Mostrando postagens com marcador Universo. Mostrar todas as postagens
Mostrando postagens com marcador Universo. Mostrar todas as postagens

quinta-feira, 3 de julho de 2025

Nova era na medição da primeira luz do Universo

A luz mais antiga do Universo tem viajado pelo espaço desde logo após o Big Bang.

© Kevin Zagorski (South Pole Telescope)

Conhecida como radiação cósmica de fundo em micro-ondas, é imperceptível ao olho humano. Mas se os cientistas a conseguirem captar, utilizando alguns dos detectores mais sensíveis alguma vez fabricados, pode dizer-nos como o nosso Universo se formou e evoluiu ao longo do tempo.

Os pesquisadores divulgaram medições sensíveis, sem precedentes, da radiação cósmica de fundo em micro-ondas, resultantes de dois anos de observações com uma câmara melhorada do SPT (South Pole Telescope). O telescópio, localizado na Estação Amundsen-Scott, na Antártida, foi concebido especificamente para mapear a luz muito tênue da radiação de fundo em micro-ondas.

Os resultados são impressionantes, a precisão dos pormenores da radiação cósmica de fundo em micro-ondas excede a de todas as medições anteriores, mesmo as efetuadas a partir do espaço. Quando combinados com dados de outros telescópios terrestres, oferecem uma nova referência para restringir as possíveis respostas a questões importantes sobre o Universo.

As novas leituras fornecem um controle cruzado do nosso modelo fundamental do Universo. À medida que forem sendo divulgados mais dados, estes irão aperfeiçoar vários testes de grandes questões pendentes na cosmologia, tais como a natureza da energia escura e o ritmo a que o Universo está se expandindo.

A radiação cósmica de fundo em micro-ondas, por vezes referida como o brilho remanescente do Big Bang, data de há mais de 13 bilhões de anos, do período imediatamente após a formação do nosso Universo. Isto torna-a uma fonte de informação incrivelmente rica. Esta radiação é extremamente tênue, e as suas variações são ainda mais sutis. Para ter a possibilidade de a captar, é necessário um céu muito limpo e condições de observação perfeitamente secas, condições essas que se encontram na Antártida.

O SPT, gerido por uma colaboração liderada pela Universidade de Chicago, tem mapeado esta radiação desde 2007. Ao longo dos anos, foram instaladas várias câmaras no telescópio, mas a mais recente, conhecida como SPT-3G, tem mais detectores do que as versões anteriores. Os dados do mais recente resultado foram obtidos em 2019 e 2020 e representam os dois primeiros anos de observações da SPT-3G na sua potência total. Cobrem cerca de 1/25 do céu, mapeando-o com mais pormenor do que qualquer outra medição deste tipo.

Uma das principais utilizações para estes dados é a de colocar restrições nas muitas possíveis respostas às nossas questões sobre o Universo, tais como a forma como se formou e as leis fundamentais que regem a sua evolução. Os dados fornecidos pela radiação cósmica de fundo em micro-ondas ajudam a orientar a procura de uma imagem coesa de tudo o que existe.

O melhor modelo atual para explicar a formação do cosmos é conhecido como Lambda-CDM. No entanto, estudos recentes têm revelado indícios tentadores de que o modelo Lambda-CDM pode não ser o quadro completo. Há também um debate em andamento sobre o ritmo de expansão do Universo, conhecido como "tensão de Hubble", que teria ramificações significativas para a nossa compreensão do Universo e na qual a radiação cósmica de fundo em micro-ondas desempenha um papel fundamental.

As descobertas confirmam a tensão de Hubble de forma independente com uma significância estatística muito elevada, ao mesmo tempo que se mantêm consistentes com outras limitações da radiação cósmica de fundo em micro-ondas, incluindo as da missão do satélite Planck e do ACT (Atacama Cosmology Telescope), no Chile. Também acentuam uma anomalia que surgiu recentemente no nosso quadro cosmológico, a discordância entre as restrições à radiação cósmica de fundo em micro-ondas e as dos levantamentos em grande escala dos movimentos das galáxias (particularmente os resultados recentes do DESI (Dark Energy Spectroscopic Instrument).

