Mostrando postagens com marcador Sol. Mostrar todas as postagens
Mostrando postagens com marcador Sol. Mostrar todas as postagens

terça-feira, 4 de novembro de 2025

Ejeções de massa coronal no alvorecer do Sistema Solar

Astrônomos utilizaram observações simultâneas feitas da Terra e do espaço para medir a temperatura e a velocidade do gás ejetado por uma estrela jovem semelhante ao Sol.

© NAOJ (ilustração de ejeção de massa coronal na estrela EK Draconis)

Esta medição mostrou uma ejeção de dois componentes, consistindo em um componente quente e rápido seguido por um componente mais lento e frio. Este resultado é importante para a compreensão de como as estrelas jovens afetam o ambiente ao seu redor, onde planetas e vida podem estar se formando inicialmente, e, por extensão, fornece informações sobre os primórdios do Sistema Solar, da Terra e da vida na Terra.

O Sol ejeta frequentemente enormes massas de gás ionizado quente, chamadas plasma, associadas a erupções solares. Esses eventos são conhecidos como Ejeções de Massa Coronal (EMCs). Elas costumam ocorrer juntamente com súbitos brilhos chamados erupções solares e, às vezes, se estendem o suficiente para perturbar a magnetosfera da Terra, gerando fenômenos climáticos espaciais, incluindo auroras ou tempestades geomagnéticas, e até mesmo danificando redes elétricas em algumas ocasiões.

Observou-se que estrelas jovens semelhantes ao Sol emitem erupções estelares frequentes, e sabe-se que algumas delas estão associadas a grandes EMCs, que superam em muito qualquer uma observada no Sol atual. As EMCs no Sol contêm componentes em diferentes temperaturas, variando de 10.000 Kelvin a 1.000.000 Kelvin, mas até agora os dados sobre EMCs em outras estrelas se limitavam a um único componente de temperatura, especialmente o plasma de baixa temperatura.

Enormes EMCs do Sol primitivo podem ter impactado severamente os ambientes primordiais da Terra, Marte e Vênus. No entanto, ainda não está claro até que ponto as explosões nessas estrelas jovens exibem EMCs semelhantes às solares. Nos últimos anos, o plasma frio das EMCs foi detectado por meio de observações ópticas terrestres. No entanto, a alta velocidade e a esperada ocorrência frequente de EMCs fortes no passado permaneceram um mistério.

Para obter uma compreensão mais completa dos eventos de EMC em estrelas jovens, uma equipe internacional de pesquisadores liderada por Kosuke Namekata, da Universidade de Kyoto, organizou observações em ultravioleta com o telescópio espacial Hubble e observações ópticas com telescópios terrestres no Japão e na Coreia para medir simultaneamente diferentes componentes de temperatura de um evento de EMC estelar.

Seu alvo era a jovem estrela semelhante ao Sol, EK Draconis, localizada a 111 anos-luz de distância, na direção da constelação de Draco. A equipe obteve sucesso na observação de diferentes componentes de temperatura de um evento de EMC. Primeiramente, um plasma quente de 100.000 Kelvin foi ejetado a uma velocidade entre 300 e 550 km/s, seguido, cerca de dez minutos depois, por um gás mais frio, a aproximadamente 10.000 Kelvin, ejetado a 70 km/s. Isso indica que os componentes mais quentes das Ejeções de Massa Coronal (EMCs) estelares possuem energias cinéticas maiores do que os componentes mais frios e, portanto, podem afetar as atmosferas de exoplanetas de forma mais severa do que se inferia anteriormente a partir de medições limitadas apenas ao plasma frio. 

Como o jovem Sol era presumivelmente semelhante a EK Draconis, isso fornece informações sobre as condições no Sistema Solar primitivo, que provavelmente foi perturbado por EMCs enormes e rápidas. Estudos teóricos e experimentais sugerem que as EMCs rápidas desempenham um papel na iniciação de biomoléculas e gases de efeito estufa, essenciais para o surgimento e a manutenção da vida em um planeta primitivo.

Portanto, essa descoberta tem implicações importantes para a compreensão da habitabilidade planetária e das condições sob as quais a vida surgiu na Terra e, possivelmente, em outros lugares. A equipe planeja continuar sua pesquisa com novas observações usando raios X, ondas de rádio e telescópios espaciais ultravioleta de última geração para entender melhor as condições ao redor de estrelas jovens onde planetas, e possivelmente vida, se formam. Em particular, este estudo destaca a importância da astronomia ultravioleta, que será explorada mais a fundo pela futura missão LAPYUTA da JAXA (Japan Aerospace Exploration Agency).

