luz azul, mas permitindo a passagem da luz vermelha. Então, dias após a explosão, a AT2025ulz começou a brilhar novamente, adquirir uma tonalidade azul e apresentar hidrogênio em seu espectro, todos sinais de uma supernova, e não de uma kilonova (especificamente uma supernova de colapso de núcleo e envelope despojado).

Geralmente, não se espera que supernovas de galáxias distantes gerem ondas gravitacionais suficientes para serem detectadas pelo LIGO e Virgo, enquanto as kilonovas são. Isso levou alguns astrônomos a concluir que a AT2025ulz foi desencadeada por uma supernova típica e comum, e não relacionada ao sinal de ondas gravitacionais. 

Embora AT2025ulz não se assemelhasse à kilonova clássica GW170817, também não parecia uma supernova comum. Além disso, os dados de ondas gravitacionais do LIGO e Virgo revelaram que pelo menos uma das estrelas de nêutrons na fusão era menos massiva que o nosso Sol, um indício de que uma ou duas pequenas estrelas de nêutrons poderiam ter se fundido para produzir uma kilonova.

Estrelas de nêutrons são os restos de estrelas massivas que explodem como supernovas. Acredita-se que elas tenham aproximadamente o tamanho de cerca de 22 a 30 quilômetros de diâmetro, com massas que variam de 1,2 a cerca de 3 vezes a massa do nosso Sol. Alguns teóricos propuseram maneiras pelas quais as estrelas de nêutrons poderiam ser ainda menores, com massas inferiores à do Sol, mas nenhuma foi observada até o momento.

Os teóricos invocam dois cenários para explicar como uma estrela de nêutrons poderia ser tão pequena. Num cenário, uma estrela massiva em rápida rotação explode em supernova e se divide em duas minúsculas estrelas de nêutrons subsolares num processo chamado fissão. No segundo cenário, chamado fragmentação, a estrela em rápida rotação explode novamente em supernova, mas desta vez um disco de material se forma ao redor da estrela em colapso. O material irregular do disco se coalesce em uma minúscula estrela de nêutrons, de maneira semelhante à formação de planetas. 

A única maneira que os teóricos encontraram para o nascimento de estrelas de nêutrons subsolares é durante o colapso de uma estrela com rotação muito rápida. Se essas estrelas se emparelharem e se fundirem emitindo ondas gravitacionais, é possível que tal evento seja acompanhado por uma supernova, em vez de ser visto como uma kilonova pura. Mas, embora essa teoria seja instigante e interessante de se considerar, a equipe de pesquisa ressalta que não há evidências suficientes para fazer afirmações definitivas. A única maneira de testar a teoria das superkilonovas é encontrar mais eventos desse tipo.

O estudo, liderado pelo Instituto de Tecnologia da Califórnia, foi publicado no periódico The Astrophysical Journal Letters.

Fonte: W. M. Keck Observatory

quarta-feira, 31 de dezembro de 2025

Fogo de artifício cósmico de supernova falhada

Há cerca de 900 anos, observadores na China e no Japão registaram uma brilhante "estrela visitante" que apareceu subitamente e permaneceu no céu noturno durante seis meses.

© Chandra, Pan-STARRS, XMM-Newton & WISE (Pa 30)

Os cientistas pensam agora que um remanescente tênue recentemente descoberto, conhecido como Pa 30, remonta a esse evento: uma incompleta explosão de supernova que produziu o surto temporário e luminoso observado em 1181.

As explosões de supernova, que marcam os momentos finais de uma estrela, dividem-se tipicamente em duas categorias principais:

  • Supernovas de colapso do núcleo: ocorrem quando uma estrela massiva, com pelo menos dez vezes a massa do nosso Sol, fica sem combustível nuclear. O seu núcleo colapsa sob a ação da gravidade, desencadeando uma explosão catastrófica;
  • Supernovas de Tipo Ia: representam a detonação de uma anã branca e requerem um sistema binário, ou seja, duas estrelas que orbitam um centro comum. A explosão pode ser gerada pela fusão de duas anãs brancas, ou por acreção de material de uma estrela companheira (quando o binário é constituído por uma anã branca e uma estrela normal), aumentando constantemente a sua massa até detonar.

