Mostrando postagens com marcador Estrelas. Mostrar todas as postagens
Mostrando postagens com marcador Estrelas. Mostrar todas as postagens

terça-feira, 7 de outubro de 2025

Detectado fosfina na atmosfera de uma anã marrom

O fósforo é um dos seis elementos fundamentais necessários à vida na Terra.

© Adam Burgasser (sistema triplo Wolf 1130ABC)

Quando combinado com o hidrogênio, o fósforo forma a molécula fosfina (PH3), um gás explosivo e altamente tóxico. Encontrada nas atmosferas dos planetas gigantes gasosos Júpiter e Saturno, a fosfina há muito que é reconhecida como uma possível bioassinatura de vida anaeróbica, uma vez que existem poucas fontes naturais deste gás nas atmosferas dos planetas terrestres. Na Terra, a fosfina é um subproduto da decomposição da matéria orgânica dos pântanos. 

Agora, foi detectada fosfina na atmosfera de uma anã marrom antiga e fria chamada Wolf 1130C. A fosfina foi detectada na atmosfera de Wolf 1130C através de observações obtidas com o telescópio espacial James Webb, o primeiro telescópio com a sensibilidade necessária para observar estes objetos celestes em pormenor. O mistério, no entanto, não é porque é que a fosfina foi encontrada, mas porque é que está ausente nas atmosferas de outras anãs marrons e de outros exoplanetas gigantes gasosos.

O programa de astronomia, chamado "Arcana of the Ancients", centra-se em anãs marrons antigas e pobres em metais como forma de testar a compreensão da química atmosférica. Nas atmosferas ricas em hidrogênio de planetas gigantes gasosos como Júpiter e Saturno, a fosfina forma-se naturalmente. Como tal, os cientistas há muito que previram que a fosfina deveria estar presente nas atmosferas dos gigantes gasosos que orbitam outras estrelas e nas suas primas mais massivas, as anãs marrons, objetos por vezes chamados "estrelas falhadas" porque não fundem o hidrogênio.

No entanto, a fosfina tem escapado largamente à detecção, mesmo em observações anteriores do telescópio espacial James Webb, o que sugere problemas com a nossa compreensão da química do fósforo. 

No sistema estelar Wolf 1130ABC, localizado a 54 anos-luz do Sol na direção da constelação de Cisne, a anã marrom Wolf 1130C segue uma órbita larga em torno de um compacto sistema estelar duplo, composto por uma estrela vermelha fria (Wolf 1130A) e uma anã branca massiva (Wolf 1130B). Wolf 1130C tem sido uma das fontes favoritas dos astrônomos que estudam as anãs marrons devido à sua baixa abundância de metais, ou seja, essencialmente quaisquer outros elementos que não o hidrogênio e o hélio, em comparação com o Sol.

Ao contrário de outras anãs marrons, a equipe detectou facilmente a fosfina nos dados espcetrais infravermelhos de Wolf 1130C pelo telescópio espacial James Webb. Para compreender plenamente as implicações das suas descobertas, a equipe precisava de quantificar a abundância deste gás na atmosfera de Wolf 1130C.

Para determinar as abundâncias das moléculas em Wolf 1130C, foi utilizada uma técnica de modelação conhecida como "recuperação atmosférica". Esta técnica usa os dados do telescópio espacial James Webb para determinar a quantidade de cada espécie de gás molecular que deve estar na atmosfera. Os modelos mostraram que a abundância de fosfina era o ingrediente secreto de Wolf 1130C.

Esta descoberta levanta uma questão: porque é que a fosfina está presente na atmosfera desta anã marrom e não em outras? Uma possibilidade é a baixa abundância de metais na atmosfera de Wolf 1130C, que pode alterar a sua química subjacente. Pode ser que em condições normais o fósforo esteja ligado a outra molécula, como o trióxido de fósforo. Na atmosfera pobre em metais de Wolf 1130C, não há oxigênio suficiente para absorver o fósforo, permitindo que a fosfina se forme a partir do hidrogênio abundante. 