Anteriormente, o padrão de ouro para as medições da radiação cósmica de fundo em micro-ondas eram os dados do satélite Planck, obtidos há mais de uma década. Agora, os novos dados do SPT, quando combinados com os dados do ACT, estabelecem um novo padrão, um momento pelo qual muitos no campo têm estado à espera. Estes novos resultados representam menos de um-quarto dos dados obtidos com a SPT-3G no SPT.

Os telescópios espaciais, como o Planck, têm a vantagem de ter uma visão mais nítida, uma vez que a atmosfera da Terra não está perturbando a visão. Mas é substancialmente mais fácil operar um telescópio a partir do solo. É muito mais fácil criar um instrumento complexo que funcione mesmo num local tão inóspito como a Antártida do que conceber algo que tenha de sobreviver a um lançamento de foguete e às condições do espaço.

Fonte: University of Chicago

terça-feira, 3 de junho de 2025

Nova medição da expansão do Universo sugere resolução de um conflito

Ao longo da última década, os cientistas têm tentado resolver o que parecia ser uma grande inconsistência no Universo.

© Webb (NGC 1365)

O Universo expande-se ao longo do tempo, cujo ritmo de expansão é refletida pela Constante de Hubble, mas a velocidade a que se expande parece ser diferente consoante se olha para o início da história do Universo ou para os dias de hoje. A ser verdade, isto teria sido um grande problema para o modelo padrão que representa a nossa melhor compreensão do Universo. Mas graças ao telescópio espacial James Webb, cientistas da Universidade de Chicago conseguiram obter novos e melhores dados, sugerindo que, afinal, pode não haver conflito. 

Existem atualmente duas abordagens principais para calcular a velocidade a que o nosso Universo está se expandindo. A primeira abordagem consiste em medir a luz remanescente do Big Bang, que ainda está viajando pelo Universo. Esta radiação, conhecida como radiação cósmica de fundo em micro-ondas, informa sobre as condições nos primeiros tempos do Universo. A segunda abordagem consiste em medir a velocidade a que o Universo está se expandindo neste momento, na nossa vizinhança astronômica local. Paradoxalmente, isto é muito mais complicado do que ver para trás no tempo, porque medir distâncias com precisão é um grande desafio. 

Ao longo do último meio século, os cientistas descobriram uma série de formas de medir distâncias relativamente próximas. Uma delas baseia-se na captação da luz de uma determinada classe de estrelas no seu pico de brilho, quando explodem como supernova no final da sua vida. Se conhecermos o brilho máximo destas supernovas, a medição das suas luminosidades aparentes permite-nos calcular a sua distância. Observações adicionais dizem-nos a que velocidade a galáxia em que a supernova ocorreu está se afastando de nós.

Existem também dois outros métodos que utilizam dois outros tipos de estrelas: as estrelas gigantes vermelhas e as estrelas de carbono. No entanto, há muitas correções que têm de ser aplicadas a estas medições antes de se poder declarar uma distância final. Em primeiro lugar, os cientistas têm de ter em conta a poeira cósmica que obscurece a luz entre nós e estas estrelas distantes nas suas galáxias hospedeiras. Têm também de verificar e corrigir as diferenças de luminosidade que podem surgir ao longo do tempo cósmico. E, finalmente, têm de ser identificadas e corrigidas as incertezas sutis da instrumentação utilizada para efetuar as medições. Mas com os avanços tecnológicos, como o lançamento do muito mais potente telescópio espacial James Webb, em 2021, os cientistas têm conseguido aperfeiçoar cada vez mais estas medições.

O último cálculo efetuado pelos pesquisadores, que incorpora dados do telescópio espacial Hubble e do telescópio espacial James Webb, determina um valor de 70,4 quilômetros por segundo por megaparsec, mais ou menos 3%. Isto coloca o seu valor em concordância estatística com as medições recentes da radiação cósmica de fundo, que é de 67,4, mais ou menos 0,7%. O Webb tem uma resolução quatro vezes superior à do Hubble, o que lhe permite identificar estrelas individuais anteriormente detectadas em grupos desfocados. É também cerca de 10 vezes mais sensível, o que permite uma maior precisão e a capacidade de encontrar objetos de interesse ainda mais tênues. 