Um artigo foi publicado na revista Nature Astronomy.

Fonte: National Astronomical Observatory of Japan

sábado, 6 de setembro de 2025

Erupções solares são mais quentes do que se pensava

Uma nova pesquisa propôs que as partículas das erupções solares são 6,5 vezes mais quentes do que se pensava e forneceu uma solução inesperada para um mistério com 50 anos sobre a nossa estrela mais próxima.

© Solar Dynamics Observatory (Sol)

As erupções solares são súbitas e enormes liberações de energia na atmosfera exterior do Sol que aquecem partes da mesma a mais de 10 milhões de graus. Estes eventos dramáticos aumentam consideravelmente os raios X solares e a radiação que chega à Terra e são perigosos para as naves espaciais e para os astronautas, além de afetarem a atmosfera superior do nosso planeta.

O plasma solar é constituído por íons e elétrons. A nova pesquisa argumenta que os íons das erupções solares, partículas de carga positiva que constituem metade do plasma, podem atingir mais de 60 milhões de graus. Analisando os dados de outras áreas de pesquisa, a equipe, liderada pelo Dr. Alexander Russell, professor de Teoria Solar da Escola de Matemática e Estatística da Universidade de St. Andrews, percebeu que é muito provável que as erupções solares aqueçam mais os íons do que os elétrons, durante a reconexão magnética. Esta parece ser uma lei universal e foi confirmada no espaço próximo da Terra, no vento solar e em simulações de computador. No entanto, até agora ninguém tinha relacionado o trabalho nesses campos com as erupções solares.

A física solar tem historicamente assumido que os íons e os elétrons devem ter a mesma temperatura. No entanto, ao refazer os cálculos com dados modernos, foi descoberto que as diferenças de temperatura entre íons e elétrons podem durar até dezenas de minutos em partes importantes das erupções solares, abrindo caminho para considerar pela primeira vez íons superquentes. A nova temperatura dos íons corresponde bem à largura das linhas espectrais das erupções, o que pode resolver um mistério astrofísico que se mantém há quase meio século.

Desde a década de 1970 que se coloca a questão de saber por que razão as linhas espectrais das erupções, que são aumentos brilhantes da radiação solar em "cores" específicas no ultravioleta extremo e em raios X, são mais largas do que o esperado. Historicamente, pensava-se que este fato só poderia ser devido a movimentos turbulentos, mas essa interpretação tem estado sob pressão à medida que os cientistas tentam identificar a natureza da turbulência. Após quase 50 anos, o novo trabalho defende uma mudança de paradigma em que a temperatura dos íons pode dar uma grande contribuição para explicar as enigmáticas larguras de linha nos espectros das erupções solares.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: University of St Andrews

sábado, 16 de agosto de 2025

A influência dos planetas pode atenuar a atividade solar

O nosso Sol é cerca de cinco vezes menos magneticamente ativo do que outras estrelas semelhantes.

© Solar Dynamics Observatory (ejeção de massa coronal do Sol)

A razão para isso pode residir nos planetas do nosso Sistema Solar, afirmam pesquisadores do HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Nos últimos dez anos, desenvolveram um modelo que deriva praticamente todos os ciclos de atividade conhecidos do Sol a partir da influência cíclica das forças de maré dos planetas. Agora, também conseguiram demonstrar que essa sincronização externa reduz automaticamente a atividade solar.

De momento, o Sol está atingindo um nível máximo de atividade que só é observado a cada onze anos, aproximadamente. É por isso que nós, na Terra, observamos mais auroras polares e tempestades solares, bem como um clima espacial turbulento em geral. Isto tem impacto nos satélites espaciais e até mesmo na infraestrutura tecnológica da Terra. Apesar disso, em comparação com outras estrelas semelhantes ao Sol, as erupções de radiação mais fortes do nosso Sol são 10 a 100 vezes mais fracas.

Este ambiente relativamente tranquilo pode ser uma condição prévia importante para a Terra ser habitável. Não menos importante por esta razão, os físicos solares querem compreender o que impulsiona precisamente a atividade solar. Sabe-se que a atividade solar tem muitos padrões, flutuações periódicas mais curtas e mais longas, que variam de algumas centenas de dias a vários milhares de anos. Mas há maneiras muito diferentes de explicar os mecanismos físicos subjacentes.