A equipe espera explorar esta possibilidade com novas observações do telescópio espacial James Webb que irão procurar fosfina nas atmosferas de outras anãs marrons pobres em metais. Outra possibilidade é que o fósforo tenha sido gerado localmente no sistema Wolf 1130ABC, especificamente pela sua anã branca, Wolf 1130B. Uma anã branca é o que resta de uma estrela que acabou de fundir o seu hidrogénio. São tão densas que, quando acretam material na sua superfície, podem sofrer reações nucleares descontroladas que são detectadas como novas. 

Embora os astrônomos não tenham visto evidências recentes de tais eventos no sistema Wolf 1130ABC, as novas têm tipicamente ciclos de explosão de milhares a dezenas de milhares de anos. Este sistema é conhecido há pouco mais de um século, e as suas erupções, não vistas, podem ter deixado um legado de poluição por fósforo. Estudos anteriores propuseram que uma fração significativa do fósforo da Via Láctea poderia ter sido sintetizado por este processo. Compreender porque é que esta anã marrom mostra uma assinatura clara de fosfina pode levar a novos conhecimentos sobre a síntese do fósforo na Via Láctea e sobre a sua química nas atmosferas planetárias.

Um artigo foi publicado na revista Science.

Fonte: University of California

segunda-feira, 6 de outubro de 2025

Centro de explosão de estrelas

A galáxia brilhante nesta imagem do telescópio espacial Hubble é a galáxia NGC 6951, que reside a cerca de 70 milhões de anos-luz de distância, na constelação de Cefeu.

© Hubble (NGC 6951)

Como mostra esta imagem do Hubble, a NGC 6951 é uma galáxia espiral com inúmeras estruturas intrigantes. O que mais chama a atenção são seus braços espirais, pontilhados por nebulosas vermelhas brilhantes, estrelas azuis brilhantes e nuvens de poeira filamentosas.

Os braços espirais circundam o centro galáctico, que possui um brilho dourado proveniente de uma população de estrelas mais velhas. O centro da galáxia também é nitidamente alongado, revelando a presença de uma barra de estrelas em rotação lenta.

A barra da NGC 6951 pode ser responsável por outra característica notável: um anel branco-azulado que envolve o próprio coração da galáxia. Isso é chamado de anel de explosão estelar circumnuclear; essencialmente, um círculo de formação estelar intensificada ao redor do núcleo de uma galáxia.

A barra canaliza o gás em direção ao centro da galáxia, onde se acumula em um anel com cerca de 3.800 anos-luz de diâmetro. Duas faixas escuras de poeira paralelas à barra marcam os pontos onde o gás da barra entra no anel. O gás denso de um anel de explosão estelar circumnuclear é o ambiente perfeito para a formação de um número impressionante de estrelas.

Usando dados do Hubble, astrônomos identificaram mais de 80 potenciais aglomerados estelares dentro do anel da NGC 6951. Muitas das estrelas se formaram há menos de 100 milhões de anos, mas o anel em si tem vida mais longa, podendo ter existido por 1 a 1,5 bilhão de anos.

Astrônomos têm obtido imagens da NGC 6951 com o Hubble por uma ampla variedade de razões, incluindo o mapeamento da poeira em galáxias próximas, o estudo dos centros de galáxias de disco e o monitoramento de supernovas recentes, das quais a NGC 6951 hospedou cinco ou seis.

Fonte: ESA

sábado, 6 de setembro de 2025

O conflito interno de uma estrela antes da sua explosão

De acordo com um novo estudo do observatório de raios X Chandra da NASA, o interior de uma estrela "deu voltas" antes de explodir de forma espetacular.

© Chandra (Cassiopeia A)

Hoje, esta estrela estilhaçada, conhecida como o remanescente de supernova Cassiopeia A, é um dos objetos mais conhecidos e bem estudados do céu. No entanto, há mais de trezentos anos, era uma estrela gigante à beira da autodestruição.

O novo estudo do Chandra revela que, poucas horas antes de explodir, o interior da estrela reorganizou-se violentamente. Esta alteração de última hora do seu ventre estelar tem profundas implicações para a compreensão da forma como as estrelas massivas explodem e de como os seus remanescentes depois se comportam.

