Mostrando postagens com marcador Gamma-ray burst. Mostrar todas as postagens
Mostrando postagens com marcador Gamma-ray burst. Mostrar todas as postagens

sábado, 20 de dezembro de 2025

Buraco negro devora uma estrela num surto recorde

Os astrônomos têm analisado uma série de dados provenientes de satélites da NASA e de outras instalações, enquanto tentam descobrir o responsável por uma extraordinária explosão cósmica descoberta no dia 2 de julho.

© NOIRLab (jato lançado pelo GRB 250702B)

Astrônomos observaram a explosão de raios gama mais longa já registrada, uma poderosa explosão extragaláctica que durou mais de sete horas. Observações de acompanhamento rápidas, com a Dark Energy Camera e o Observatório Internacional Gemini, forneceram informações cruciais sobre a possível origem desse evento extraordinário e a galáxia que o abriga.

As explosões de raios gama (GRBs) estão entre as explosões mais poderosas do Universo, perdendo apenas para o Big Bang. A maioria dessas explosões é observada como um clarão que desaparece em poucos segundos ou minutos. Mas, em 2 de julho de 2025, astrônomos foram alertados sobre uma fonte de GRB que exibia explosões repetidas e que duraria mais de sete horas. Esse evento, denominado GRB 250702B, é a explosão de raios gama mais longa já testemunhada pela humanidade.

O GRB 250702B foi identificado pela primeira vez pelo telescópio espacial Fermi de Raios Gama (Fermi) da NASA. Pouco depois de telescópios espaciais detectarem as explosões iniciais em raios gama e localizarem sua posição no céu em raios X, astrônomos de todo o mundo lançaram campanhas para observar o evento em outros comprimentos de onda da luz. Uma das primeiras revelações sobre esse evento veio quando observações infravermelhas adquiridas pelo Very Large Telescope (VLT) do ESO estabeleceram que a fonte do GRB 250702B está localizada em uma galáxia fora da nossa, o que até então permanecia uma incógnita.

Em seguida, uma equipe de astrônomos partiu para captar o brilho residual em evolução do evento, ou seja, as emissões de luz que diminuem de intensidade após o clarão inicial extremamente brilhante de raios gama. As propriedades dessas emissões podem fornecer pistas sobre o tipo de evento que causou o GRB. Para melhor compreender a natureza deste evento recordista, a equipe utilizou três dos telescópios terrestres mais potentes do mundo: o telescópio Víctor M. Blanco de 4 metros e os telescópios gêmeos de 8,1 metros do Observatório Internacional Gemini. Este trio observou o GRB 250702B a partir de aproximadamente 15 horas após a primeira detecção até cerca de 18 dias depois. O telescópio Blanco está localizado no Chile, no Observatório Interamericano Cerro Tololo (CTIO). O Observatório Internacional Gemini consiste no telescópio Gemini Norte, no Havaí, e no telescópio Gemini Sul, no Chile. 

A análise das observações revelou que o GRB 250702B não pôde ser visto na luz visível, em parte devido à poeira interestelar em nossa própria Via Láctea, mas principalmente devido à poeira na galáxia hospedeira do GRB. De fato, o Gemini Norte, que forneceu a única detecção da galáxia hospedeira em comprimentos de onda próximos ao visível, precisou de quase duas horas de observações para captar o sinal fraco sob as extensas camadas de poeira.

Esses dados foram combinados com novas observações feitas com o telescópio Keck I no Observatório W. M. Keck, o telescópio Magellan Baade e o telescópio Fraunhofer no Observatório Wendelstein, bem como dados disponíveis publicamente do VLT, do telescópio espacial Hubble e de observatórios de raios X e rádio. Em seguida, compararam esse conjunto de dados robusto com modelos teóricos, que são estruturas que explicam o comportamento de fenômenos astronômicos. Os modelos podem ser usados ​​para fazer previsões que podem então ser testadas com dados observacionais para refinar a compreensão dos cientistas.

A análise da equipe estabeleceu que o sinal inicial de raios gama provavelmente veio de um jato estreito e de alta velocidade de material colidindo com o material circundante, conhecido como jato relativístico. A análise também ajudou a caracterizar o ambiente ao redor da explosão de raios gama e a galáxia hospedeira. Eles descobriram que há uma grande quantidade de poeira ao redor do local da explosão e que a galáxia hospedeira é extremamente massiva em comparação com a maioria das galáxias hospedeiras de explosões de raios gama.

Os dados corroboram um cenário no qual a fonte do GRB reside em um ambiente denso e empoeirado, possivelmente uma espessa faixa de poeira presente na galáxia hospedeira ao longo da linha de visão entre a Terra e a fonte do GRB. Esses detalhes sobre o ambiente do GRB 250702B fornecem restrições importantes sobre o sistema que produziu a explosão inicial de raios gama. Dos aproximadamente 15.000 GRBs observados desde que o fenômeno foi reconhecido pela primeira vez em 1973, apenas meia dúzia se aproxima da duração do GRB 250702B.

