Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens
Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens

sábado, 15 de novembro de 2025

Misteriosa fusão "impossível" de dois enormes buracos negros

Em 2023, os astrônomos detectaram uma enorme colisão. Dois buracos negros de uma massa sem precedentes tinham chocado um com o outro a uma distância estimada de 7 bilhões de anos-luz.

© Simons Foundation (simulação da formação e evolução de um buraco negro)

As enormes massas e as rotações extremas dos buracos negros intrigaram os astrônomos. Não era suposto existirem buracos negros como estes. Agora, astrônomos do CCA (Center for Computational Astrophysics) do Instituto Flatiron e colegas descobriram como é que estes buracos negros se podem ter formado e colidido.

As simulações exaustivas, que seguem o sistema desde a vida das estrelas progenitoras até à sua morte final, revelaram a peça que faltava e que os estudos anteriores tinham ignorado: os campos magnéticos.

A colisão detectada em 2023, agora conhecida como GW231123, foi observada pela colaboração LIGO-Virgo-KAGRA usando detectores que medem ondas gravitacionais, as ondulações no espaço-tempo causadas pelos movimentos de objetos massivos. No momento, os astrônomos não conseguiam perceber como é que estes grandes buracos negros de rotação rápida podiam existir.

Quando as estrelas massivas chegam ao fim das suas vidas, muitas colapsam e explodem como supernovas, deixando para trás um buraco negro. Mas se a estrela estiver dentro de uma determinada gama de massas, ocorre um tipo especial de supernova. Esta explosão, chamada supernova por instabilidade de pares, é tão violenta que a estrela é aniquilada, não deixando nada para trás. Como resultado destas supernovas, não esperamos que se formem buracos negros entre 70 e 140 vezes a massa do Sol. Por isso, foi intrigante ver buracos negros com massas dentro deste intervalo.

Os buracos negros com estas massas podem ser formados indiretamente, quando dois buracos negros se fundem para formar um buraco negro maior, mas no caso de GW231123, os cientistas pensaram que isso era improvável. A fusão de buracos negros é um acontecimento tremendamente caótico que frequentemente perturba a rotação do buraco negro resultante. Os buracos negros de GW231123 são os de rotação mais rápida já observados pelo LIGO, arrastando o espaço-tempo à sua volta quase à velocidade da luz. Dois buracos negros destas dimensões e com estas rotações são incrivelmente improváveis, pois algo mais deveria estar acontecendo. 

Os pesquisadores realizaram duas fases de simulações computacionais. Primeiro, simularam uma estrela gigante com 250 vezes a massa do Sol durante a fase principal da sua vida, desde que começa a queimar hidrogênio até ao momento em que este se esgota e depois colapsa como supernova. Quando uma estrela tão massiva atinge a fase de supernova, já queimou combustível suficiente para ficar com uma massa 150 vezes superior à do Sol, o que a deixa ligeiramente acima da gama de massas e suficientemente grande para deixar um buraco negro. Um segundo conjunto de simulações mais complexas, que tiveram em conta os campos magnéticos, lidou com as consequências da supernova. O modelo começou com os remanescentes de supernova, uma nuvem de detritos de material estelar com campos magnéticos e um buraco negro no seu centro. 

Anteriormente, os astrônomos supunham que toda a massa da nuvem cairia no buraco negro recém-nascido, fazendo com que a massa final do buraco negro coincidisse com a da estrela massiva. Mas as simulações mostraram algo diferente. Depois de uma estrela não giratória colapsar para formar um buraco negro, a nuvem remanescente de detritos cai rapidamente para o buraco negro. No entanto, se a estrela inicial estiver girando rapidamente, esta nuvem forma um disco giratório que faz com que o buraco negro gire cada vez mais depressa à medida que o material cai no seu abismo. 