A Cassiopeia A (Cas A) foi um dos primeiros objetos que o telescópio espacial observou após o seu lançamento em 1999 e os astrônomos voltaram várias vezes para o observar. 

À medida que as estrelas massivas envelhecem, formam-se elementos cada vez mais pesados no seu interior, através de reações nucleares, criando camadas tipo cebola de diferentes elementos. A sua camada exterior é majoritariamente constituída por hidrogênio, seguida de camadas de hélio, carbono e elementos progressivamente mais pesados - estendendo-se até ao centro da estrela. Quando o ferro começa a formar-se no núcleo da estrela, o jogo muda. Assim que o núcleo de ferro cresce para além de uma certa massa (cerca de 1,4 vezes a massa do Sol), já não consegue suportar o seu próprio peso e colapsa. A parte exterior da estrela cai sobre o núcleo em colapso e rebenta como uma supernova de colapso do núcleo.

A nova observação com dados do Chandra revela uma mudança que ocorreu nas profundezas da estrela nos últimos momentos da sua vida. Depois de viver durante mais de um milhão de anos, Cas A sofreu grandes alterações nas suas últimas horas antes de explodir. Pouco antes da estrela Cas A entrar em colapso, parte de uma camada interna com grandes quantidades de silício viajou para o exterior e invadiu uma camada vizinha com muito neônio. Trata-se de um acontecimento violento em que a barreira entre estas duas camadas desaparece. Esta agitação não só fez com que o material rico em silício se deslocasse para o exterior, como também forçou o material rico em neônio se deslocar para o interior.

A sobrevivência destas regiões não só fornece evidências críticas das alterações interiores da estrela, como também mostra que a mistura completa do silício e do neônio com outros elementos não ocorreu imediatamente antes ou depois da explosão. Esta ausência de mistura é prevista por modelos computacionais detalhados de estrelas massivas perto do fim das suas vidas.

Há várias implicações significativas para este tumulto interno da estrela condenada. Primeiro, pode explicar diretamente a forma assimétrica, em vez de simétrica, do remanescente Cas A em três dimensões. Segundo, uma explosão assimétrica e um campo de detritos podem ter dado um poderoso pontapé ao núcleo remanescente da estrela, agora uma estrela de nêutrons, explicando a elevada velocidade observada deste objeto. Finalmente, os fortes fluxos turbulentos criados pelas mudanças internas da estrela podem ter promovido o desenvolvimento da onda de choque da supernova, facilitando a explosão da estrela.

Estes resultados foram publicados no periódico The Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics

terça-feira, 26 de agosto de 2025

Estrutura poeirenta explica o desaparecimento de uma estrela distante

As estrelas morrem e desaparecem de vista a toda a hora, mas os astrônomos ficaram intrigados quando uma estrela que se tinha mantido estável durante mais de uma década quase desapareceu durante oito meses.

© ChatGPT 5 (ilustração do sistema ASASSN-24fw)

Entre o final de 2024 e o início de 2025, uma estrela da nossa Galáxia, designada por ASASSN-24fw, diminuiu o seu brilho em cerca de 97%, antes de aumentar novamente. Desde então, os cientistas têm vindo a trocar teorias sobre o que estará por detrás deste acontecimento raro. A ASASSN-24fw é uma estrela de classe F, uma estrela um pouco mais massiva do que o nosso Sol e com cerca do dobro do tamanho, e está localizada a cerca de 3.000 anos-luz da Terra.

Agora, uma equipe internacional liderada por cientistas da Universidade do Estado do Ohio, EUA, poderá ter encontrado uma resposta para o mistério. Num novo estudo, os astrônomos sugerem que, uma vez que a cor da luz da estrela permaneceu inalterada durante o seu escurecimento, o evento não foi causado por uma qualquer evolução da estrela, mas sim por uma grande nuvem de poeira e gás em torno da estrela que ocultou a visão da Terra.

