Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens
Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens

sexta-feira, 1 de agosto de 2025

Imagem de dois buracos negros supermassivos em fusão

Há mais de 150 anos que a galáxia OJ 287 e as suas variações de brilho, a cinco bilhões de anos-luz de distância, intrigam e fascinam os astrônomos, pois suspeitam que dois buracos negros supermassivos estejam se fundindo no núcleo.

© U. Heidelberg (galáxia OJ 287 e a fusão de dois buracos negros)

Uma equipe internacional de pesquisadores liderada pela Dra. Efthalia Traianou, da Universidade de Heidelberg, conseguiu recentemente captar uma imagem do centro da galáxia com um grande nível de detalhe. A imagem revolucionária, captada com a ajuda de um radiotelescópio espacial, mostra um segmento até agora desconhecido e fortemente curvado do jato de plasma que gira para fora do centro da galáxia. A imagem fornece novas informações sobre as condições extremas que reinam em torno de buracos negros supermassivos.

O núcleo da galáxia OJ 287 pertence à classe dos blazares, que exibem alta atividade e luminosidade impressionante. As forças motoras por trás destes núcleos galácticos ativos são os buracos negros. Eles absorvem matéria dos seus arredores e podem lançá-la na forma de jatos de plasma gigantes compostos por radiação cósmica, calor, átomos pesados e campos magnéticos. 

A imagem, que penetra profundamente no centro da galáxia, revela uma estrutura fortemente curvada e semelhante a uma fita do jato; também aponta para novas informações sobre a composição e comportamento do jato de plasma. Algumas regiões excedem temperaturas de dez trilhões Kelvin, evidência de energia e movimento extremos nas proximidades de um buraco negro.

Foi observado também a formação, propagação e colisão de uma nova onda de choque ao longo do jato e sendo atribuída a uma energia de trilhões de elétrons-volt, a partir de uma medição incomum de raios gama realizada em 2017. A imagem rádio foi obtida com um interferômetro de rádio composto por um radiotelescópio em órbita da Terra, uma antena de dez metros de diâmetro da missão RadioAstron a bordo do satélite Spektr-R, e uma rede de 27 observatórios terrestres distribuídos pela Terra.

Desta forma, os pesquisadores conseguiram criar um telescópio espacial virtual com um diâmetro cinco vezes maior do que o diâmetro da Terra; a sua alta resolução deriva da distância entre os observatórios de rádio individuais. A imagem é baseada num método de medição que aproveita a natureza ondulatória da luz e as ondas sobrepostas associadas.

A imagem interferométrica reforça a hipótese de que, no interior da galáxia OJ 287, está localizado um sistema binário de buracos negros supermassivos. Fornece também informações importantes sobre o modo como os movimentos desses buracos negros influenciam a forma e a orientação dos jatos de plasma emitidos.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Heidelberg University

Detectado tipo raro de buraco negro devorando uma estrela

O telescópio espacial Hubble e o observatório de raios X Chandra uniram-se para identificar um novo possível exemplo de uma classe rara de buracos negros. Com o nome NGC 6099 HLX-1, esta fonte brilhante de raios X parece residir num aglomerado estelar compacto situado numa galáxia elíptica gigante.

© NASA (NGC 6098, NGC 6099 e HLX-1)

Imagem, obtida pelo telescópio espacial Hubble, de um par de galáxias: NGC 6099 (em baixo à esquerda) e NGC 6098 (em cima, para a direita do centro). A mancha roxa representa a emissão de raios X de um aglomerado estelar compacto. Os raios X são produzidos por um buraco negro de massa intermediária que está destruindo uma estrela.

Apenas alguns anos após o seu lançamento em 1990, o Hubble descobriu que as galáxias em todo o Universo podem abrigar buracos negros supermassivos nos seus centros, contendo milhões ou bilhões de vezes a massa do nosso Sol. Além disso, as galáxias também contêm milhões de pequenos buracos negros com menos de 100 vezes a massa do Sol. Estes formam-se quando estrelas massivas chegam ao fim das suas vidas.