Suas origens propostas variam desde o colapso de uma estrela supergigante azul, um evento de ruptura de maré ou um magnetar recém-nascido. O GRB 250702B, no entanto, não se encaixa perfeitamente em nenhuma categoria conhecida. Com base nos dados obtidos até o momento, os cientistas têm algumas ideias sobre possíveis cenários de origem:

  • (1) um buraco negro caindo em uma estrela que perdeu seu hidrogênio e agora é composta quase que exclusivamente de hélio;
  • (2) uma estrela (ou objeto subestelar, como um planeta ou uma anã marrom) sendo despedaçada durante uma aproximação com um objeto compacto estelar, como um buraco negro estelar ou uma estrela de nêutrons, em um evento conhecido como ruptura microtidal;
  • (3) uma estrela sendo despedaçada ao cair em um buraco negro de massa intermediária, um tipo de buraco negro com massa entre cem e cem mil vezes a massa do nosso Sol, que se acredita existir em abundância, mas que até agora tem sido muito difícil de encontrar. Se for o último cenário, esta seria a primeira vez na história que a humanidade testemunharia um jato relativístico proveniente de um buraco negro de massa intermediária consumindo uma estrela.
Embora sejam necessárias mais observações para determinar conclusivamente a causa da GRB 250702B, os dados obtidos até o momento permanecem consistentes com essas novas explicações.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Gemini Observatory

segunda-feira, 15 de setembro de 2025

Detectada explosão de raios gama misteriosa

Os astrônomos detectaram uma explosão de raios gama que se repetiu várias vezes ao longo de um dia, um evento diferente de tudo o que já tinha sido observado anteriormente.

© ESO (explosão de raios gama GRB 250702B)

Descobriu-se que a fonte que deu origem a esta explosão de radiação poderosa se encontra fora da nossa Galáxia, tendo a sua localização sido identificada pelo Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO).

As explosões de raios gama, são normalmente causadas pela destruição catastrófica de estrelas. No entanto, nenhum cenário conhecido consegue explicar completamente esta nova explosão agora observada, cuja verdadeira natureza permanece um mistério. As explosões de raios gama são as mais energéticas do Universo e têm origem em eventos catastróficos, como estrelas massivas que morrem em explosões poderosas ou são destruídas por buracos negros, entre outros. Geralmente duram entre alguns milésimos de segundos e alguns minutos, mas o sinal agora capturado, GRB 250702B, durou cerca de um dia, o que é 100 a 1.000 vezes mais longo do que a maioria das explosões de raios gama observadas até à data. Mais importante ainda, as explosões de raios gama nunca se repetem, uma vez que o evento que as produz é catastrófico.

O alerta inicial sobre esta explosão surgiu a 2 de Julho, proveniente do telescópio espacial de raios gama Fermi, da NASA. O Fermi detectou não apenas uma, mas três explosões vindas desta fonte ao longo de várias horas. Posteriormente, e em retrospectiva, descobriu-se que a fonte tinha estado ativa quase um dia antes, conforme observou a Sonda Einstein, um telescópio espacial de raios X da Academia de Ciências Chinesa em conjunto com a Agência Espacial Europeia (ESA) e o Instituto Max Planck de Física Extraterrestre.

Nunca se tinha visto uma explosão de raios gama tão longa e repetitiva. As observações forneceram apenas uma localização aproximada desta explosão de raios gama, a qual se encontrava na direção do plano da nossa Galáxia, uma região repleta de estrelas. Assim, a equipa recorreu ao VLT do ESO para identificar a fonte real dentro dessa área.

O tamanho e o brilho da galáxia hospedeira sugerem que esta pode estar localizada a alguns bilhões de anos-luz de distância da Terra, no entanto são necessários mais dados para refinar esta distância. A natureza do evento que deu origem a esta explosão de raios gama é ainda desconhecida.

Um dos cenários possíveis corresponde a uma estrela massiva colapsando sobre si mesma, um processo que libera enormes quantidades de energia. Alternativamente, uma estrela sendo dilacerada por um buraco negro poderá produzir uma explosão de raios gama com duração de um dia, mas para explicar outras propriedades observadas na explosão, é necessário ter uma estrela bastante incomum sendo destruída por um buraco negro ainda mais incomum.

Para saber mais sobre esta explosão de raios gama, a equipe tem monitorado os resultados da explosão com diferentes telescópios e instrumentos, incluindo o espectrógrafo X-shooter do VLT e o telescópio espacial James Webb.

Este trabalho foi publicado no periódico The Astrophysical Journal Letters.