O modelo desenvolvido pela equipa liderada por Frank Stefani, do Instituto de Dinâmica de Fluidos do HZDR, vê os planetas como marca-passos: segundo essa compreensão, aproximadamente a cada onze anos, Vênus, Terra e Júpiter concentram as suas forças de maré combinadas no Sol. Através de um mecanismo físico complexo, de cada vez que o fazem, dão um pequeno empurrão ao impulso magnético interno do Sol. Em combinação com o movimento orbital em forma de roseta do Sol, isto leva a flutuações periódicas sobrepostas de durações variáveis, exatamente como observado no Sol.

No trabalho recente, os pesquisadores dão o nome OQB (Oscilação Quasi-Bienal), uma flutuação aproximadamente bianual em vários aspetos da atividade solar. O ponto especial aqui é que, a OQB não só pode ser atribuída a um período preciso, mas também leva automaticamente a uma atividade solar atenuada. Até agora, os dados solares geralmente relatavam períodos de OQB de 1,5 a 1,8 anos.

Em trabalhos anteriores, alguns pesquisadores sugeriram uma ligação entre a OQB e os chamados eventos GLE (Ground Level Enhancement). São ocorrências esporádicas durante as quais partículas solares ricas em energia provocam um aumento repentino da radiação cósmica na superfície da Terra. Um estudo realizado em 2018 mostra que os eventos de radiação medidos perto do solo ocorreram mais na fase positiva de uma oscilação com um período de 1,73 anos. Ao contrário da suposição habitual de que essas erupções de partículas solares são fenômenos aleatórios, esta observação indica um processo cíclico fundamental. Foi descoberto a maior correlação para um período de 1,724 anos. 

Apesar do campo magnético do Sol oscilar entre o mínimo e o máximo ao longo de um período de onze anos, a OQB impõe um padrão adicional de curto prazo na intensidade do campo. Isto reduz a intensidade geral do campo, pois o campo magnético do Sol não mantém o seu valor máximo por tanto tempo. Um diagrama de frequência revela dois picos: um na intensidade máxima do campo e outro quando a OQB oscila de volta. Este efeito é conhecido como bimodalidade do campo magnético solar. No modelo, os dois picos fazem com que a intensidade média do campo magnético solar seja reduzida, uma consequência lógica da OQB.

Este efeito é muito importante porque o Sol é mais ativo durante as intensidades de campo mais altas. É quando ocorrem os eventos mais intensos, com enormes tempestades geomagnéticas, como o evento Carrington de 1859, quando auroras polares puderam ser vistas até em Roma e Havana, e altas tensões danificaram linhas telegráficas. Se o campo magnético do Sol permanecer em intensidades de campo mais baixas por um período significativamente mais longo, no entanto, isso reduz a probabilidade de eventos muito violentos.

Um artigo foi publicado no periódico Solar Physics.

Fonte: HZDR

segunda-feira, 23 de junho de 2025

A nossa água é mais velha do que o Sol?

Uma equipe liderada por astrônomos da Universidade de Leiden, nos Países Baixos, e do NRAO (National Radio Astronomy Observatory), na Virgínia (EUA), detectou, pela primeira vez, água gelada semipesada em torno de uma jovem estrela semelhante ao Sol.

© STScI / Webb (sistema protoestelar L1527 IRS)

Os pesquisadores utilizaram o telescópio espacial James Webb, cujos resultados reforçam a hipótese de que parte da água no nosso Sistema Solar se formou antes do Sol e dos planetas.

Uma das formas de os astrônomos descobrirem a origem da água é através da medição da taxa de deuteração. Esta é a fração de água que contém um átomo de deutério em vez de um dos hidrogênios. Assim, em vez de H2O, é HDO, que também é chamada água semipesada. Uma fração elevada de água semipesada é um sinal de que a água se formou num local muito frio, como as nuvens escuras primitivas de poeira, gelo e gás de onde nascem as estrelas.

Nos nossos oceanos, nos cometas e nas luas geladas, uma em cada dois milhares de moléculas de água é constituída por água semipesada. Este valor é cerca de dez vezes superior ao esperado com base na composição do nosso Sol. Por isso, foi colocada a hipótese de parte da água do nosso Sistema Solar ter tido origem como gelo em nuvens escuras, centenas de milhares de anos antes do nascimento do Sol.