Muito mais elusivos são os buracos negros de massa intermediária, contendo algumas centenas a algumas centenas de milhares de vezes a massa do nosso Sol. Esta categoria de buracos negros, nem muito grandes nem muito pequenos, é muitas vezes invisível porque não devoram tanto gás e estrelas como os supermassivos, que emitem radiação poderosa.

Para serem encontrados, os buracos negros de massa intermediária precisam ser captados quando estiverem se alimentando. Quando ocasionalmente devoram uma infeliz estrela passageira, gerando um evento de perturbação de marés, emitem uma grande quantidade de radiação. O mais recente e provável buraco negro de massa intermediária, apanhado se alimentando, está localizado nos arredores da galáxia NGC 6099, a aproximadamente 40.000 anos-luz do centro da galáxia. A galáxia está localizada a cerca de 450 milhões de anos-luz de distância, na direção da constelação de Hércules.

Os astrônomos viram pela primeira vez uma fonte incomum de raios X numa imagem captada pelo Chandra em 2009. Em seguida, acompanharam a sua evolução com o observatório espacial XMM-Newton da ESA. Fontes de raios X com luminosidade tão extrema são raras fora dos núcleos galácticos e podem servir como uma sonda fundamental para identificar buracos negros elusivos de massa intermediária. Representam um elo crucial que faltava na evolução dos buracos negros entre os de massa estelar e os supermassivos. 

A emissão de raios X proveniente de NGC 6099 HLX-1 tem uma temperatura de 3 milhões Kelvin, consistente com um evento de perturbação de marés. O Hubble encontrou evidências de um pequeno aglomerado de estrelas em torno do buraco negro. Esse aglomerado daria ao buraco negro muito que devorar, porque as estrelas estão tão próximas umas das outras que apenas alguns meses-luz de distância as separa (cerca de 800 bilhões de quilômetros). O suspeito buraco negro de massa intermediária atingiu o brilho máximo em 2012 e depois continuou diminuindo até 2023. As observações ópticas e de raios X durante esse período não se sobrepõem, o que complica a interpretação.

O buraco negro pode ter dilacerado uma estrela capturada, criando um disco de plasma que exibe variabilidade, ou pode ter formado um disco que cintila à medida que o gás cai em direção ao buraco negro. Se o buraco negro de massa intermediária está devorando uma estrela, quanto tempo leva para engolir o seu gás?

Em 2009, HLX-1 era razoavelmente brilhante. Em 2012, ficou cerca de 100 vezes mais brilhante. E depois diminuiu novamente. Portanto, agora é necessário esperar para ver se está brilhando várias vezes, ou se houve um início, um pico e se vai diminuir até desaparecer.

Presume-se que exista um buraco negro supermassivo no núcleo da galáxia, que atualmente está inativo e não está devorando nenhuma estrela. A equipe enfatiza que fazer um levantamento dos buracos negros de massa intermediária pode revelar como os maiores buracos negros supermassivos se formam.

Existem duas teorias alternativas. Uma é que os buracos negros de massa intermediária são as sementes da formação de buracos negros ainda maiores, ao se fundirem, já que as grandes galáxias crescem ao absorver galáxias menores. O buraco negro no centro de uma galáxia também cresce durante essas fusões. As observações do Hubble revelaram uma relação proporcional: quanto mais massiva a galáxia, maior o buraco negro.

O quadro emergente com esta nova descoberta é que as galáxias podem ter "buracos negros de massa intermediária satélites" que orbitam no halo de uma galáxia, mas nem sempre caem para o centro. Outra teoria é que as nuvens de gás no meio dos halos de matéria escura no início do Universo não formam estrelas primeiro, mas simplesmente colapsam diretamente num buraco negro supermassivo.

A descoberta do telescópio espacial James Webb da NASA, de buracos negros muito distantes que são desproporcionalmente mais massivos em relação à sua galáxia hospedeira, tende a apoiar esta ideia. No entanto, pode haver um viés observacional referente à detecção de buracos negros extremamente massivos no Universo distante, porque os de tamanho menor são demasiado fracos para serem vistos. Na realidade, pode haver mais variedade na forma como o nosso Universo dinâmico constrói buracos negros.

