Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens
Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens

quinta-feira, 25 de setembro de 2025

Verificando o teorema da área do buraco negro de Stephen Hawking

Em 14 de setembro de 2015, um sinal chegou à Terra, trazendo informações sobre um par de buracos negros remotos que haviam espiralado juntos e se fundido.

© LVK (ondas gravitacionais geradas pela colisão de dois buracos negros)

O sinal havia viajado cerca de 1,3 bilhão de anos para chegar até nós à velocidade da luz, mas não era feito de luz. Era um tipo diferente de sinal: uma vibração do espaço-tempo chamada ondas gravitacionais, prevista pela primeira vez por Albert Einstein 100 anos antes.

Naquele dia, 10 anos atrás, os detectores gêmeos do Observatório de Ondas Gravitacionais por Interferômetro a Laser (LIGO) fizeram a primeira detecção direta de ondas gravitacionais, sussurros no cosmos que haviam passado despercebidos até aquele momento. A descoberta histórica significava que os pesquisadores agora podiam sentir o Universo por três meios diferentes. Ondas de luz, como raios X, ondas ópticas, ondas de rádio e outros comprimentos de onda da luz, bem como partículas de alta energia chamadas raios cósmicos e neutrinos, já haviam sido captadas antes, mas esta foi a primeira vez que alguém testemunhou um evento cósmico através da deformação gravitacional do espaço-tempo.

Por esta conquista, idealizada pela primeira vez há mais de 40 anos, três dos fundadores da equipe ganharam o Prêmio Nobel de Física de 2017: Rainer Weiss, do MIT, professor emérito de Física (que faleceu recentemente aos 92 anos); Barry Barish, do Caltech, Professor Emérito de Física Ronald e Maxine Linde; e Kip Thorne, do Caltech, Professor Emérito de Física Teórica Richard P. Feynman.

Atualmente, o LIGO, que consiste em detectores em Hanford, Washington, e Livingston, Louisiana, observa rotineiramente aproximadamente uma fusão de buracos negros a cada três dias. O LIGO agora opera em coordenação com dois parceiros internacionais: o detector de ondas gravitacionais Virgo, na Itália, e o KAGRA, no Japão. Juntos, a rede de busca por ondas gravitacionais, conhecida como LVK (LIGO, Virgo, KAGRA), captou um total de cerca de 300 fusões de buracos negros, algumas das quais já confirmadas, enquanto outras aguardam análises mais aprofundadas.

Durante a atual rodada científica da rede, a quarta desde a primeira rodada em 2015, o LVK descobriu mais de 200 possíveis fusões de buracos negros, mais que o dobro do número captado nas três primeiras rodadas. O aumento drástico no número de descobertas do LVK na última década se deve a diversas melhorias em seus detectores, algumas das quais envolvem engenharia de precisão quântica de ponta. Os detectores LVK continuam sendo, de longe, as réguas mais precisas para fazer medições já criadas por humanos. As distorções do espaço-tempo induzidas por ondas gravitacionais são incrivelmente minúsculas. Por exemplo, o LIGO detecta mudanças no espaço-tempo menores que 1/10.000 da largura de um próton. Isso é 700 trilhões de vezes menor que a largura de um fio de cabelo humano.

A sensibilidade aprimorada do LIGO é exemplificada na descoberta recente de uma fusão de buracos negros, denominada GW250114 (os números indicam a data em que o sinal da onda gravitacional chegou à Terra: 14 de janeiro de 2025). O evento não foi muito diferente da primeira detecção do LIGO (chamada GW150914), ambas envolvem a colisão de buracos negros a cerca de 1,3 bilhão de anos-luz de distância, com massas entre 30 e 40 vezes a do nosso Sol. Mas, graças a 10 anos de avanços tecnológicos que reduziram o ruído instrumental, o sinal do GW250114 está dramaticamente mais claro.