Uma nova análise, no entanto, mostra que Pa 30 é o remanescente de um evento mais raro, uma estrela que começou a explodir, mas que não o conseguiu fazer completamente. As condições não eram as ideais para produzir uma detonação terminal da estrela. Em vez disso, queimou elementos mais pesados perto das suas camadas superficiais, sem a destruir totalmente. A combustão nuclear não se transformou numa detonação supersônica.

Quando ocorre uma supernova de Tipo Ia, normalmente uma ou ambas as estrelas são completamente destruídas, gerando uma nuvem de detritos em expansão,- conhecida como remanescente de supernova, que apresenta uma estrutura semelhante a uma couve-flor. Mas em vez de uma nuvem de detritos espessa e caótica, Pa 30 apresenta filamentos longos e retos que irradiam de um núcleo central, como os rastos de um fogo de artifício.

Os astrônomos têm-se esforçado por compreender como os filamentos finos e uniformes de Pa 30 foram formados. Os pesquisadores examinaram o remanescente com telescópios modernos, fizeram simulações e testaram vários cenários antes de chegarem a uma nova explicação. As supernovas são tipicamente brilhantes apenas durante os primeiros meses após a sua detecção, mas o remanescente é observável por telescópios potentes durante centenas de anos, à medida que arrefece. O estudo sugere que a explosão inicial observada em 1181 foi incomumente fraca, permitindo que uma anã branca sobrevivente, provavelmente hipermassiva, permanecesse intacta no centro.

A explosão não criou os filamentos de Pa 30: eles formaram-se depois. Após a detonação falhada, a anã branca sobrevivente começou a lançar um vento rápido e denso, enriquecido com elementos pesados forjados durante a explosão parcial. Este vento é observado atualmente, movendo-se a cerca de 15.000 km/s, ou seja, 5% da velocidade da luz. O vento embateu no gás mais leve que rodeava a estrela. Na fronteira entre o vento denso e o gás leve, havia condições para que a instabilidade de Rayleigh-Taylor, um processo em que um fluido mais pesado (neste caso o vento) empurra um mais leve, atuasse, formando longas plumas semelhantes a dedos. Em Pa 30, essas plumas tornaram-se filamentos lineares e altamente alongados.

O que aconteceu a seguir também é incomum. Normalmente, um segundo processo, a instabilidade de Kelvin-Helmholtz, que é a mistura e o mecanismo de cisalhamento que faz com que os redemoinhos se torçam, rasgaria aqueles longos dedos em pedaços. Mas, no caso de Pa 30, a mistura e o cisalhamento nunca se concretizaram. O vento denso era tão mais pesado do que o gás que a instabilidade de Kelvin-Helmholtz foi suprimida. Como resultado, os filamentos continuaram a esticar-se para fora enquanto o vento continuava a alimentá-los. Pa 30 ficou com uma cavidade central vazia e um halo de filamentos que continuaram se expandindo. As simulações sugerem que um contraste de alta densidade é conducente à formação de tais estruturas filamentares. 

Este tipo de explosão falhada é raro, mas cada vez mais reconhecido como uma subclasse distinta de explosão estelar. Os astrônomos classificam-nos como supernovas de Tipo Iax, um subgrupo incomum que representa uma forma diferente de morte estelar. Pa 30 é um dos poucos casos em que a modelação astrofísica moderna pode ser diretamente associada a um evento registado por observadores há cerca de 900 anos. A "estrela visitante" de 1181 tornou-se um detalhado estudo de caso cósmico, revelando como algumas estrelas morrem não numa única explosão cataclísmica, mas num processo complexo que deixa para trás estruturas surpreendentes.

Embora não se conheçam outras fontes astrofísicas que apresentem a morfologia de fogo de artifício de Pa 30, documentos recentemente divulgados do LANL (Los Alamos National Lab) demonstram que tais estruturas podem surgir em explosões terrestres. São mostradas duas fotografias do teste nuclear de alta altitude "Kingfish" efetuado pelo LANL em 1962. O teste Kingfish fazia parte da Operação Fishbowl, uma série de experiências concebidas para monitorar os efeitos das detonações nucleares em grande altitude nas comunicações militares, sistemas de radar e capacidades de detecção de mísseis durante a Guerra Fria. 