Os pesquisadores estimam que a nuvem em forma de disco que a rodeia tem cerca de 1,3 unidades astronômicas (UA) de diâmetro, uma distância ainda maior do que a que separa o Sol do nosso planeta (1 UA é a distância entre o centro da Terra e o centro do Sol).

Este disco também é provavelmente constituído por grandes aglomerados de carbono ou água gelada, com dimensões próximas das de um grande grão de poeira encontrado na Terra. Este material é suficientemente semelhante aos discos de formação planetária para que o seu estudo possa fornecer novos conhecimentos sobre a formação e evolução estelar.

No entanto, estas descobertas por si só não explicam todas as anomalias do sistema. Ao invés, os pesquisadores pensam que uma estrela menor e mais fria pode também orbitar ASASSN-24fw, o que faria dele um sistema binário oculto. A segunda estrela, que é muito mais fraca e menos massiva, pode estar provocando as mudanças na geometria que levam aos eclipses.

O sistema foi descoberto no âmbito do projeto ASAS-SN (All-Sky Automated Survey for Supernovae), uma rede de pequenos telescópios que monitoram todo o céu noturno visível. Desde a sua criação, há mais de uma década, que o ASAS-SN já recolheu cerca de 14 milhões de imagens do cosmos.

De acordo com a equipe, o sistema ASASSN-24fw deverá passar por um eclipse aproximadamente a cada 43,8 anos, sendo que o próximo só deverá ocorrer por volta de 2068. Serão utilizados telescópios maiores, como o telescópio espacial James Webb e o LBT (Large Binocular Telescope), para fazer observações mais completas do sistema à medida que este regressa ao brilho total.

Um artigo foi publicado no periódico The Open Journal of Astrophysics.

Fonte: The Ohio State University

A evolução de uma estrela moribunda durante mais de um século

Pela primeira vez, os cientistas seguiram diretamente a lenta transformação de uma estrela moribunda ao longo de mais de um século, revelando que está aquecendo mais depressa do que qualquer outra estrela típica alguma vez observada.

© Hubble (IC 418)

A imagem acima mostra a nebulosa planetária IC 418 em cores falsas, obtida pelo telescópio espacial Hubble em 1999.

A pesquisa rastreia 130 anos de mudanças na nebulosa planetária IC 418, uma concha brilhante de gás e poeira expelida por uma estrela moribunda a cerca de 4.000 anos-luz da Terra.

Reunindo observações que remontam a 1893, quando os astrônomos registaram pela primeira vez a nebulosa através de um telescópio, até aos dias de hoje, os cientistas descobriram que a característica luz verde da nebulosa, emitida pelos átomos de oxigênio, se tornou cerca de 2,5 vezes mais forte desde que os astrônomos vitorianos a estudaram pela primeira vez.

Esta mudança está sendo impulsionada pela subida da temperatura da estrela central, que aumentou cerca de 3.000° C desde 1893, ou seja, aproximadamente 1.000° C a cada 40 anos. Para comparação, o Sol aumentou o mesmo valor durante a sua formação, mas demorou 10 milhões de anos a fazê-lo.

No entanto, embora a estrela esteja aquecendo mais depressa, continua sendo mais lentamente do que os modelos mais recentes previam. Isto desafia as teorias atuais sobre a forma como as estrelas envelhecem e morrem, e pode forçar os astrônomos a repensar as massas das estrelas capazes de produzir carbono.

Uma nebulosa planetária assinala uma das fases finais da vida de uma estrela. À medida que o núcleo da estrela se torna instável, libera as suas camadas exteriores para o espaço. O núcleo remanescente aquece rapidamente, energizando o gás e a poeira circundantes para formar belas estruturas. No caso de IC 418, isto cria uma estrutura intrincada e rodopiante, que lhe valeu a alcunha de "Nebulosa do Espirógrafo". O nosso Sol terá o mesmo destino daqui a cerca de 5 bilhões de anos.

Ao passo que as nebulosas planetárias normalmente evoluem de forma lenta, os pesquisadores descobriram que IC 418 está evoluindo depressa o suficiente para ser seguida durante uma vida humana. Isto faz com que seja a transformação mais prolongada e rápida alguma vez registada numa nebulosa planetária, e possivelmente em qualquer estrela.