Os cientistas ainda estão tentando encontrar falhas no Modelo Padrão que descreve o Universo, o que poderia fornecer pistas sobre a natureza de dois grandes mistérios pendentes, a matéria escura e a energia escura. Mas a Constante de Hubble parece cada vez mais não ser o local onde procurar.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Chicago

quinta-feira, 3 de abril de 2025

Nova forma de encontrar buracos negros escondidos no Universo primitivo

Uma equipe internacional de investigação liderada pelo professor Ken-ichi Tadaki da Universidade Hokkai-Gakuen, no Japão, fez uma descoberta inovadora utilizando o ALMA (Atacama Large Millimeter/submillimeter Array).

© K. Tadaki (intensa radiação proveniente de buraco negro)

A equipe captou sinais de rádio de alta resolução sem precedentes do gás quente que rodeia um buraco negro supermassivo. Esta técnica de observação inovadora promete revelar buracos negros escondidos que se formaram durante os primeiros estágios do Universo. O buraco negro supermassivo está localizado a 12,9 bilhões de anos-luz de distância e tem uma massa superior a um bilhão de vezes a do Sol.

Os quasares estão entre os objetos mais brilhantes do Universo, alimentados por buracos negros supermassivos que geram uma energia intensa à medida que consomem a matéria circundante. A análise das regiões mais internas dos quasares distantes tem sido um desafio, apesar do seu brilho. 

Neste estudo inovador, os pesquisadores concentraram-se nos sinais de rádio emitidos por moléculas de monóxido de carbono (CO) altamente energizadas. As observações de altíssima resolução revelaram, pela primeira vez, os mecanismos de aquecimento que afetam o gás a apenas algumas centenas de anos-luz do buraco negro. A deteção de fortes emissões de CO a altos níveis energéticos indica condições de gás extraordinariamente quentes em torno do buraco negro.

Embora a radiação ultravioleta das estrelas recém-formadas aqueça tipicamente o gás nas regiões de formação estelar, as condições extremas observadas não podem ser explicadas apenas pela atividade estelar. A pesquisa aponta para os poderosos raios X que emanam do disco de acreção e da coroa do buraco negro como a principal fonte de aquecimento. Estes raios X podem elevar as temperaturas do gás muito para além dos níveis observados nas típicas regiões de formação estelar.

Além disso, a equipe encontrou evidências de que os poderosos ventos do quasar e as ondas de choque contribuem ainda mais para este aquecimento extremo, demonstrando que a região central do quasar representa um dos ambientes mais dinâmicos do cosmos. Esta descoberta tem implicações significativas para a nossa compreensão das populações de buracos negros no Universo primitivo.

Os quasares orientados com linhas de visão relativamente claras aparecem excepcionalmente brilhantes no visível e em raios X. No entanto, se o quasar for visto através de uma camada muito mais espessa de poeira cósmica, a luz visível e os raios X podem ser bloqueados, fazendo com que fique "escondido". Muitos buracos negros supermassivos podem estar escondidos em regiões poeirentas do Universo primitivo, simplesmente sem serem detectados. Como as ondas de rádio observadas pelo ALMA não são facilmente absorvidas pela poeira, esta técnica torna-se uma ferramenta poderosa para descobrir estes buracos negros supermassivos escondidos.

Ao aplicar observações semelhantes de alta resolução de emissões energéticas de CO em outros objetos, os astrônomos esperam desenvolver um censo mais abrangente de buracos negros supermassivos primitivos e obter conhecimentos cruciais sobre a sua formação e evolução.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: National Astronomical Observatory of Japan

sábado, 29 de março de 2025

Galáxia no nevoeiro misteriosamente limpo do Universo primitivo

Utilizando a sensibilidade única ao infravermelho do telescópio espacial James Webb, foi possível examinar galáxias antigas para sondar os segredos do Universo primitivo.

© NASA (localização da galáxia JADES-GS-z13-1)

Agora, astrônomos identificaram emissões brilhantes de hidrogênio de uma galáxia num período inesperadamente precoce da história do Universo. A descoberta surpreendente propõe o desafio: como é que esta luz pode ter atravessado a espessa névoa de hidrogênio neutro que preenchia o espaço nesse momento?