Fonte: ESO

quarta-feira, 31 de julho de 2024

A explosão de raios gama mais brilhante já observada

Em outubro de 2022, os astrônomos ficaram surpreendidos com a mais brilhante explosão de raios gama (GRB, sigla inglesa para "gamma-ray burst"), rapidamente apelidada de BOAT ("brightest of all time", a mais brilhante de todos os tempos).

© NASA (jato de partículas emerge de estrela massiva)

Agora, cientistas relatam que os dados do telescópio espacial de raios gama Fermi da NASA revelam uma característica nunca antes vista. Poucos minutos após a erupção da BOAT, o GBM (Gamma-ray Burst Monitor) do Fermi registrou um pico de energia incomum. 

Quando a matéria interage com a luz, a energia pode ser absorvida e reemitida de formas características. Estas interações podem aumentar ou diminuir o brilho de determinadas cores (ou energias), produzindo características chave visíveis quando a luz é espalhada, como um arco-íris, num espectro. Estas características podem revelar uma grande quantidade de informações, como por exemplo os elementos químicos envolvidos na interação. 

A energias mais elevadas, as características espectrais podem revelar processos específicos de partículas, como a aniquilação de matéria e antimatéria para produzir raios gama. Embora alguns estudos anteriores tenham relatado possíveis evidências de características de absorção e emissão em outras GRBs, o escrutínio subsequente revelou que tudo isto poderia ser apenas flutuações estatísticas.

As GRBs são as explosões mais poderosas do cosmos e emitem grandes quantidades de raios gama, a forma mais energética de luz. O tipo mais comum ocorre quando o núcleo de uma estrela massiva esgota o seu combustível, entra em colapso e forma um buraco negro que gira rapidamente. A matéria que cai no buraco negro gera jatos de partículas com direções opostas que atravessam as camadas exteriores da estrela quase à velocidade da luz. 

As GRBs foram detectadas quando um destes jatos aponta quase diretamente para a Terra. A BOAT, formalmente conhecida como GRB 221009A, entrou em erupção no dia 9 de outubro de 2022 e saturou imediatamente a maioria dos detectores de raios gama em órbita, incluindo os do Fermi. Isto impediu os cientistas de medir a parte mais intensa da explosão. As observações reconstruídas, juntamente com argumentos estatísticos, sugerem que a BOAT, se fizer parte da mesma população de GRBs anteriormente detectadas, foi provavelmente a explosão mais brilhante que apareceu nos céus da Terra em 10.000 anos. 

A suposta linha de emissão aparece quase 5 minutos depois da explosão ter sido detectada e muito depois de ter escurecido o suficiente para acabar com os efeitos de saturação no Fermi. A linha persistiu durante pelo menos 40 segundos e a emissão atingiu um pico de energia de cerca de 12 MeV (milhões de elétrons-volt). Para comparação, a energia da luz visível varia entre 2 e 3 elétrons-volt. 

Então, o que é que produziu esta característica espetral? A equipe considera que a fonte mais provável é a aniquilação de elétrons e dos seus homólogos antimatéria, os pósitrons. Quando um elétron e um pósitron colidem, aniquilam-se, produzindo um par de raios gama com uma energia de 0,511 MeV. A matéria no jato se move quase à velocidade da luz, esta emissão sofre um grande desvio para o azul e é empurrada para energias muito mais elevadas. Se esta interpretação estiver correta, para produzir uma linha de emissão com um pico de 12 MeV, as partículas aniquiladoras deveriam estar se movendo na nossa direção a cerca de 99,9% da velocidade da luz. 

Um artigo foi publicado na revista Science

Fonte: NASA

quinta-feira, 18 de maio de 2023

Revelada a maior explosão cósmica jamais vista

Uma equipe de astrônomos liderada por pesquisadores da Universidade de Southampton descobriu a maior explosão cósmica jamais testemunhada.

© John Paice (ilustração da acreção de um buraco negro)

A explosão é mais de 10 vezes mais brilhante do que qualquer supernova conhecida. A explosão, conhecida como AT2021lwx, durou até agora mais de três anos, em comparação com a maioria das supernovas que só permanecem visivelmente brilhantes durante alguns meses. Ocorreu há quase 8 bilhões de anos, quando o Universo tinha cerca de 6 bilhões de anos, e está localizada na direção da constelação de Raposa. 

A AT2021lwx foi detectada pela primeira vez em 2020 pelo ZTF (Zwicky Transient Facility) na Califórnia e foi subsequentemente detectado pelo ATLAS (Asteroid Terrestrial-impact Last Alert System), sediado no Havaí. Estas instalações observam o céu noturno para detectar objetos transientes que mudam rapidamente de brilho, indicando eventos cósmicos como supernovas, bem como encontrando asteroides e cometas. 