Os astrônomos verificaram, calibraram e combinaram os dados antes de os compararem com modelos detalhados de evolução estelar. Isto permitiu-lhes medir o ritmo de aquecimento da estrela, determinar a sua massa atual e até estimar a massa da estrela antes de começar a sua transformação.

As descobertas oferecem uma visão rara de como as nebulosas planetárias evoluem e sugerem que o céu noturno pode mudar muito mais depressa do que normalmente pensamos.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: The University of Manchester

sábado, 16 de agosto de 2025

As primeiras estrelas eram realmente tão grandes?

Turbulência caótica em nuvens primordiais de gás pode ter impedido a formação de estrelas extremamente massivas, de acordo com novas simulações de astrônomos taiwaneses.

© NOIRLab (campo de estrelas no Universo primitivo)

Esta ilustração mostra um campo de estrelas como elas teriam aparecido apenas 100 milhões de anos após o Big Bang.

O Universo primitivo consistia principalmente de hidrogênio e hélio, que, ao contrário de elementos mais pesados, não irradiam muito. As nuvens de gás que seriam os berços das estrelas, portanto, tiveram dificuldade para resfriar o suficiente para a formação de estrelas, a força da gravidade teve que agir contra a alta pressão do gás.

É por isso que a maioria dos astrônomos acredita que as primeiras estrelas do Universo devem ter sido verdadeiros gigantes, centenas de vezes mais massivas que o Sol. Mas, de acordo com Ke-Jung Chen (Instituto de Astronomia e Astrofísica da Academia Sinica, Taiwan) e seus colegas, essa imagem simples está incompleta. Suas simulações detalhadas de computador revelam que essas nuvens em colapso experimentaram turbulência supersônica, com a maior parte do gás se movendo a cinco vezes a velocidade do som. As ondas de choque resultantes fragmentaram nuvens maiores em pedaços menores e até ajudaram a gravidade a superar a pressão do gás.

Para chegar a essa conclusão, a equipe adaptou o IllustrisTNG, uma simulação computacional do nosso cosmos. Os pesquisadores se concentraram em uma única concentração de massa no Universo primordial, o chamado diminuto halo de matéria escura, com cerca de 10 milhões de massas solares. Usando uma técnica chamada divisão de partículas, eles conseguiram rastrear partículas de apenas 0,2 massas solares (minúsculas em comparação com a simulação original, que possui partículas de 84.000 massas solares). A simulação ampliada revelou que o gás em queda torna-se altamente turbulento em escalas de centenas de anos-luz, resultando em múltiplos aglomerados densos que geram estrelas tão pequenas quanto oito massas solares.

© IllustrisTNG (simulação computacional do cosmos)

Esta imagem 3D mostra vários aglomerados densos de gás no centro do halo, representados como bolhas amarelas a vermelhas. Um desses aglomerados tornou-se denso o suficiente para começar a colapsar sob sua própria gravidade, um processo chamado instabilidade de Jeans. Ele está formando uma estrela de primeira geração (Pop III) com uma massa de cerca de 8 vezes a do nosso Sol.

Os resultados indicam que a turbulência supersônica pode ser comum em halos primordiais e pode desempenhar um papel crucial na fragmentação em escala de nuvens, fornecendo uma maneira de formar as primeiras estrelas menos massivas. No entanto, a simulação computacional não incorpora processos de radiação, algo que realmente não pode ser ignorado nessas escalas.

Nos últimos anos, surgiram outros indícios de que estrelas extremamente massivas devem ter sido relativamente raras no Universo primitivo. Espera-se que estrelas entre 80 e 260 massas solares terminem suas breves vidas nas chamadas supernovas de instabilidade de par, que devem deixar traços reveladores na composição das gerações subsequentes de estrelas. No entanto, essas impressões digitais químicas se mostram menos abundantes do que o esperado. Essas novas simulações computacionais podem explicar o porquê.

Um artigo foi publicado no periódico Astrophysical Journal Letters.

Fonte: Sky & Telescope