A extraordinária sensibilidade do Webb à luz infravermelha abre também novas vias de investigação sobre quando e como estas galáxias se formaram, e os seus efeitos no Universo na aurora cósmica. O Webb descobriu a galáxia incrivelmente distante JADES-GS-z13-1, observada apenas 330 milhões de anos após o Big Bang, em imagens obtidas pelo instrumento NIRCam (Near-Infrared Camera) do Webb no âmbito do programa JADES.

Os pesquisadores utilizaram o brilho da galáxia em diferentes filtros infravermelhos para estimar o seu desvio para o vermelho, que mede a distância de uma galáxia à Terra com base na forma como a sua luz foi esticada durante a sua viagem através do espaço em expansão. As imagens do NIRCam produziram uma estimativa de um desvio para o vermelho de 13. Isto equivale a uma galáxia vista apenas 330 milhões de anos após o Big Bang, uma pequena fração da idade atual do Universo, que é de 13,8  bilhões de anos.

Mas também se destacou uma característica inesperada: um comprimento de onda de luz específico e nitidamente brilhante, identificado como a emissão Lyman-α irradiada por átomos de hidrogênio, uma emissão muito mais forte nesta fase inicial do desenvolvimento do Universo. O Universo primitivo estava banhado por uma espessa névoa de hidrogênio neutro. A maior parte desta névoa foi levantada num processo chamado reionização, que se completou cerca de um bilhão de anos após o Big Bang.

Antes e durante a época da reionização, o imenso nevoeiro de hidrogênio neutro que rodeava as galáxias bloqueava qualquer luz ultravioleta energética que estas emitissem, tal como o efeito de filtragem de um vidro colorido. Até que um número suficiente de estrelas se formou e foi capaz de ionizar o gás hidrogênio, nenhuma luz, incluindo a emissão de Lyman-α, poderia escapar destas novas galáxias e chegar à Terra. A confirmação da radiação Lyman-α desta galáxia tem, portanto, grandes implicações para a nossa compreensão do Universo primitivo.

A fonte da radiação Lyman-α desta galáxia ainda não é conhecida, mas pode incluir a primeira luz da primeira geração de estrelas se formando no Universo. A grande bolha de hidrogênio ionizado que rodeia esta galáxia pode ter sido criada por uma população peculiar de estrelas, muito mais massivas, mais quentes e mais luminosas do que as estrelas formadas em épocas posteriores, e possivelmente representativa da primeira geração de estrelas. Outra possibilidade seria um poderoso núcleo galáctico ativo, impulsionado por um dos primeiros buracos negros supermassivo.

A equipe planeja continuar as observações da GS-z13-1, com o objetivo de obter mais informações sobre a natureza desta galáxia e sobre a origem da sua forte radiação Lyman-α.

Um artigo foi publicado na revista Nature.

Fonte: University of Cambridge

terça-feira, 4 de março de 2025

Quipu: a maior estrutura do Universo

O recém-descoberto grupo de aglomerados de galáxias Quipu, que tem 13 mil vezes o tamanho da Via Láctea, está sendo considerado a maior estrutura do Universo conhecida até o momento.

© ESA / DSS (superaglomerado Shapley)

Batizada dessa forma em homenagem a um sistema inca de contagem que usa cordões com nós, a estrutura colossal se estende por aproximadamente 1,3 bilhão de anos-luz de diâmetro e tem 200 quatrilhões de massas solares. Com essas medidas, ela supera objetos gigantes que já ocuparam o posto, como o superaglomerado Laniakea. Localizado em uma área entre 425 milhões e 815 milhões de anos-luz da Terra junto com outras estruturas de tamanho parecido, o aglomerado foi encontrado durante um estudo para mapear a distribuição de matéria do Universo em vários comprimentos de onda de luz. 

O trabalho envolveu o uso de aglomerados de galáxias de raios X para identificação e análise de superestruturas. O estudo de grupos de aglomerados de galáxias e superaglomerados como Quipu pode ajudar a entender sobre a evolução das galáxias, melhorar os modelos cosmológicos e a precisão das medições do cosmos.