Até agora, a escala da explosão era desconhecida. A equipe investigou o objeto com vários telescópios diferentes: o Observatório Neil Gehrels Swift, o NTT (New Technology Telescope) no Chile e o GTC (Gran Telescopio Canarias) em La Palma, Espanha. Os pesquisadores pensam que a explosão é o resultado de uma vasta nuvem de gás, possivelmente milhares de vezes maior do que o nosso Sol, que foi violentamente perturbada por um buraco negro supermassivo. Fragmentos da nuvem teriam sido engolidos, enviando ondas de choque através dos seus remanescentes, bem como para uma grande fração poeirenta em forma de rosquinha que rodeia o buraco negro. 

Estes eventos são muito raros e nunca antes se tinha visto nada a esta escala. No ano passado, os astrônomos testemunharam a explosão mais brilhante de que há registo, uma explosão de raios gama denominada GRB 221009A. Embora esta tenha sido mais brilhante do que AT2021lwx, durou apenas uma fração do tempo, o que significa que a energia total liberada pela explosão de AT2021lwx é muito maior. A dimensão física da explosão é cerca de 100 vezes maior do que todo o Sistema Solar e, no seu máximo brilho, foi cerca de 2 trilhões de vezes mais brilhante do que o Sol. 

As únicas coisas no Universo que são tão brilhantes como AT2021lwx são os quasares, ou seja, buracos negros supermassivos com um fluxo constante de gás caindo sobre eles a alta velocidade. Existem diferentes teorias sobre o que poderia ter causado tal explosão, mas considera-se que a explicação mais viável é uma nuvem extremamente grande de hidrogênio gasoso ou poeira que se desviou da sua órbita em torno do buraco negro supermassivo e que foi puxada para o centro do sistema.

A equipe está agora tentando recolher mais dados sobre a explosão, observando o objeto em diferentes comprimentos de onda, incluindo raios X, que poderão revelar a temperatura do objeto e os processos que poderão estar ocorrendo à superfície. Também vão efetuar simulações computacionais atualizadas para testar se estas correspondem à sua teoria sobre o que provocou a explosão.

Com novas instalações, como o LSST (Legacy Survey of Space and Time) do Observatório Vera Rubin entrando em funcionamento nos próximos anos, espera-se descobrir mais eventos como este e aprender mais sobre eles. É possível que estes acontecimentos, embora extremamente raros, sejam tão energéticos que são fundamentais da forma como os centros galácticos mudam ao longo do tempo. Uma vez conhecida a distância ao objeto e quão brilhante parece ser, é possível calcular o brilho do objeto na sua origem. Depois de efetuar estes cálculos, percebeu-se que este objeto é extremamente brilhante. 

Com um quasar, nota-se o brilho oscilando para cima e para baixo ao longo do tempo. Mas olhando para trás, ao longo de uma década, não foi detectado AT2021lwx e, de repente, apareceu como uma das coisas mais luminosas do Universo!

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Institute of Space Sciences

sábado, 21 de janeiro de 2023

Estrelas de nêutrons hipermassivas de vida curta

Se você pudesse congelar um filme de duas estrelas de nêutrons colidindo uma com a outra, logo após a colisão, você testemunharia a formação de um objeto tão massivo e denso que não deveria existir: as estrelas se fundiriam momentaneamente em uma única estrela de nêutrons que está girando tão rápido que pode se manter brevemente contra o colapso, desafiando a gravidade.

© M. Garlick (estrelas de nêutrons se colidindo)

Apenas alguns quadros depois, no entanto, a estrela desapareceria, sugada para dentro de si mesma e substituída por um buraco negro. Infelizmente, os astrônomos têm maneiras limitadas de estudar estes objetos, chamados de estrelas de nêutrons hipermassivas (HMNSs). Isto porque, embora as estrelas de nêutrons emitam ondas gravitacionais – ondulações no tecido do espaço-tempo – à medida que se aproximam uma da outra, os detectores de corrente não são sensíveis às frequências emitidas pelo próprio HMNS. 

Mas agora, os astrônomos podem ter encontrado outro caminho para entender as estrelas de nêutrons hipermassivas. De acordo com um novo estudo, algumas HMNSs emitem rajadas curtas de raios gama durante seus estertores de morte. 

E quando os pesquisadores liderados por Cecilia Chirenti, da Universidade de Maryland em College Park, analisaram 700 rajadas curtas de raios gama (GRBs), encontraram alguns casos em que os sinais não eram puramente ruído. Em vez disso, estes GRBs tinham frequências características mais fortes do que outras, uma assinatura consistente com uma estrela de nêutrons hipermassiva, que possui a rotação mais rápida conhecida entre as estrelas. 