Ao analisar as frequências das ondas gravitacionais emitidas pela fusão, a equipe do LVK forneceu a melhor evidência observacional captada até o momento para o que é conhecido como teorema da área do buraco negro, uma ideia proposta por Stephen Hawking em 1971 que afirma que as áreas superficiais totais dos buracos negros não podem diminuir. Quando os buracos negros se fundem, suas massas se combinam, aumentando a área superficial. Mas eles também perdem energia na forma de ondas gravitacionais. Além disso, a fusão pode fazer com que o buraco negro combinado aumente seu spin, o que o leva a ter uma área menor.

O teorema da área do buraco negro afirma que, apesar desses fatores concorrentes, a área superficial total deve aumentar de tamanho. Mais tarde, Hawking e o físico Jacob Bekenstein concluíram que a área de um buraco negro é proporcional à sua entropia, ou grau de desordem. As descobertas abriram caminho para trabalhos inovadores posteriores no campo da gravidade quântica, que busca unir dois pilares da física moderna: a relatividade geral e a física quântica. Os buracos negros iniciais tinham uma área de superfície total de 240.000 quilômetros quadrados, enquanto a área final era de cerca de 400.000 quilômetros quadrados.

Outras descobertas científicas do LVK incluem a primeira detecção de colisões entre uma estrela de nêutrons e um buraco negro; fusões assimétricas, nas quais um buraco negro é significativamente mais massivo que seu parceiro; a descoberta dos buracos negros mais leves conhecidos, desafiando a ideia de que existe uma "lacuna de massa" entre estrelas de nêutrons e buracos negros; e a fusão de buracos negros mais massiva já vista, com uma massa combinada de 225 massas solares.

Olhando para um futuro mais distante, a equipe está trabalhando em um conceito para um detector ainda maior, chamado Cosmic Explorer, que teria braços de 40 quilômetros de comprimento (os observatórios gêmeos LIGO têm braços de 4 quilômetros). Um projeto europeu, chamado Telescópio Einstein, também planeja construir um ou dois enormes interferômetros subterrâneos com braços de mais de 10 quilômetros de comprimento. Observatórios nessa escala permitiriam aos cientistas ouvir as primeiras fusões de buracos negros no Universo.

Fonte: California Institute of Technology

sábado, 9 de agosto de 2025

O buraco negro mais antigo do Universo

Astrônomos identificaram o buraco negro mais distante do Universo.

© Erick Zumalt (ilustração da galáxia CAPERS-LRD-z9)

O buraco negro e a galáxia hospedeira, CAPERS-LRD-z9, estão presentes 500 milhões de anos após o Big Bang. Isto coloca-o 13,3 bilhões de anos no passado, quando o Universo tinha apenas 3% da sua idade atual, constituindo uma oportunidade única para estudar a estrutura e a evolução deste período enigmático.

Embora os astrônomos tenham encontrado alguns candidatos mais distantes, ainda não encontraram a assinatura espectroscópica distinta associada a um buraco negro. Com a espectroscopia, é possível analisar a luz nos seus vários comprimentos de onda para estudar as características de um objeto. Para identificar buracos negros, são procurados indícios de gás em movimento rápido. À medida que circula e cai num buraco negro, a luz do gás que se afasta de nós é esticada para comprimentos de onda muito mais vermelhos, e a luz do gás que se aproxima de nós é comprimida para comprimentos de onda muito mais azuis.

Os astrônomos utilizaram dados do programa CAPERS (CANDELS-Area Prism Epoch of Reionization Survey) do telescópio espacial James Webb para a sua pesquisa. Lançado em 2021, o JWST fornece as vistas mais distantes disponíveis do espaço, e o CAPERS fornece observações da orla mais externa.

Inicialmente visto como uma mancha interessante nas imagens do programa, CAPERS-LRD-z9 acabou por fazer parte de uma nova classe de galáxias conhecidas como "Pequenos Pontos Vermelhos". Presentes apenas nos primeiros 1,5 bilhões de anos do Universo, estas galáxias são muito compactas, vermelhas e inesperadamente brilhantes. Por um lado, esta galáxia vem juntar-se à evidência crescente de que os buracos negros supermassivos são a fonte do brilho inesperado dos Pequenos Pontos Vermelhos. Normalmente, esse brilho indicaria uma abundância de estrelas numa galáxia. No entanto, os Pequenos Pontos Vermelhos existem num momento em que uma massa tão grande de estrelas é improvável. 