© Astronomy & Astrophysics (Quipu)

O tamanho impressionante desses objetos desafia a compreensão de como o Universo evoluiu. Além do maior objeto do Universo, a equipe liderada pelo pesquisador do Instituto Max Planck, Hans Bohringer, analisou outras quatro superestruturas na mesma região. Uma delas foi o superaglomerado Shapley, que também já chegou a ser a maior superestrutura descoberta. 

O superaglomerado Hércules, a superestrutura Serpens-Corona Borealis e a superestrutura Sculptor-Pegasus, localizada entre as constelações que servem de base para o seu nome, foram as outras. Juntos, os cinco objetos representam 45% dos aglomerados de galáxias, 30% de galáxias e 25% da matéria no Universo observável, além de 13% do volume do Universo, segundo os astrônomos. 

Quipu e as demais superestruturas estudadas pela equipe devem manter seus tamanhos gigantescos por mais um longo período. Porém, é esperado que elas se partam em várias unidades menores, em algum momento.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Live Science

segunda-feira, 30 de dezembro de 2024

Perscrutando um buraco negro massivo no Universo primitivo

Os cientistas descobriram um enorme buraco negro no início do Universo que está dormente depois de se ter empanturrado com demasiada matéria.

© Jiarong Gu (buraco negro durante um dos seus curtos períodos de crescimento rápido)

Uma equipe internacional de astrônomos, liderada pela Universidade de Cambridge, utilizou o telescópio espacial James Webb para detectar este buraco negro no início do Universo, apenas 800 milhões de anos após o Big Bang. O buraco negro é enorme, com 400 milhões de vezes a massa do nosso Sol, o que faz dele um dos buracos negros mais massivos descobertos pelo Webb neste momento do desenvolvimento do Universo. 

O buraco negro é tão grande que representa cerca de 40% da massa total da galáxia que o acolhe: em comparação, a maioria dos buracos negros do Universo local tem cerca de 0,1% da massa da galáxia que os hospeda. No entanto, apesar do seu tamanho gigantesco, este buraco negro está acretando o gás de que necessita para crescer a um ritmo muito baixo, cerca de 100 vezes abaixo do seu limite máximo teórico, tornando-o essencialmente dormente. 

Um buraco negro tão massivo tão cedo no Universo, mas que não está crescendo, desafia os modelos existentes de como os buracos negros se desenvolvem. No entanto, os pesquisadores dizem que o cenário mais provável é que os buracos negros passem por curtos períodos de crescimento ultrarrápido, seguidos de longos períodos de dormência. 

Quando os buracos negros estão adormecidos, são muito menos luminosos, o que os torna mais difíceis de detectar, mesmo com telescópios altamente sensíveis como o Webb. Os buracos negros não podem ser observados diretamente, mas são detectados pelo brilho de um disco de acreção em seu redor, que se forma perto da orla do buraco negro. Quando os buracos negros estão crescendo ativamente, o gás no disco de acreção torna-se extremamente quente e começa a brilhar e a irradiar energia na região do ultravioleta.

De acordo com os modelos padrão, os buracos negros formam-se a partir do colapso de estrelas mortas e acumulam matéria até um limite previsto, conhecido como limite de Eddington, em que a pressão da radiação sobre a matéria ultrapassa a atração gravitacional do buraco negro. No entanto, a dimensão deste buraco negro sugere que os modelos padrão podem não explicar adequadamente como é que estes monstros se formam e crescem.

Trabalhando com colegas italianos, os pesquisadores de Cambridge realizaram uma série de simulações em computador para modelar a forma como este buraco negro adormecido poderia ter crescido até atingir uma dimensão tão massiva tão cedo no Universo. Descobriram que o cenário mais provável é que os buracos negros podem exceder o limite de Eddington durante curtos períodos, durante os quais crescem muito rapidamente, seguidos de longos períodos de inatividade.

Como os períodos de dormência são muito mais longos do que os períodos de crescimento ultrarrápido, é nestes períodos que os astrônomos têm mais probabilidades de detectar buracos negros. Devido às suas baixas luminosidades, os buracos negros dormentes são mais difíceis de detectar, mas este buraco negro é provavelmente a ponta de um iceberg muito maior, se os buracos negros no Universo primitivo passarem a maior parte do seu tempo num estado dormente.

Um artigo sobre o assunto foi publicado na revista Nature.

Fonte: University of Cambridge