As estrelas de nêutrons são os objetos mais densos que podem existir, exceto os buracos negrosElas são os restos de estrelas tão massivas que explodem no final de suas vidas como supernovas, que imediatamente colapsam em buracos negros. Dado que a maioria das estrelas do Universo está em sistemas estelares binários ou múltiplos, não raramente, um par de estrelas binárias pode terminar suas vidas como estrelas de nêutrons. E com o tempo, elas podem espiralar uma em direção a outra e colidir. Quando estas colisões catastróficas ocorrem, elas emitem raios gama que podem ser detectados por telescópios depois de viajar por bilhões de anos. 

As fusões estelares também produzem ondas gravitacionais, algumas das quais podem ser detectadas por instalações como o Laser Interferometer Gravitational-wave Observatory (LIGO) nos EUA e Virgo na Europa. Com base nestas observações, os cientistas atualmente acreditam que, se a estrela de nêutrons resultante for mais massiva do que aproximadamente 2,2 vezes a massa do Sol, ela entrará em colapso gerando um buraco negro. Se não for muito massiva, uma estrela de nêutrons pode sobreviver, mas apenas por uma fração de segundo.

Para tentar obter mais informações sobre estas estrelas de vida curta, Chirenti e sua equipe observaram que os modelos de computador preveem que o brilho dos raios gama de uma HMNS pode piscar alguns milhares de vezes por segundo. Portanto, ao determinar a taxa precisa desta oscilação, os astrônomos poderiam obter informações sobre o tamanho e a taxa de rotação da HMNS. Mas até o momento, nenhuma destas oscilações de raios gama foi identificada.

Assim, os astrônomos vasculharam dados de arquivo de três observatórios de raios gama baseados no espaço da NASA: o Fermi Gamma-Ray Space Telescope e o Neil Gehrels Swift Observatory (ambos em operação hoje), bem como o Compton Gamma Ray Observatory. 

Uma estrela de nêutrons hipermassiva produz oscilações quase periódicas (QPOs), significando que, em vez de piscar uniformemente em uma única frequência, há uma varredura de frequências centradas em torno das frequências de pico. Isto pode ser comparado à audição de um diapasão emitindo uma única frequência limpa em relação à uma orquestra afinando seus instrumentos antes de um concerto. Nem tudo está totalmente afinado, mas você ainda pode distinguir alguns tons mais fortes do que outros.

Dos mais de 700 eventos analisados, a equipe encontrou QPOs em dois deles, designados GRB 910711 e GRB 931101B. Ambos foram detectados pelo Compton, que a NASA operou durante a década de 1990 e saiu de órbita em 2000. Apesar da idade de Compton, para este estudo, era um instrumento incrível por causa de sua grande área de detecção e grande capacidade de temporização. Sua análise descobriu que as oscilações mais fortes estavam em uma frequência de aproximadamente 2.600 Hz. De acordo com as simulações, isto sugere que o HMNS responsável está girando pelo menos 1.300 vezes por segundo.

No entanto, esta taxa de rotação é apenas um limite inferior: assim como a luz é desviada para o vermelho pela expansão do Universo, a frequência da oscilação quase periódica pode ter sido maior originalmente. Mas mesmo que estivesse muito próximo, o HMNS ainda estaria girando quase duas vezes mais rápido que o pulsar mais rápido conhecido, uma classe de estrelas de nêutrons girando rapidamente.

Espera-se que, até a década de 2030, detectores de ondas gravitacionais mais avançados sejam capazes de estudar as ondulações do espaço-tempo produzidas por estrelas de nêutrons hipermassivas, enquanto no momento os pesquisadores continuaram procurando por elas em raios gama. 

O novo estudo foi publicado na revista Nature.

Fonte: Astronomy

sábado, 10 de dezembro de 2022

Telescópios examinam uma explosão cósmica revolucionária

No dia 11 de dezembro de 2021, o Observatório Neil Gehrels Swift e o telescópio espacial Fermi detectaram uma explosão de luz altamente energética proveniente dos arredores de uma galáxia a cerca de um bilhão de anos-luz.

© NASA (ilustração de duas estrelas de nêutrons em fusão)

O evento fez estremecer a compreensão dos cientistas sobre as explosões de raios gama (ou GRBs, "gamma-ray bursts" em inglês), os eventos mais poderosos do Universo. Ao longo das últimas décadas, os astrônomos têm geralmente dividido os GRBs em duas categorias. As explosões longas emitem raios gama durante dois segundos ou mais e têm origem na formação de objetos densos como buracos negros nos centros de estrelas massivas em colapso. As explosões curtas emitem raios gama durante menos de dois segundos e são provocadas pela fusão de objetos densos, como estrelas de nêutrons. 