Esta galáxia é também notável pela dimensão colossal do seu buraco negro. Estimado em 300 milhões de vezes mais do que o nosso Sol, a sua massa chega a ser metade da de todas as estrelas da galáxia. Mesmo entre os buracos negros supermassivos, este é particularmente grande. Encontrar um buraco negro tão massivo tão cedo fornece aos astrônomos uma oportunidade valiosa para estudar o desenvolvimento destes objetos. Um buraco negro presente no Universo mais recente terá tido diversas oportunidades de aumentar de volume durante a sua vida. Mas um presente nas primeiras centenas de milhões de anos não teria.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: McDonald Observatory

sexta-feira, 1 de agosto de 2025

Imagem de dois buracos negros supermassivos em fusão

Há mais de 150 anos que a galáxia OJ 287 e as suas variações de brilho, a cinco bilhões de anos-luz de distância, intrigam e fascinam os astrônomos, pois suspeitam que dois buracos negros supermassivos estejam se fundindo no núcleo.

© U. Heidelberg (galáxia OJ 287 e a fusão de dois buracos negros)

Uma equipe internacional de pesquisadores liderada pela Dra. Efthalia Traianou, da Universidade de Heidelberg, conseguiu recentemente captar uma imagem do centro da galáxia com um grande nível de detalhe. A imagem revolucionária, captada com a ajuda de um radiotelescópio espacial, mostra um segmento até agora desconhecido e fortemente curvado do jato de plasma que gira para fora do centro da galáxia. A imagem fornece novas informações sobre as condições extremas que reinam em torno de buracos negros supermassivos.

O núcleo da galáxia OJ 287 pertence à classe dos blazares, que exibem alta atividade e luminosidade impressionante. As forças motoras por trás destes núcleos galácticos ativos são os buracos negros. Eles absorvem matéria dos seus arredores e podem lançá-la na forma de jatos de plasma gigantes compostos por radiação cósmica, calor, átomos pesados e campos magnéticos. 

A imagem, que penetra profundamente no centro da galáxia, revela uma estrutura fortemente curvada e semelhante a uma fita do jato; também aponta para novas informações sobre a composição e comportamento do jato de plasma. Algumas regiões excedem temperaturas de dez trilhões Kelvin, evidência de energia e movimento extremos nas proximidades de um buraco negro.

Foi observado também a formação, propagação e colisão de uma nova onda de choque ao longo do jato e sendo atribuída a uma energia de trilhões de elétrons-volt, a partir de uma medição incomum de raios gama realizada em 2017. A imagem rádio foi obtida com um interferômetro de rádio composto por um radiotelescópio em órbita da Terra, uma antena de dez metros de diâmetro da missão RadioAstron a bordo do satélite Spektr-R, e uma rede de 27 observatórios terrestres distribuídos pela Terra.

Desta forma, os pesquisadores conseguiram criar um telescópio espacial virtual com um diâmetro cinco vezes maior do que o diâmetro da Terra; a sua alta resolução deriva da distância entre os observatórios de rádio individuais. A imagem é baseada num método de medição que aproveita a natureza ondulatória da luz e as ondas sobrepostas associadas.

A imagem interferométrica reforça a hipótese de que, no interior da galáxia OJ 287, está localizado um sistema binário de buracos negros supermassivos. Fornece também informações importantes sobre o modo como os movimentos desses buracos negros influenciam a forma e a orientação dos jatos de plasma emitidos.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Heidelberg University

Detectado tipo raro de buraco negro devorando uma estrela

O telescópio espacial Hubble e o observatório de raios X Chandra uniram-se para identificar um novo possível exemplo de uma classe rara de buracos negros. Com o nome NGC 6099 HLX-1, esta fonte brilhante de raios X parece residir num aglomerado estelar compacto situado numa galáxia elíptica gigante.