Se existirem campos magnéticos, estes exercem pressão sobre o disco de detritos. Esta pressão é suficientemente forte para ejetar algum do material para longe do buraco negro quase à velocidade da luz. Estes fluxos acabam por reduzir a quantidade de material no disco que eventualmente alimenta o buraco negro. Quanto mais fortes forem os campos magnéticos, maior será este efeito. Em casos extremos, com campos magnéticos muito fortes, até metade da massa original da estrela pode ser expelida. No caso das simulações, os campos magnéticos acabaram por permitir a formação de um buraco negro final na improvável gama de massas.

Os resultados sugerem uma ligação entre a massa de um buraco negro e a velocidade a que gira. Campos magnéticos fortes podem abrandar um buraco negro e expulsar alguma da massa estelar, criando buracos negros mais leves e de rotação mais lenta. Campos mais fracos permitem buracos negros mais massivos e de rotação mais rápida. Isto sugere que os buracos negros podem seguir um padrão que liga a sua massa e rotação. Embora os astrónomos não conheçam outros sistemas de buracos negros em que esta ligação possa ser testada observacionalmente, esperam que observações futuras possam encontrar mais sistemas que confirmem tal ligação.

As simulações também mostram que a formação deste tipo de buracos negros cria explosões de raios gama, que podem ser observáveis. A procura destas assinaturas de raios gama ajudaria a confirmar o processo de formação proposto e revelaria a frequência destes buracos negros massivos no Universo.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Simons Foundation

sexta-feira, 7 de novembro de 2025

A maior e mais distante erupção de um buraco negro

As estrelas mais massivas do Universo estão destinadas a explodir como supernovas brilhantes antes de colapsarem em buracos negros.

© Caltech (buraco negro dilacerando uma estrela massiva)

No entanto, uma estrela enorme parece nunca ter cumprido o seu destino; em jeito de ironia, a estrela aproximou-se demasiado de um buraco negro gigantesco, que a engoliu, desfazendo-a em pedaços.

Esta é a explicação mais provável que descreve a mais poderosa e mais distante erupção energética alguma vez registada por um buraco negro supermassivo. O objeto cósmico foi observado pela primeira vez em 2018 pelo ZTF (Zwicky Transient Facility), situado no Observatório Palomar, e pelo CRTS (Catalina Real-Time Transient Survey).

O surto aumentou rapidamente de intensidade por um fator de 40 durante um período de meses e, no seu pico, foi 30 vezes mais luminoso do que qualquer outra erupção observada até à data. No seu ponto mais intenso, a erupção brilhou com a luz de 10 trilhões de sóis. O buraco negro supermassivo por detrás do evento está em acreção, a cujo tipo se dá o nome núcleo galáctico ativo (NGA). Referido como J2245+3743, estima-se que este NGA seja 500 milhões de vezes mais massivo do que o nosso Sol. Encontra-se a 10 bilhões de anos-luz de distância, no Universo remoto.

Como a luz tem uma velocidade finita e leva tempo a chegar até nós, os astrônomos observam eventos distantes como este no passado, quando o Universo era jovem. A erupção do buraco negro continua sendo monitorada, embora esta esteja desaparecendo com o tempo. Realmente, para além do objeto ser observado no passado, o próprio tempo corre mais devagar no local remoto do buraco negro, em comparação com a nossa própria experiência do tempo. Trata-se de um fenômeno chamado dilatação cosmológica do tempo, devido ao alongamento do espaço e do tempo. À medida que a luz viaja através do espaço em expansão para chegar até nós, o seu comprimento de onda estica-se, tal como o próprio tempo. Estamos assistindo à reprodução do evento a um-quarto da velocidade.

Para determinar o que poderia causar uma explosão tão dramática de luz no cosmos, os pesquisadores examinaram minuciosamente uma lista de possibilidades, concluindo que o culpado mais provável é um evento de perturbação de marés. Este fenômeno ocorre quando a gravidade de um buraco negro supermassivo rasga uma estrela que se aproxime demasiado, consumindo-a lentamente ao longo do tempo, à medida que espirala para o buraco negro.