Os buracos negros supermassivos que colapsam dentro de halos de matéria escura podem simplesmente crescer de uma forma diferente daqueles que vivem em galáxias anãs, onde a acreção dos buracos negros pode ser o mecanismo preferido de crescimento.

O desafio é que o Chandra e o XMM-Newton observam apenas uma pequena fração do céu, por isso não encontram frequentemente novos eventos de perturbação de marés nos quais os buracos negros consomem estrelas. O Observatório Vera C. Rubin, no Chile, um telescópio de observação de todo o céu, pode detectar esses eventos no visível a centenas de milhões de anos-luz de distância. Observações de acompanhamento com o Hubble e com o Webb podem revelar o aglomerado de estrelas em torno do buraco negro.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics

segunda-feira, 21 de julho de 2025

Um buraco negro de colapso direto na Galáxia do Infinito

Pesquisadores descobriram uma rara dupla de galáxias e anéis que parece abrigar um buraco negro supermassivo formado por colapso direto, um processo semelhante ao que pode ter impulsionado o crescimento dos primeiros buracos negros supermassivos no Universo.

© Hubble / JWST (Galáxia do Infinito)

Para aprender mais sobre este estranho objeto, chamado Galáxia do Infinito por sua semelhança com o símbolo do infinito, a equipe coletou dados do telescópio espacial Hubble, do telescópio Keck I, do observatório de raios-X Chandra e do Very Large Array.

O retrato em vários comprimentos de onda resultante permitiu à equipe ponderar os dois núcleos, mostrando que eles são massivos, contendo estrelas de 80 bilhões e 180 bilhões de massas solares, e extremamente compactos.

Os novos dados também revelaram que a nuvem de gás entre os núcleos contém um buraco negro de 1 milhão de massas solares. Os núcleos, os anéis e o gás entre eles parecem ser o resultado de duas galáxias de disco que se chocaram, formando um par de galáxias em anel em colisão. Para atingir a forma do símbolo do infinito, as galáxias devem ter se encontrado de frente, formando dois sistemas paralelos de núcleo e anéis que vemos de um ângulo de cerca de 40º. Quando as galáxias colidiram, parte do gás delas teria sido arrancado, ficando emaranhado no vazio entre os dois núcleos.

Isso explica os núcleos, os anéis e o gás entre eles, mas de onde surgiu o buraco negro?

É possível que a posição do buraco negro entre os dois núcleos seja simplesmente uma coincidência, seja devido a um alinhamento casual com uma galáxia não relacionada que hospeda o buraco negro, ou porque o buraco negro acabou ali após ser ejetado de uma das galáxias envolvidas na colisão, ou mesmo de outra galáxia que se fundiu com a Galáxia do Infinito.

Os pesquisadores defendem uma explicação diferente, na qual a localização do buraco negro não é coincidência. Nesse cenário, as galáxias em colisão esmagaram uma nuvem de gás entre elas com tanta força que o gás condensado colapsou diretamente em um buraco negro. Estima-se que a colisão ocorreu há 50 milhões de anos e criou um buraco negro de 300.000 massas solares que posteriormente cresceu até sua massa atual de 1 milhão de massas solares.

O colapso direto foi proposto como a fonte das sementes de buracos negros supermassivos no Universo primordial. Observações futuras poderiam esclarecer se o buraco negro está realmente associado à Galáxia do Infinito, e análises preliminares de observações de acompanhamento com o telescópio espacial James Webb (JWST) mostram exatamente isso. Com o buraco negro agora definitivamente localizado dentro da Galáxia do Infinito, as evidências de colapso direto são reforçadas, embora mais trabalho seja necessário para investigar essa possibilidade.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Sky & Telescope

sexta-feira, 18 de julho de 2025

Detectada a fusão de buracos negros mais massiva

A Colaboração LIGO-Virgo-KAGRA (LVK) detectou a fusão dos buracos negros mais massivos alguma vez observados através de ondas gravitacionais.

© Caltech (nova fusão de buracos negros)

A poderosa fusão produziu um buraco negro final com aproximadamente 225 vezes a massa do nosso Sol. O sinal, designado GW231123, foi detectado durante a quarta campanha de observação da rede LVK no dia 23 de novembro de 2023.