Os cientistas observam por vezes explosões curtas a que se segue um surto de luz visível e infravermelha chamada quilonova. Esta explosão, denominada GRB 211211A, foi uma mudança de paradigma, uma vez que é a primeira explosão de raios gama de longa duração que tem origem numa fusão de estrelas de nêutrons. A explosão altamente energética durou cerca de um minuto e as observações de acompanhamento levaram à identificação de uma quilonova. 

Esta descoberta tem profundas implicações na origem dos elementos pesados do Universo. Uma explosão de raios gama clássica começa com duas estrelas de nêutrons em órbita, os remanescentes esmagados de estrelas massivas que explodiram como supernovas. À medida que as estrelas se orbitam cada vez mais intimamente, roubam material rico em nêutrons uma da outra. Também produzem ondas gravitacionais, ou ondulações no espaço-tempo, embora nenhuma tenha sido detectada a partir deste evento.

Eventualmente, as estrelas de nêutrons colidem e fundem-se, criando uma nuvem de detritos quentes que emite luz em vários comprimentos de onda. É provável que jatos de partículas velozes, lançadas pela fusão, produzem o surto inicial de raios gama antes de colidirem com os destroços. O calor gerado pela decomposição radioativa dos elementos nos detritos, ricos em nêutrons, cria provavelmente a luz visível e infravermelha da quilonova. Este decaimento resulta na produção de elementos pesados como ouro e platina.

O Fermi e o Swift detectaram a explosão simultaneamente, e o Swift foi capaz de identificar rapidamente a sua localização na direção da constelação de Boieiro, permitindo com que outras instalações respondessem rapidamente com observações de acompanhamento. As suas observações forneceram o olhar mais precoce, até agora, das primeiras fases de uma quilonova. 

Muitos grupos de investigação aprofundaram as observações recolhidas pelo Swift, pelo Fermi, pelo telescópio espacial Hubble e por outros. Alguns sugeriram que as complexidades da explosão podem ser explicadas pela fusão de uma estrela de nêutrons com outro objeto massivo, como um buraco negro. 

O evento também foi relativamente próximo, tendo em conta os padrões dos GRBs, o que pode ter permitido aos telescópios captar a luz mais fraca da quilonova. Talvez alguns surtos mais longos e distantes pudessem também produzir quilonovas, mas não foi possível observá-las. A luz que se seguiu à explosão, chamada emissão remanescente, também exibiu características incomuns. 

O Fermi detectou raios gama altamente energéticos que começaram 1,5 horas após a explosão e duraram mais de 2 horas. Estes raios gama atingiram energias até um bilhão de eV (elétrons-volt). Em comparação, a energia da luz visível mede entre cerca de 2 a 3 eV.

As fusões entre estrelas de nêutrons são uma das principais fontes dos elementos pesados do Universo. Isto pode ser estimado pela taxa de explosões curtas que se pensa ocorrerem em todo o cosmos. Agora também terão de ser consideradas as explosões longas nos seus cálculos. 

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Gemini Observatory

sábado, 22 de outubro de 2022

A recente explosão de raios gama

A explosão de raios gama GRB 221009A provavelmente sinaliza o nascimento de um novo buraco negro, formado no núcleo de uma estrela em colapso há muito tempo no Universo distante.

© Fermi (GRB 221009A)

A explosão extremamente poderosa é retratada através de dados do telescópio espacial de raios gama Fermi. O telescópio Fermi captou os dados em energias de raios gama, detectando fótons com mais de 100 milhões de elétron-volts. Em comparação, os fótons de luz visível têm energias de cerca de 2 elétron-volts. 

Um brilho de raios gama constante e de alta energia no plano da galáxia Via Láctea percorre diagonalmente a imagem de 20 graus à esquerda, enquanto o flash de raios gama transitório da GRB 221009A aparece no centro e depois desaparece. 

Uma das explosões de raios gama mais brilhantes já detectadas GRB 221009A também está próxima no que diz respeito às explosões de raios gama, mas ainda está a cerca de 2 bilhões de anos-luz de distância. 

Na órbita baixa da Terra, o Fermi's Large Area Telescope registrou fótons de raios gama da explosão por mais de 10 horas, enquanto a radiação de alta energia da GRB 221009A varreu o planeta Terra no dia 9 de outubro deste ano.

Fonte: NASA

sexta-feira, 12 de agosto de 2022

Fusão explosiva captada em comprimentos de onda milimétricos

Recorrendo ao ALMA (Atacama Large Millimeter/submillimeter Array), os cientistas registaram pela primeira vez radiação milimétrica proveniente de uma explosão provocada pela fusão de uma estrela de nêutrons com outra estrela.

© ESO / M. Weiss (ilustração da fusão de estrela de nêutrons com outra estrela)

A equipe também confirmou este flash de luz como uma das explosões de raios gama de curta duração mais energéticas, deixando para trás dos brilhos remanescentes ultravioleta mais luminosos alguma vez registados. 