O motivo de a erupção do buraco negro J2245+3743 ainda estar em curso indica que estamos assistindo a uma estrela que ainda não foi totalmente devorada. Se o surto for de fato um evento de perturbação de marés, os cientistas estimam que o buraco negro supermassivo devorou uma estrela com uma massa pelo menos 30 vezes superior à do nosso Sol. O anterior detentor do recorde de maior candidato a um evento de perturbação de marés, apelidado de "Scary Barbie" após a sua classificação ZTF inicial como ZTF20abrbeie, não foi tão intenso. Esse evento de perturbação de marés, que também se pensa ter tido origem num NGA, foi 30 vezes mais fraco do que o de J2245+3743, e estima-se que a sua estrela condenada tivesse entre três e 10 massas solares.

A maioria dos cerca de 100 evento de perturbação de marés observados até agora não ocorre em torno de NGAs, estruturas massivas que consistem em buracos negros supermassivos rodeados por grandes discos de material que alimentam o buraco negro central. O NGA fervilha com a acreção, o que pode mascarar as explosões de evento de perturbação de marés e torná-las mais difíceis de encontrar.

A recente supererupção J2245+3743, por outro lado, foi tão grande que até foi mais fácil de observar. No entanto, ao início, J2245+3743 não parecia ser nada de especial. Em 2018, depois de o objeto ter sido avistado pela primeira vez, os pesquisadores utilizaram o telescópio Hale de 200 polegadas do Observatório Palomar para obter um espectro da luz do objeto, mas este não revelou nada de incomum. Em 2023, a equipe notou que o surto estava decaindo mais lentamente do que o esperado, pelo que obtiveram outro espectro pelo Observatório W. M. Keck, no Havaí, que indicou o brilho extremo deste NGA em particular.

No final, depois de terem sido excluídos outros cenários, os pesquisadores concluíram que J2245+3743 era a erupção mais brilhante alguma vez registada num buraco negro. Se convertermos o nosso Sol inteiro em energia, usando a famosa fórmula de Albert Einstein E=m.c², é essa a quantidade de energia que tem saído deste surto desde que a observação foi iniciada.

Uma vez estabelecido o brilho sem precedentes do evento, a equipa analisou o que o poderia ter causado. As supernovas não são suficientemente brilhantes para explicar isto; ao invés, a explicação preferida é um buraco negro supermassivo que rasga lentamente uma estrela enorme até à morte. Estrelas tão massivas são raras, mas pensa-se que as estrelas dentro do disco de um NGA podem crescer ainda mais. A matéria do disco é despejada sobre as estrelas, fazendo-as crescer em massa.

Encontrar "refeições" de buracos negros com proporções tão grandes indica que é provável que outros eventos como este estejam ocorrendo no cosmos. Os pesquisadores esperam poder explorar mais dados do ZTF para encontrar outros e o Observatório Vera C. Rubin pode também encontrar evento de perturbação de marés incomumente grandes.

Um artigo foi publicado no periódico Nature Astronomy.

Fonte: California Institute of Technology

sexta-feira, 31 de outubro de 2025

A evolução de um par de fusões distintas de buracos negros

As fusões contribuem para a compreensão científica da natureza da formação dos buracos negros e da física fundamental.

© OzGrav (ilustração de um par de buracos negros)

Um par de fusões de buracos negros cósmicos distantes, medidas com apenas um mês de diferença no final de 2024 pela colaboração LIGO-Virgo-KAGRA, está melhorando a forma como os cientistas compreendem a natureza e a evolução das mais violentas colisões do espaço profundo no nosso Universo.

Os dados recolhidos a partir das fusões também validam, com uma precisão sem precedentes, leis fundamentais da física que foram previstas há mais de 100 anos por Albert Einstein e promovem a procura de novas e ainda desconhecidas partículas elementares com potencial para extrair energia dos buracos negros.