O LIGO (Laser Interferometer Gravitational-wave Observatory) entrou para a história em 2015 quando fez a primeira detecção direta de ondas gravitacionais, ondulações no espaço-tempo. Nesse caso, as ondas emanavam de uma fusão de buracos negros que resultou num buraco negro final com uma massa 62 vezes superior à do nosso Sol. O sinal foi detectado conjuntamente pelos detectores gêmeos do LIGO, um localizado em Livingston, no estado norte-americano do Louisiana, e o outro em Hanford, Washington.

Desde então, a equipe do LIGO juntou-se a parceiros do detector Virgo, na Itália, e do KAGRA (Kamioka Gravitational Wave Detetor), no Japão, para formar a Colaboração LVK. Estes detectores observaram coletivamente mais de 200 fusões de buracos negros na sua quarta campanha, e cerca de 300 no total desde o início da primeira em 2015.

Até agora, a fusão de buracos negros mais massiva, produzida por um evento que teve lugar em 2021 chamado GW190521, tinha uma massa total de 140 vezes a do Sol. No evento mais recente, GW231123, o buraco negro de 225 massas solares foi criado pela coalescência de buracos negros com massas aproximadamente 100 e 140 vezes superiores à do Sol. Para além das suas massas elevadas, os buracos negros estão também girando rapidamente.

Buracos negros tão massivos são proibidos pelos modelos padrão de evolução estelar. Uma possibilidade é que os dois buracos negros deste par se tenham formado através de fusões anteriores de buracos negros mais menores.

A elevada massa e a rotação extremamente rápida dos buracos negros de GW231123 empurram os limites da tecnologia de detecção de ondas gravitacionais e os modelos teóricos atuais. A extração de informação precisa do sinal exigiu a utilização de modelos que têm em conta a intrincada dinâmica dos buracos negros em alta rotação, perto do limite permitido pela teoria da relatividade geral de Albert Einstein.

Os pesquisadores continuam aperfeiçoando a sua análise e melhorando os modelos utilizados para interpretar estes fenômenos extremos. Os detectores de ondas gravitacionais, como o LIGO, o Virgo e o KAGRA, foram concebidos para medir distorções minúsculas no espaço-tempo causadas por eventos cósmicos violentos. A quarta série de observações começou em maio de 2023, e as observações adicionais da primeira metade da campanha (até janeiro de 2024) serão publicadas no final do verão.

Fonte: Max Planck Institute for Gravitational Physics

terça-feira, 27 de maio de 2025

O brilho no centro de uma galáxia espiral

O que está acontecendo no centro da galáxia espiral NGC 2566?

© Webb (NGC 2566)

Primeiro, os oito raios que parecem estar saindo do centro na imagem infravermelha apresentada não são reais, são picos de difração causados pela estrutura mecânica do próprio telescópio espacial James Webb. 

O centro da NGC 2566 é brilhante, mas não é considerado incomum, o que significa que provavelmente contém um buraco negro supermassivo, embora atualmente não muito ativo.

Localizada na constelação Puppis, a apenas 76 milhões de anos-luz de distância, a luz que vemos da NGC 2566 hoje saiu quando os dinossauros vagavam pela Terra. A pitoresca galáxia está próxima o suficiente para que telescópios terrestres, incluindo os telescópios espaciais Webb e Hubble, possam identificar as nuvens turbulentas de gás e poeira onde as estrelas podem se formar, permitindo assim o estudo da evolução estelar. 

A galáxia NGC 2566 foi descoberta em 6 de Março de 1785 por William Herschel. Ela é semelhante em tamanho à Via Láctea, sendo notável por sua barra central brilhante e seus proeminentes braços espirais externos. 

Veja uma imagem da galáxia NGC 2566 obtida pelo telescópio espacial Hubble, o Very Large Telescope (VLT) e o ALMA (Atacama Large Millimeter/submillimeter Array) no blog: Vendo olho no olho.

Fonte: NASA

terça-feira, 8 de abril de 2025

Fótons "piscantes" iluminam um buraco negro

Um pesquisador Stephen DiKerby, da Universidade do Estado do Michigan, nos EUA, observou raios X provenientes de um buraco negro utilizando o telescópio de raios X Chandra da NASA.