Para confirmar esta hipótese, é necessário medir a taxa de deuteração da água gelada nestas regiões de formação estelar. Astrônomos detectaram agora uma proporção muito elevada de água gelada semipesada num invólucro protoestelar. Esta é a nuvem de material que rodeia uma estrela na sua fase embrionária. Antes, a taxa de deuteração da água em regiões de formação estelar só podia ser medida de forma confiável na fase gasosa, onde pode ser quimicamente alterada. Agora, com a sensibilidade sem precedentes do Webb, foi observada uma assinatura muito clara de água gelada semipesada na direção da protoestrela L1527 IRS, localizada na constelação de Touro, a cerca de 460 anos-luz da Terra.

A taxa de deuteração da água em L1527 IRS é muito semelhante à taxa de alguns cometas, bem como ao do disco protoplanetário de uma estrela jovem mais evoluída, o que sugere origens químicas antigas e frias semelhantes para a água encontrada em todos estes objetos.

Esta descoberta vem juntar-se às evidências crescentes de que a maior parte da água gelada faz a sua viagem praticamente inalterada desde as primeiras até às últimas fases da formação estelar. No entanto, a taxa de deuteração da água gelada medido em L1527 IRS é ligeiramente superior às taxas medidas em alguns cometas do nosso Sistema Solar e à taxa de água na Terra.

Uma variedade de fatores pode causar esta diferença. Por exemplo, alguma da água nestes cometas e na Terra pode ter sido quimicamente alterada no disco. Ou a nuvem escura que formou o nosso Sol pode ser diferente da nuvem escura onde L1527 IRS se formou. Estão planejadas mais observações de água gelada semipesada para investigar possíveis razões para estas diferenças em 30 novas protoestrelas e nuvens escuras primitivas.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Leiden University

Um eclipse solar artificial

A missão Proba-3 da ESA revelou as suas primeiras imagens da atmosfera exterior do Sol, a coroa solar.

© ESA (coroa interna do Sol)

Esta imagem, captada no espectro da luz visível, mostra a coroa solar de forma semelhante à que um olho humano veria durante um eclipse através de um filtro verde. As estruturas semelhantes a cabelos foram reveladas utilizando um algoritmo especializado de processamento de imagem.

Os dois satélites da missão, capazes de voar como uma única nave espacial graças a um conjunto de tecnologias de posicionamento a bordo, conseguiram criar o seu primeiro "eclipse solar total artificial" em órbita.

As imagens coronais resultantes demonstram o potencial das tecnologias de voo em formação, ao mesmo tempo que fornecem dados científicos de valor incalculável que irão melhorar a nossa compreensão do Sol e da sua enigmática atmosfera.

No passado mês de março, a missão Proba-3 conseguiu o que nenhuma outra tinha conseguido antes, um feito extraordinário possibilitado por um conjunto de tecnologias inovadoras de navegação e posicionamento. As suas duas naves espaciais, a 'Coronagraph' e a 'Occulter', voaram a 150 metros de distância em formação perfeita durante várias horas sem qualquer controle a partir do solo. Enquanto estiveram alinhadas, as duas naves mantiveram a sua posição relativa até um único milímetro.  Demonstrando o grau de precisão alcançado, as duas naves espaciais utilizam o seu tempo de voo em formação para criar eclipses solares totais artificiais em órbita, alinham-se com o Sol de modo a que o disco de 1,4 m de diâmetro transportado pela nave 'Occulter' cubra o disco brilhante do Sol para a nave 'Coronagraph', projetando uma sombra de 8 cm de diâmetro sobre o seu instrumento óptico, o ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). Quando a abertura de 5 cm está coberta pela sombra, o instrumento capta imagens da coroa solar sem ser interrompido pela luz brilhante do Sol.

A observação da coroa é crucial para revelar o vento solar, o fluxo contínuo de matéria do Sol para o espaço exterior. É também necessária para compreender o funcionamento das ejeções de massa coronal, explosões de partículas enviadas pelo Sol quase todos os dias, especialmente durante períodos de grande atividade. Estes eventos podem criar auroras espantosas no céu noturno, mas também representam sérias ameaças à tecnologia moderna. Podem perturbar significativamente as comunicações, a distribuição energética e os sistemas de navegação na Terra, como aconteceu em maio de 2024.

As imagens coronais resultantes das primeiras observações do ASPIICS fornecem um vislumbre dos dados valiosos que podemos esperar desta missão produtora de eclipses. A ardente coroa do Sol atinge temperaturas superiores a um milhão de graus Celsius, muito mais quente do que a superfície por baixo dela. O ASPIICS da Proba-3 está resolvendo este mistério estudando a coroa muito perto da superfície do Sol. Também consegue ver mais pormenores, detectando características mais tênues do que os coronógrafos tradicionais, graças a uma redução drástica da quantidade de luz "dispersa" que chega ao detector.