A primeira fusão detectada, GW241011, ocorreu a cerca de 700 milhões de anos-luz de distância e resultou da colisão de dois buracos negros com cerca de 20 e 6 vezes a massa do Sol. O maior dos buracos negros de GW241011 foi avaliado como um dos buracos negros de rotação mais rápida observados até à data. A segunda fusão, GW241110, ocorreu a cerca de 2,4 bilhões de anos-luz de distância e envolveu buracos negros com cerca de 17 e 8 vezes a massa do Sol.

Enquanto a maioria dos buracos negros observados gira na mesma direção que a sua órbita, o buraco negro primário de GW241110 girava na direção oposta à da sua órbita, um caso inédito. Curiosamente, ambas as fusões detectadas apontam para a possibilidade de se tratarem de buracos negros de "segunda geração". 

Com ambos os eventos possuirem um buraco negro significativamente mais massivo do que o outro e girando rapidamente, fornecem evidências tentadoras de que estes buracos negros se formaram a partir de anteriores fusões de buracos negros. Este processo, designado por fusão hierárquica, sugere que estes sistemas se formaram em ambientes densos, em regiões como aglomerados de estrelas, onde é mais provável que os buracos negros se cruzem e se fundam uma e outra vez.

Estas duas fusões de buracos negros binários fornecem alguns dos conhecimentos mais interessantes acerca do início da vida dos buracos negros. Mostra que alguns buracos negros não existem apenas como parceiros isolados, mas provavelmente como membros de uma multidão densa e dinâmica. No futuro, a esperança é que estes eventos e outras observações nos ensinem cada vez mais sobre os ambientes astrofísicos que acolhem estas populações.

A precisão com que GW241011 foi medida também permitiu que as previsões fundamentais da teoria da relatividade geral de Einstein fossem testadas em condições extremas. A equipe encontrou uma excelente concordância com a solução de Kerr e verificou a previsão de Einstein com uma precisão sem precedentes. A solução de Kerr descreve a geometria do espaço-tempo ao redor de um buraco negro massivo e em rotação, sem carga elétrica, sendo uma solução exata para as equações de campo da relatividade geral. Ela introduz a noção de um buraco negro com momento angular (spin), que tem simetria axial e possui uma região chamada ergosfera, onde o espaço-tempo é arrastado pela rotação do buraco negro. 

A descoberta recente teve ainda outra aplicação na física de partículas. A observação de que o buraco negro massivo do sistema binário que produziu GW241011 continua girando rapidamente, mesmo milhões ou bilhões de anos após a sua formação, exclui uma vasta gama de massas de bósons ultraleves previstas por algumas extensões do Modelo Padrão da física de partículas.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Max Planck Institute for Gravitational Physics

quinta-feira, 23 de outubro de 2025

Sinais de rádio de um buraco negro destruindo uma estrela

Astrônomos descobriram o primeiro evento de perturbação de marés que ocorre fora do centro de uma galáxia.

© NRAO (erupções de rádio lançadas por buraco um negro)

O evento, designado AT2024tvd, revelou os sinais de rádio de evolução mais rápida alguma vez observados neste tipo de catástrofe cósmica. A descoberta, liderada por pesquisadores da Universidade da Califórnia, Berkeley, representa um grande avanço na compreensão da forma como buracos negros massivos se podem esconder em locais inesperados do Universo.

Os eventos de perturbação de marés ocorrem quando uma estrela se aventura demasiado perto de um buraco negro massivo e é despedaçada pelas imensas forças gravitacionais do buraco negro. Embora estes eventos ocorram tipicamente nos centros das galáxias onde residem buracos negros supermassivos, AT2024tvd foi descoberto a cerca de 0,8 kiloparsecs (cerca de 2.600 anos-luz) de distância do centro da sua galáxia hospedeira.