 As explosões de raios gama ("gamma-ray burst", ou GRB) são as explosões mais brilhantes e energéticas do Universo, capazes de emitir mais energia numa questão de segundos do que o nosso Sol emitirá durante toda a sua vida. 

A GRB 211106A pertence a uma subclasse de GRBs conhecida como explosões de raios gama de curta duração. Estas explosões são responsáveis pela criação dos elementos mais pesados do Universo, como a platina e o ouro, e resultam da fusão catastrófica de sistemas binários contendo uma estrela de nêutrons. Estas fusões ocorrem devido à radiação de ondas gravitacionais, que removem energia da órbita das estrelas binárias, fazendo com que as estrelas espiralem uma em direção à outra. A explosão resultante é acompanhada por jatos que se movem a uma velocidade próxima da velocidade da luz. Quando um destes jatos aponta na direção da Terra, observamos um curto pulso de raios gama ou um GRB de curta duração. 

Um GRB de curta duração geralmente dura apenas alguns décimos de segundo. Os cientistas procuram então um brilho remanescente, uma emissão de radiação provocada pela interação dos jatos com o gás circundante. Mesmo assim, são difíceis de detectar; apenas meia-dúzia de GRBs de curta duração foram detectados no rádio, e até agora nenhum tinha sido detectado em comprimentos de onda milimétricos.

Os brilhos remanescentes dos GRBs de curta duração são muito luminosos e energéticos. Mas estas explosões ocorrem em galáxias distantes, o que significa que a luz delas proveniente pode ser bastante tênue para os telescópios na Terra. Antes do ALMA, os telescópios milimétricos não eram suficientemente sensíveis para a detecção destes brilhos remanescentes. 

Tendo ocorrido quando o Universo tinha apenas 40% da sua idade atual, a GRB 211106A não é exceção. A luz desta explosão de raios gama de curta duração foi tão fraca que, apesar das primeiras observações de raios X com o Observatório Neil Gehrels Swift da NASA registrarem a explosão, a galáxia hospedeira era indetectável naquele comprimento de onda e não foi possível determinar exatamente a origem da explosão.

Uma quantidade significativa de poeira na área também obscurecia o objeto da detecção em observações ópticas com o telescópio espacial Hubble. Cada comprimento de onda acrescentou uma nova dimensão à compreensão dos cientistas deste GRB, e o milímetro, em particular, foi fundamental para desvendar melhor sobre a explosão. As observações do Hubble revelaram um campo imutável de galáxias. A sensibilidade inigualável do ALMA permitiu identificar com mais precisão a localização do GRB neste campo e acabou por ter origem em outra galáxia tênue, que se encontra mais longe. Isto, por sua vez, significa que esta explosão de raios gama de curta duração é ainda mais poderosa, tornando-a uma das mais luminosas e energéticas de que há registo. 

Com o telescópio espacial James Webb será possível obter um espectro da galáxia hospedeira e conhecer facilmente a distância e, no futuro, também poderá captar os brilhos remanescentes infravermelhos e estudar a sua composição. Com a nova geração do VLA, será possível estudar a estrutura geométrica dos brilhos remanescentes e o combustível de formação estelar encontrado nos seus ambientes hospedeiros com um detalhe sem precedentes.

Os resultados serão publicados numa edição futura do periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

domingo, 31 de julho de 2022

Telescópios ajudam a descobrir as origens de GRBs náufragos

Uma série de explosões de raios gama (GRB - gamma-ray burst) aparecem como flashes solitários altamente energéticos longe de qualquer local galáctico óbvio, levantando questões sobre as suas verdadeiras origens e distâncias.


© NOIRLab (fusão de duas estrelas de nêutrons gerando GRB)

Utilizando dados de alguns dos telescópios mais poderosos da Terra e no espaço, incluindo o Observatório W. M. Keck, o Gemini North em Maunakea, Havaí e o telescópio Gemini South no Chile, os astrônomos podem finalmente ter encontrado as suas verdadeiras origens, uma população de galáxias distantes a quase 10 bilhões de anos-luz de distância.

Uma equipe internacional de astrônomos descobriu que certos GRBs curtos não tiveram origem como náufragos na vastidão do espaço intergaláctico, tal como inicialmente apareceram. Um estudo mais profundo, recorrendo a vários observatórios, descobriu ao invés que estes GRBs isolados ocorreram em galáxias notavelmente distantes.

Esta descoberta sugere que os GRBs curtos, que se formam durante as colisões de estrelas de nêutrons, podem ter sido mais comuns no passado do que o esperado. Dado que as fusões de estrelas de nêutrons formam elementos pesados, incluindo ouro e platina, o Universo pode ter sido semeado com metais preciosos mais cedo do que se esperava também. 