© NASA (NGC 6098, NGC 6099 e HLX-1)

Imagem, obtida pelo telescópio espacial Hubble, de um par de galáxias: NGC 6099 (em baixo à esquerda) e NGC 6098 (em cima, para a direita do centro). A mancha roxa representa a emissão de raios X de um aglomerado estelar compacto. Os raios X são produzidos por um buraco negro de massa intermediária que está destruindo uma estrela.

Apenas alguns anos após o seu lançamento em 1990, o Hubble descobriu que as galáxias em todo o Universo podem abrigar buracos negros supermassivos nos seus centros, contendo milhões ou bilhões de vezes a massa do nosso Sol. Além disso, as galáxias também contêm milhões de pequenos buracos negros com menos de 100 vezes a massa do Sol. Estes formam-se quando estrelas massivas chegam ao fim das suas vidas.

Muito mais elusivos são os buracos negros de massa intermediária, contendo algumas centenas a algumas centenas de milhares de vezes a massa do nosso Sol. Esta categoria de buracos negros, nem muito grandes nem muito pequenos, é muitas vezes invisível porque não devoram tanto gás e estrelas como os supermassivos, que emitem radiação poderosa.

Para serem encontrados, os buracos negros de massa intermediária precisam ser captados quando estiverem se alimentando. Quando ocasionalmente devoram uma infeliz estrela passageira, gerando um evento de perturbação de marés, emitem uma grande quantidade de radiação. O mais recente e provável buraco negro de massa intermediária, apanhado se alimentando, está localizado nos arredores da galáxia NGC 6099, a aproximadamente 40.000 anos-luz do centro da galáxia. A galáxia está localizada a cerca de 450 milhões de anos-luz de distância, na direção da constelação de Hércules.

Os astrônomos viram pela primeira vez uma fonte incomum de raios X numa imagem captada pelo Chandra em 2009. Em seguida, acompanharam a sua evolução com o observatório espacial XMM-Newton da ESA. Fontes de raios X com luminosidade tão extrema são raras fora dos núcleos galácticos e podem servir como uma sonda fundamental para identificar buracos negros elusivos de massa intermediária. Representam um elo crucial que faltava na evolução dos buracos negros entre os de massa estelar e os supermassivos. 

A emissão de raios X proveniente de NGC 6099 HLX-1 tem uma temperatura de 3 milhões Kelvin, consistente com um evento de perturbação de marés. O Hubble encontrou evidências de um pequeno aglomerado de estrelas em torno do buraco negro. Esse aglomerado daria ao buraco negro muito que devorar, porque as estrelas estão tão próximas umas das outras que apenas alguns meses-luz de distância as separa (cerca de 800 bilhões de quilômetros). O suspeito buraco negro de massa intermediária atingiu o brilho máximo em 2012 e depois continuou diminuindo até 2023. As observações ópticas e de raios X durante esse período não se sobrepõem, o que complica a interpretação.

O buraco negro pode ter dilacerado uma estrela capturada, criando um disco de plasma que exibe variabilidade, ou pode ter formado um disco que cintila à medida que o gás cai em direção ao buraco negro. Se o buraco negro de massa intermediária está devorando uma estrela, quanto tempo leva para engolir o seu gás?

Em 2009, HLX-1 era razoavelmente brilhante. Em 2012, ficou cerca de 100 vezes mais brilhante. E depois diminuiu novamente. Portanto, agora é necessário esperar para ver se está brilhando várias vezes, ou se houve um início, um pico e se vai diminuir até desaparecer.

Presume-se que exista um buraco negro supermassivo no núcleo da galáxia, que atualmente está inativo e não está devorando nenhuma estrela. A equipe enfatiza que fazer um levantamento dos buracos negros de massa intermediária pode revelar como os maiores buracos negros supermassivos se formam.