A campanha de monitoramento na frequência rádio, que incluiu comprimentos de onda do centímetro ao milímetro, revelou características sem precedentes. O evento mostrou duas erupções rádio distintas com escalas de tempo de evolução muito superiores a tudo o que foi observado anteriormente em eventos de perturbação de marés.

A primeira erupção subiu pelo menos tão rápido quanto t9 (onde t é o tempo desde a descoberta óptica) e declinou como t6, enquanto a segunda erupção exibiu um aumento inicial de t18 e declínio de t12. A emissão rádio de AT2024tvd evolui tão rapidamente que se destaca mesmo entre os eventos cósmicos mais extremos conhecidos.

A descoberta utilizou uma extensa rede de radiotelescópios, incluindo o VLA (Very Large Array) e o ALMA (Atacama Large Millimeter/submillimeter Array), o AMI-LA (Arcminute Microkelvin Imager Large Array), o ATA (Allen Telescope Array) e o SMA (Submillimeter Array). Esta abordagem multitelescópica permitiu seguir a evolução do evento através de uma vasta gama de frequências de rádio durante aproximadamente 300 dias. A investigação sugere que a rápida evolução rádio resulta de pelo menos um, e possivelmente dois, fluxos lançados significativamente após a perturbação estelar inicial.

A análise da equipe indica que estes fluxos foram provavelmente lançados 80 e 170 dias após a descoberta óptica, desafiando os modelos tradicionais de como se desenrolam os eventos de perturbação de marés. A única razão pela qual foi possível detectar este buraco negro errante é porque ele dilacerou uma estrela e produziu estes sinais de rádio incrivelmente brilhantes.

A posição não nuclear deste evento de perturbação de maré fornece informações cruciais sobre a população de buracos negros massivos que podem estar vagando pelas galáxias ou a retrair-se de interações passadas. As teorias atuais sugerem que tais buracos negros podem resultar de interações de buracos negros triplos ou ser remanescentes de fusões de galáxias.

A sofisticada análise marca também a primeira vez que tanto a absorção livre-livre como o arrefecimento por Compton inverso foram considerados em conjunto na modelação da emissão de rádio de um evento de perturbação de maré, fornecendo novas ferramentas para compreender estes eventos extremos.

Com os próximos levantamentos do céu, poderemos descobrir que estes eventos de perturbação de marés não nucleares são mais comuns do que pensávamos. A pesquisa também revelou uma potencial ligação entre o lançamento de fluxos emissores de rádio e alterações na emissão de raios X do evento, sugerindo uma ligação a processos de acreção em torno do buraco negro. O AT2024tvd foi inicialmente descoberto pelo ZTF (Zwicky Transient Facility) no dia 25 de agosto de 2024, em comprimentos de onda ópticos, antes de observações de seguimento revelarem o seu brilho no rádio e a sua natureza não nuclear.

Os resultados foram publicados no periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

quarta-feira, 15 de outubro de 2025

Buraco negro sendo alimentado por matéria

Esta imagem permite-nos ver mais de perto como é que os buracos negros situados no centro das galáxias se alimentam.

© ALMA (galáxia Circinus)

Apesar de ser uma crença bastante comum, a ideia de que os buracos negros simplesmente sugam tudo o que se aproxima deles não é correta. A matéria apenas pode cair num buraco negro quando é, de alguma forma, desacelerada.

Assim, que tipo de fenômeno poderá ser responsável por travar o movimento da matéria, fazendo com que esta possa cair no buraco negro?

Para dar resposta a esta questão, uma equipe de astrônomos da Universidade de Leiden, Países Baixos, mapeou a distribuição do gás molecular na galáxia Circinus, situada na constelação austral de Circinus a cerca de 13 milhões de anos-luz de distância da Terra. Embora seja uma das grandes galáxias mais próximas, só foi descoberta em 1977 por estar escondida atrás do disco da Via Láctea.