© XMM Newton / Chandra (galáxia de Andrômeda)

Os buracos negros têm uma mística, uma aura. São os monstros invisíveis do Universo, mas os cientistas de todo o mundo não se intimidam perante estes colossos. Aceitam-nos como laboratórios de investigação em física e astronomia. Os buracos negros supermassivos são objetos com milhões ou bilhões de vezes a massa do Sol, comprimidos num espaço tão pequeno que nem a luz consegue escapar. 

O material que cai na gravidade intensa do buraco negro pode aquecer até temperaturas extremas. Os raios X do ambiente próximo de buracos negros supermassivos podem ser observados com telescópios como o observatório de raios X Chandra, que orbita a Terra.

DiKerby, que também é membro do observatório de neutrinos IceCube, e os seus colaboradores examinaram 15 anos de dados recolhidos pelo Chandra. Depois, juntaram um registo dos raios X produzidos por um buraco negro supermassivo na galáxia de Andrômeda chamado M31*. 

A sua pesquisa permite compreender a relação única entre uma galáxia e o seu buraco negro. Este fato é fundamental para entender como o Universo se desenvolveu nos últimos 13,8 bilhões de anos. A história não começa com os buracos negros, mas com os neutrinos,  partículas minúsculas e eletricamente neutras que atravessam o espaço em direção à Terra.

Os neutrinos podem ser produzidos pelos ambientes próximos de buracos negros supermassivos como o de M31*. O Chandra tem uma resolução espacial tão fina que consegue distinguir a emissão de raios X de M31* de três outras fontes de raios X que se aglomeram à sua volta no núcleo de Andrômeda. 

Os pesquisadores determinaram que M31* está num estado elevado desde 2006, quando ejetou um dramático sinal de raios X. Descobriram também que M31* sofreu outra erupção de raios X em 2013. Este achado alinha-se com uma descoberta recente do IceCube que ligou as erupções relacionadas com neutrinos em outra galáxia com o seu supermassivo negro.

Estes resultados mostram como as observações de buracos negros supermassivos próximos podem revelar prováveis janelas temporais para emissões de neutrinos. O seu trabalho utilizou as posições precisas de quatro fontes de raios X no núcleo da galáxia de Andrómeda: S1, SSS, N1 e P2, para identificar a localização do buraco negro supermassivo em P2.

Um artigo foi publicado pelo periódico The Astrophysical Journal.

Fonte: Michigan State University

quinta-feira, 3 de abril de 2025

Um buraco negro fornecendo a taxa de formação estelar em galáxia

Esta imagem obtida pelo telescópio espacial Hubble apresenta a pitoresca galáxia espiral NGC 4941, que fica a cerca de 67 milhões de anos-luz da Terra na constelação de Virgem.

© Hubble (NGC 4941)

Como esta galáxia está próxima, cosmicamente falando, os instrumentos aguçados do Hubble são capazes de captar detalhes requintados, como aglomerados de estrelas individuais e nuvens filamentosas de gás e poeira. Os dados usados para construir esta imagem foram coletados como parte de um programa de observação que investiga a formação de estrelas e o ciclo de retorno de estrelas em galáxias próximas.

À medida que as estrelas se formam em aglomerados densos e frios de gás, elas começam a influenciar seus arredores. As estrelas aquecem e agitam as nuvens de gás nas quais nascem por meio de ventos, luz estelar e eventualmente, para estrelas massivas explodindo como supernovas.

Esses processos são chamados coletivamente de feedback estelar e afetam a taxa na qual uma galáxia pode formar novas estrelas. Acontece que as estrelas não são as únicas entidades fornecendo feedback em NGC 4941. No coração desta galáxia está um núcleo galáctico ativo: um buraco negro supermassivo se alimentando de gás. À medida que o buraco negro acumula gás de seus arredores, o gás gira em um disco superaquecido que brilha intensamente em comprimentos de onda em todo o espectro eletromagnético.

Semelhante às estrelas, mas em uma escala muito maior, os núcleos galácticos ativos moldam suas proximidades por meio de ventos, radiação e jatos poderosos, alterando não apenas a formação de estrelas, mas também a evolução da galáxia como um todo.

Fonte: ESA