Existem duas teorias alternativas. Uma é que os buracos negros de massa intermediária são as sementes da formação de buracos negros ainda maiores, ao se fundirem, já que as grandes galáxias crescem ao absorver galáxias menores. O buraco negro no centro de uma galáxia também cresce durante essas fusões. As observações do Hubble revelaram uma relação proporcional: quanto mais massiva a galáxia, maior o buraco negro.

O quadro emergente com esta nova descoberta é que as galáxias podem ter "buracos negros de massa intermediária satélites" que orbitam no halo de uma galáxia, mas nem sempre caem para o centro. Outra teoria é que as nuvens de gás no meio dos halos de matéria escura no início do Universo não formam estrelas primeiro, mas simplesmente colapsam diretamente num buraco negro supermassivo.

A descoberta do telescópio espacial James Webb da NASA, de buracos negros muito distantes que são desproporcionalmente mais massivos em relação à sua galáxia hospedeira, tende a apoiar esta ideia. No entanto, pode haver um viés observacional referente à detecção de buracos negros extremamente massivos no Universo distante, porque os de tamanho menor são demasiado fracos para serem vistos. Na realidade, pode haver mais variedade na forma como o nosso Universo dinâmico constrói buracos negros.

Os buracos negros supermassivos que colapsam dentro de halos de matéria escura podem simplesmente crescer de uma forma diferente daqueles que vivem em galáxias anãs, onde a acreção dos buracos negros pode ser o mecanismo preferido de crescimento.

O desafio é que o Chandra e o XMM-Newton observam apenas uma pequena fração do céu, por isso não encontram frequentemente novos eventos de perturbação de marés nos quais os buracos negros consomem estrelas. O Observatório Vera C. Rubin, no Chile, um telescópio de observação de todo o céu, pode detectar esses eventos no visível a centenas de milhões de anos-luz de distância. Observações de acompanhamento com o Hubble e com o Webb podem revelar o aglomerado de estrelas em torno do buraco negro.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics

segunda-feira, 21 de julho de 2025

Um buraco negro de colapso direto na Galáxia do Infinito

Pesquisadores descobriram uma rara dupla de galáxias e anéis que parece abrigar um buraco negro supermassivo formado por colapso direto, um processo semelhante ao que pode ter impulsionado o crescimento dos primeiros buracos negros supermassivos no Universo.

© Hubble / JWST (Galáxia do Infinito)

Para aprender mais sobre este estranho objeto, chamado Galáxia do Infinito por sua semelhança com o símbolo do infinito, a equipe coletou dados do telescópio espacial Hubble, do telescópio Keck I, do observatório de raios-X Chandra e do Very Large Array.

O retrato em vários comprimentos de onda resultante permitiu à equipe ponderar os dois núcleos, mostrando que eles são massivos, contendo estrelas de 80 bilhões e 180 bilhões de massas solares, e extremamente compactos.

Os novos dados também revelaram que a nuvem de gás entre os núcleos contém um buraco negro de 1 milhão de massas solares. Os núcleos, os anéis e o gás entre eles parecem ser o resultado de duas galáxias de disco que se chocaram, formando um par de galáxias em anel em colisão. Para atingir a forma do símbolo do infinito, as galáxias devem ter se encontrado de frente, formando dois sistemas paralelos de núcleo e anéis que vemos de um ângulo de cerca de 40º. Quando as galáxias colidiram, parte do gás delas teria sido arrancado, ficando emaranhado no vazio entre os dois núcleos.

Isso explica os núcleos, os anéis e o gás entre eles, mas de onde surgiu o buraco negro?

É possível que a posição do buraco negro entre os dois núcleos seja simplesmente uma coincidência, seja devido a um alinhamento casual com uma galáxia não relacionada que hospeda o buraco negro, ou porque o buraco negro acabou ali após ser ejetado de uma das galáxias envolvidas na colisão, ou mesmo de outra galáxia que se fundiu com a Galáxia do Infinito.