Juntamente com as medições efetuadas por outro instrumento a bordo, o DARA (Digital Absolute Radiometer), o ASPIICS contribuirá para desvendar questões de longa data sobre o Sol. O DARA medirá a irradiância solar total, exatamente a quantidade de energia que o Sol emite em cada momento. Um terceiro instrumento científico da missão Proba-3, o 3DEES (3D Energetic Electron Spectrometer), irá detectar elétrons nos cinturões de radiação da Terra, medindo a sua direção de origem e níveis de energia.

As imagens do eclipse artificial são comparáveis às obtidas durante um eclipse natural. A diferença é que é possível criar o eclipse uma vez em cada órbita de 19,6 horas, enquanto os eclipses solares totais só ocorrem naturalmente uma vez, muito raramente duas vezes por ano. Para além disso, os eclipses totais naturais duram apenas alguns minutos, enquanto a Proba-3 pode manter o seu eclipse artificial até 6 horas.

Fonte: ESA

sábado, 21 de setembro de 2024

Sombras distorcidas da superfície da Lua

Numa imagem obtida em 14 de outubro de 2023, são vistas sombras distorcidas da superfície da Lua criadas por um eclipse anular do Sol.

© Ryan Imperio (sombras distorcidas da superfície da Lua durante um eclipse anular do Sol)

Esta é uma sequência de imagens captadas continuamente mostrando a progressão das contas de Baily no terceiro contato, ou seja, durante o fim da anularidade, o momento em que a borda oeste da Lua revela o disco do Sol durante o eclipse anular. 

As contas de Baily são formadas quando a luz do Sol brilha através dos vales e crateras da superfície da Lua, quebrando o conhecido padrão de anéis do eclipse, e só são visíveis quando a Lua entra ou sai de um eclipse. Elas são um desafio para captar devido à sua brevidade e ao tempo preciso necessário. 

A imagem foi tirada pelo astrofotógrafo Ryan Imperio, que foi o vencedor geral do concurso Astronomy Photographer of the Year concedido pelo Royal Museums Greewich. 

Fonte: Royal Observatory

sábado, 11 de maio de 2024

Tempestades solares intensas

O Solar Dynamics Observatory (SDO) da NASA registrou duas intensas tempestades geomagnéticas nesta sexta-feira (10) às 22h23 (BRT) e neste sábado às 8h44. As explosões solares continuarão acontecendo até este domingo (12).

© SDO (explosões solares classe X)

As erupções são classificadas como erupções das classes X5.8 e X1.5, respectivamente. A imagem mostra um subconjunto de luz ultravioleta extrema que destaca o material extremamente quente em explosões criadas a partir de uma mistura dos canais AIA 193, 171 e 131 do SDO. Durante os últimos dias, a mancha solar gigante AR3664 disparou várias erupções que produziram ejeções de massa coronal.

Os fenômenos de classe X demonstram explosões mais intensas e o número classifica sua força. Dependendo de como impacta a Terra, essas tempestades podem interromper as comunicações, a energia elétrica, a navegação e as operações de rádio e satélite. Este fenômeno acontece quando há explosões no Sol com influência do campo magnético que expele plasma, ejetando massa coronal para o espaço. 

Elas causam tempestades geomagnéticas quando são direcionadas à Terra, gerando auroras na atmosfera terrestre, que neste incidente foram vistas em vários locais no hemisfério Norte (aurora boreal) e hemisfério Sul (aurora austral).

© AFP (aurora boreal)

A fotografia mostra a aurora boreal registrada em Fusch an der Großglocknerstraße na Áustria.

A maior tempestade solar registrada foi o "evento de Carrington", de 1859, que destruiu a rede telegráfica nos Estados Unidos, provocou descargas elétricas e a aurora boreal foi visível em latitudes inéditas, até a América Central.

As tempestades solares podem impactar algumas tecnologias usadas na superfície do planeta. Embora nem todas as tempestades solares causem grandes impactos, aquelas consideradas intensas podem afetar as operações de comunicação. 

As tempestades solares podem afetar os satélites e outras naves espaciais em órbita, alterando sua orientação ou potencialmente desativando seus componentes eletrônicos. As interações com a ionosfera podem bloquear ou degradar as transmissões de rádio. O clima espacial severo pode comprometer as redes elétricas, causando interferência no controle de tensão e sistemas de proteção.

Fonte: NASA