Podemos ver esta galáxia no visível no canto superior esquerdo da imagem. As duas outras imagens inseridas, à direita e em baixo, foram obtidas com o Atacama Large Millimeter/submillimeter Array (ALMA).

O gás flui em direção ao buraco negro por dois braços em espiral existentes no disco, que vemos nas regiões mais internas da galáxia (em cima à direita). Estes braços alimentam a nuvem em forma de rosquinha que rodeia o buraco negro (em baixo).

A influência gravitacional dos braços em espiral perturba o movimento do gás molecular, que cai diretamente no buraco negro, do mesmo modo que um satélite cairia na Terra se a sua órbita fosse perturbada. O processo de alimentação é, no entanto, muito pouco eficiente: a equipe descobriu que cerca de 90% deste material acaba por não cair no buraco negro, sendo "cuspido" de volta.

Foi calculado que o gás nos braços se move para dentro a velocidades de até 150.000 km/h. Além disso, parece que apenas 12% da matéria que entra realmente desaparece no buraco negro. O restante é ejetado novamente antes de atingi-lo.

Por que tão pouca matéria chega ao buraco negro? Todos os buracos negros supermassivos têm braços espirais como este? A matéria ejetada acaba caindo de volta no buraco negro como uma fonte em um lago ou acaba mais longe e desencadeia a formação de estrelas?

Os pesquisadores esperam encontrar as respostas usando o Event Horizon Telescope (EHT), que tirou as primeiras fotos icônicas de buracos negros supermassivos, e o Extremely Large Telescope (ELT), que está em construção no Chile.

Um artigo foi aceito para publicação no periódico Astronomy & Astrophysics.

Fonte: ESO

quinta-feira, 25 de setembro de 2025

Verificando o teorema da área do buraco negro de Stephen Hawking

Em 14 de setembro de 2015, um sinal chegou à Terra, trazendo informações sobre um par de buracos negros remotos que haviam espiralado juntos e se fundido.

© LVK (ondas gravitacionais geradas pela colisão de dois buracos negros)

O sinal havia viajado cerca de 1,3 bilhão de anos para chegar até nós à velocidade da luz, mas não era feito de luz. Era um tipo diferente de sinal: uma vibração do espaço-tempo chamada ondas gravitacionais, prevista pela primeira vez por Albert Einstein 100 anos antes.

Naquele dia, 10 anos atrás, os detectores gêmeos do Observatório de Ondas Gravitacionais por Interferômetro a Laser (LIGO) fizeram a primeira detecção direta de ondas gravitacionais, sussurros no cosmos que haviam passado despercebidos até aquele momento. A descoberta histórica significava que os pesquisadores agora podiam sentir o Universo por três meios diferentes. Ondas de luz, como raios X, ondas ópticas, ondas de rádio e outros comprimentos de onda da luz, bem como partículas de alta energia chamadas raios cósmicos e neutrinos, já haviam sido captadas antes, mas esta foi a primeira vez que alguém testemunhou um evento cósmico através da deformação gravitacional do espaço-tempo.

Por esta conquista, idealizada pela primeira vez há mais de 40 anos, três dos fundadores da equipe ganharam o Prêmio Nobel de Física de 2017: Rainer Weiss, do MIT, professor emérito de Física (que faleceu recentemente aos 92 anos); Barry Barish, do Caltech, Professor Emérito de Física Ronald e Maxine Linde; e Kip Thorne, do Caltech, Professor Emérito de Física Teórica Richard P. Feynman.

Atualmente, o LIGO, que consiste em detectores em Hanford, Washington, e Livingston, Louisiana, observa rotineiramente aproximadamente uma fusão de buracos negros a cada três dias. O LIGO agora opera em coordenação com dois parceiros internacionais: o detector de ondas gravitacionais Virgo, na Itália, e o KAGRA, no Japão. Juntos, a rede de busca por ondas gravitacionais, conhecida como LVK (LIGO, Virgo, KAGRA), captou um total de cerca de 300 fusões de buracos negros, algumas das quais já confirmadas, enquanto outras aguardam análises mais aprofundadas.