Os pesquisadores defendem uma explicação diferente, na qual a localização do buraco negro não é coincidência. Nesse cenário, as galáxias em colisão esmagaram uma nuvem de gás entre elas com tanta força que o gás condensado colapsou diretamente em um buraco negro. Estima-se que a colisão ocorreu há 50 milhões de anos e criou um buraco negro de 300.000 massas solares que posteriormente cresceu até sua massa atual de 1 milhão de massas solares.

O colapso direto foi proposto como a fonte das sementes de buracos negros supermassivos no Universo primordial. Observações futuras poderiam esclarecer se o buraco negro está realmente associado à Galáxia do Infinito, e análises preliminares de observações de acompanhamento com o telescópio espacial James Webb (JWST) mostram exatamente isso. Com o buraco negro agora definitivamente localizado dentro da Galáxia do Infinito, as evidências de colapso direto são reforçadas, embora mais trabalho seja necessário para investigar essa possibilidade.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Sky & Telescope

sexta-feira, 18 de julho de 2025

Detectada a fusão de buracos negros mais massiva

A Colaboração LIGO-Virgo-KAGRA (LVK) detectou a fusão dos buracos negros mais massivos alguma vez observados através de ondas gravitacionais.

© Caltech (nova fusão de buracos negros)

A poderosa fusão produziu um buraco negro final com aproximadamente 225 vezes a massa do nosso Sol. O sinal, designado GW231123, foi detectado durante a quarta campanha de observação da rede LVK no dia 23 de novembro de 2023.

O LIGO (Laser Interferometer Gravitational-wave Observatory) entrou para a história em 2015 quando fez a primeira detecção direta de ondas gravitacionais, ondulações no espaço-tempo. Nesse caso, as ondas emanavam de uma fusão de buracos negros que resultou num buraco negro final com uma massa 62 vezes superior à do nosso Sol. O sinal foi detectado conjuntamente pelos detectores gêmeos do LIGO, um localizado em Livingston, no estado norte-americano do Louisiana, e o outro em Hanford, Washington.

Desde então, a equipe do LIGO juntou-se a parceiros do detector Virgo, na Itália, e do KAGRA (Kamioka Gravitational Wave Detetor), no Japão, para formar a Colaboração LVK. Estes detectores observaram coletivamente mais de 200 fusões de buracos negros na sua quarta campanha, e cerca de 300 no total desde o início da primeira em 2015.

Até agora, a fusão de buracos negros mais massiva, produzida por um evento que teve lugar em 2021 chamado GW190521, tinha uma massa total de 140 vezes a do Sol. No evento mais recente, GW231123, o buraco negro de 225 massas solares foi criado pela coalescência de buracos negros com massas aproximadamente 100 e 140 vezes superiores à do Sol. Para além das suas massas elevadas, os buracos negros estão também girando rapidamente.

Buracos negros tão massivos são proibidos pelos modelos padrão de evolução estelar. Uma possibilidade é que os dois buracos negros deste par se tenham formado através de fusões anteriores de buracos negros mais menores.

A elevada massa e a rotação extremamente rápida dos buracos negros de GW231123 empurram os limites da tecnologia de detecção de ondas gravitacionais e os modelos teóricos atuais. A extração de informação precisa do sinal exigiu a utilização de modelos que têm em conta a intrincada dinâmica dos buracos negros em alta rotação, perto do limite permitido pela teoria da relatividade geral de Albert Einstein.

Os pesquisadores continuam aperfeiçoando a sua análise e melhorando os modelos utilizados para interpretar estes fenômenos extremos. Os detectores de ondas gravitacionais, como o LIGO, o Virgo e o KAGRA, foram concebidos para medir distorções minúsculas no espaço-tempo causadas por eventos cósmicos violentos. A quarta série de observações começou em maio de 2023, e as observações adicionais da primeira metade da campanha (até janeiro de 2024) serão publicadas no final do verão.

Fonte: Max Planck Institute for Gravitational Physics