Outros observatórios envolvidos nesta pesquisa incluem o telescópio espacial Hubble, o LDT (Lowell Discovery Telescope) no Arizona, o GTC (Gran Telescopio Canarias) na Espanha e o VLT (Very Large Telescope) do ESO no Chile. 

Os pesquisadores começaram a sua busca analisando dados de 120 GRBs captados por dois instrumentos a bordo do Observatório Neil Gehrels Swift da NASA: o BAT (Burst Alert Telescope), que sinalizou que tinha sido detectada uma explosão; e o XRT (X-ray Telescope), que identificou a localização geral do brilho de raios X do GRB. 

Estudos adicionais do seu brilho remanescente, feitos com o Observatório Lowell, identificaram com maior precisão a localização dos GRBs. Os estudos posteriores descobriram que 43 dos GRBs curtos não estavam associados a nenhuma galáxia conhecida e apareceram no espaço comparativamente vazio entre as galáxias. 

Uma hipótese deste isolamento era que as estrelas de nêutrons progenitoras se formaram como um par binário dentro de uma galáxia distante, entraram à deriva no espaço intergaláctico e eventualmente se fundiram bilhões de anos mais tarde. A outra hipótese era que as estrelas de nêutrons se fundiram a muitos bilhões de anos-luz de distância nas suas galáxias hospedeiras, que agora aparecem extremamente fracas devido à sua vasta distância da Terra. Os astrônomos acham que este segundo cenário era o mais plausível para explicar uma grande fração de eventos sem galáxia hospedeira.

Este resultado pode ajudar os astrônomos a melhor compreender a evolução química do Universo. A fusão de estrelas de nêutrons desencadeia uma série de reações nucleares em cascata que são necessárias para produzir metais pesados, como ouro, platina e tório. A redução da escala de tempo cósmico na fusão de estrelas de nêutrons significa que o jovem Universo era muito mais rico em elementos pesados do que se pensava anteriormente.

O estudo foi aceito para publicação no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Gemini Observatory

segunda-feira, 2 de agosto de 2021

Descoberta erupção de raios gama mais curta abastecida por supernova

Os astrônomos descobriram o GRB (Gamma-Ray Burst) mais curto provocado pela implosão de uma estrela massiva.

© M. Zamani (estrela em colapso produzindo dois jatos GRB curtos)

Usando o Observatório Gemini, um programa do NOIRLab, os astrônomos identificaram a causa deste surto de raios gama de 0,6 segundos como uma explosão de supernova numa galáxia distante. Os GRBs provocados por supernovas têm geralmente mais do dobro da duração, o que sugere que alguns GRBs curtos podem ser produzidos por supernovas.

Os GRBs estão entre os eventos mais brilhantes e energéticos do Universo. Os GRBssão divididos em duas grandes categorias com base na sua duração. Os GRBs curtos ganham vida em menos de dois segundos e pensa-se que sejam provocados pela fusão de estrelas de nêutrons binárias. Os GRBs longos têm sido associados a explosões de supernova provocadas pela implosão de estrelas massivas.

Este e alguns outros GRBs associados a supernovas estão parecendo curtos porque os jatos de raios gama que emergem dos polos da estrela em colapso não são fortes o suficiente para escapar completamente da estrela, e que outras estrelas colapsantes têm jatos tão fracos que nem produzem GRBs. 

Esta descoberta também pode ajudar a explicar um mistério astronômico. Os GRBs longos estão associados a um tipo específico de supernova, de Tipo Ic-BL. No entanto, os astrônomos observam muitas mais destas supernovas do que GRBs longos. Esta descoberta do GRB mais curto associado a uma supernova sugere que alguns destes GRBs desencadeados por uma supernova estão se mascararando como GRBs curtos que se pensa serem criados pelas fusões de estrelas de nêutrons e, portanto, não estão sendo contados como do tipo supernova.

A equipe foi capaz de determinar que este GRB, identificado como GRB 200826A, teve origem numa explosão de supernova graças às capacidades do instrumento GMOS (Gemini Multi-Object Spectrograph) do Gemini North no Havaí. Os pesquisadores usaram o Gemini North para obter imagens da galáxia hospedeira do GRB por uma rede de observatórios que incluía o telescópio espacial de raios gama Fermi da NASA. 

As observações do Gemini permitiram detetar o aumento revelador de energia que assinala uma explosão, apesar da localização da explosão numa galáxia a 6,6 bilhões de anos-luz de distância. 

Este resultado mostra que classificar GRBs com base apenas na sua duração pode não ser a melhor abordagem, e que são necessárias observações adicionais para determinar a causa de um GRB. 

A instrumentação dedicada, a ser implementada na próxima década, manterá a liderança do Gemini no acompanhamento destes eventos cósmicos inspiradores.

Fonte: Gemini Observatory