Durante a atual rodada científica da rede, a quarta desde a primeira rodada em 2015, o LVK descobriu mais de 200 possíveis fusões de buracos negros, mais que o dobro do número captado nas três primeiras rodadas. O aumento drástico no número de descobertas do LVK na última década se deve a diversas melhorias em seus detectores, algumas das quais envolvem engenharia de precisão quântica de ponta. Os detectores LVK continuam sendo, de longe, as réguas mais precisas para fazer medições já criadas por humanos. As distorções do espaço-tempo induzidas por ondas gravitacionais são incrivelmente minúsculas. Por exemplo, o LIGO detecta mudanças no espaço-tempo menores que 1/10.000 da largura de um próton. Isso é 700 trilhões de vezes menor que a largura de um fio de cabelo humano.

A sensibilidade aprimorada do LIGO é exemplificada na descoberta recente de uma fusão de buracos negros, denominada GW250114 (os números indicam a data em que o sinal da onda gravitacional chegou à Terra: 14 de janeiro de 2025). O evento não foi muito diferente da primeira detecção do LIGO (chamada GW150914), ambas envolvem a colisão de buracos negros a cerca de 1,3 bilhão de anos-luz de distância, com massas entre 30 e 40 vezes a do nosso Sol. Mas, graças a 10 anos de avanços tecnológicos que reduziram o ruído instrumental, o sinal do GW250114 está dramaticamente mais claro.

Ao analisar as frequências das ondas gravitacionais emitidas pela fusão, a equipe do LVK forneceu a melhor evidência observacional captada até o momento para o que é conhecido como teorema da área do buraco negro, uma ideia proposta por Stephen Hawking em 1971 que afirma que as áreas superficiais totais dos buracos negros não podem diminuir. Quando os buracos negros se fundem, suas massas se combinam, aumentando a área superficial. Mas eles também perdem energia na forma de ondas gravitacionais. Além disso, a fusão pode fazer com que o buraco negro combinado aumente seu spin, o que o leva a ter uma área menor.

O teorema da área do buraco negro afirma que, apesar desses fatores concorrentes, a área superficial total deve aumentar de tamanho. Mais tarde, Hawking e o físico Jacob Bekenstein concluíram que a área de um buraco negro é proporcional à sua entropia, ou grau de desordem. As descobertas abriram caminho para trabalhos inovadores posteriores no campo da gravidade quântica, que busca unir dois pilares da física moderna: a relatividade geral e a física quântica. Os buracos negros iniciais tinham uma área de superfície total de 240.000 quilômetros quadrados, enquanto a área final era de cerca de 400.000 quilômetros quadrados.

Outras descobertas científicas do LVK incluem a primeira detecção de colisões entre uma estrela de nêutrons e um buraco negro; fusões assimétricas, nas quais um buraco negro é significativamente mais massivo que seu parceiro; a descoberta dos buracos negros mais leves conhecidos, desafiando a ideia de que existe uma "lacuna de massa" entre estrelas de nêutrons e buracos negros; e a fusão de buracos negros mais massiva já vista, com uma massa combinada de 225 massas solares.

Olhando para um futuro mais distante, a equipe está trabalhando em um conceito para um detector ainda maior, chamado Cosmic Explorer, que teria braços de 40 quilômetros de comprimento (os observatórios gêmeos LIGO têm braços de 4 quilômetros). Um projeto europeu, chamado Telescópio Einstein, também planeja construir um ou dois enormes interferômetros subterrâneos com braços de mais de 10 quilômetros de comprimento. Observatórios nessa escala permitiriam aos cientistas ouvir as primeiras fusões de buracos negros no Universo.

Fonte: California Institute of Technology