© LANL (detonação da bomba nuclear Kingfish)

A imagem da esquerda foi tirada cerca de 40 milissegundos após a detonação inicial e ilustra a formação de filamentos claros, semelhantes a dedos, que se estendem para a atmosfera em choque e radialmente a partir de um centro comum. A imagem da direita é da mesma explosão, mas 256 milissegundos após a detonação, mostrando que os filamentos inicialmente radiais evoluíram para uma estrutura mais parecida com uma couve-flor que faz lembrar a maioria dos outros remanescentes de supernova.

A bomba nuclear Kingfish foi semelhante às explosões astrofísicas típicas, em que uma quantidade fixa de massa e energia é impulsivamente injetada num meio gasoso; isto contrasta com a origem alimentada pelo vento do remanescente Pa 30, em que a energia e o momento foram continuamente fornecidos à medida que o material se expandia. O fato de a experiência Kingfish ter inicialmente produzido material ejetado que se assemelhava a Pa 30, e que mais tarde se transformaram numa estrutura que faz lembrar a maioria dos outros remanescentes de supernova, sugere que outras explosões astrofísicas não alimentadas pelo vento podem passar por esta mesma fase, embora dure comparativamente pouco tempo.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Syracuse University

sexta-feira, 19 de dezembro de 2025

A primeira detecção, através do rádio, de um tipo raro de supernova

Os astrônomos utilizaram o VLA (Very Large Array) para fazer uma descoberta sem precedentes, captando os primeiros sinais de rádio de uma classe rara de explosão estelar conhecida como supernova do Tipo Ibn.

© NRAO (estrela explode num disco denso rico em hélio gerando ondas de rádio)

Este feito revela uma nova visão sobre os momentos finais da vida de estrelas massivas e proporciona um raro vislumbre dos últimos anos de uma estrela, anteriormente ocultos.

A supernova, designada SN 2023fyq, representa uma oportunidade única para observar o ato final de uma estrela massiva. As supernovas do Tipo Ibn resultam da explosão de uma estrela em gás rico em hélio previamente ejetado da sua superfície. Utilizando a poderosa visão rádio do VLA, os astrônomos rastrearam as emissões de rádio desta explosão durante um período de 18 meses, descobrindo evidências convincentes acerca do ambiente em torno da estrela moribunda.

As medições de rádio permitiram observar a última década de vida da estrela antes do seu desaparecimento. Estas observações revelaram que a estrela liberou as suas camadas de hélio, incluindo um aumento significativo na perda de massa imediatamente antes da supernova, fornecendo novas evidências de explosões exóticas de origem binária. Esta descoberta revela que a estrela passou por um período dramático de perda de massa, provavelmente causado pela influência de uma companheira estelar gravitacionalmente ligada.

Dados de rádio e de raios X revelaram a densidade e a extensão do material rico em hélio ejetado antes da explosão. Foi determinado que a estrela ejetou material a uma velocidade espantosa, até 0,4% da massa do Sol por ano, durante uma fase curta, mas intensa que antecedeu a explosão de supernova. Este processo dinâmico está de acordo com as previsões para estrelas em sistemas binários íntimos e fornece aos astrofísicos novas evidências diretas dos mecanismos que impulsionam estas raras supernovas.

Até agora, a existência de material denso em torno da maioria das supernovas de Tipo Ibn só tinha sido inferida a partir de estudos ópticos. O Dr. A.J. Nayana da Universidade da Califórnia em Berkeley, afirma: "O nosso estudo analisa o material ejetado anos antes da explosão, revelando que a estrela passou por uma fase intensa de perda de massa nos últimos 0,7 a 3 anos da sua existência".

Ao determinar o período de tempo e a magnitude da perda de massa, os astrônomos preencheram uma lacuna crucial na história de como as estrelas massivas terminam as suas vidas e enriquecem o Universo. Esta detecção histórica prepara o terreno para futuros estudos de supernovas com radiotelescópios, prometendo aprofundar a nossa compreensão dos ciclos de vida das estrelas e das forças que moldam a nossa Galáxia.

Este estudo abriu uma nova via para determinar os pontos finais de certas estrelas massivas e realça a necessidade de um acompanhamento em ondas de rádio sistemático de eventos semelhantes com instrumentos incríveis como o VLA e o GMRT (Giant Metrewave Radio Telescope).

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory