Mostrando postagens com marcador Matéria Escura. Mostrar todas as postagens
Mostrando postagens com marcador Matéria Escura. Mostrar todas as postagens

segunda-feira, 6 de outubro de 2025

A matéria escura e a energia escura podem ser apenas uma ilusão cósmica

Os astrônomos pensam, há décadas, que a matéria escura e a energia escura constituem a maior parte do Universo. No entanto, um novo estudo sugere que poderão não existir de todo.

© Hubble (NGC 7038)

Em vez disso, o que nos parece ser matéria e energia escuras pode ser simplesmente o efeito das forças naturais do Universo enfraquecendo lentamente à medida que este envelhece.

Liderado por Rajendra Gupta, professor no Departamento de Física da Universidade de Ottawa, o estudo afirma que se as forças básicas da natureza (como a gravidade) mudarem lentamente ao longo do tempo e no espaço, podem explicar os estranhos fenômenos que observamos, tais como a forma como as galáxias evoluem e giram e como o Universo se expande.

"As forças do Universo enfraquecem, em média, à medida que este se expande", explica o professor Gupta. "Este enfraquecimento faz com que pareça que existe um impulso misterioso que faz com que o Universo se expanda mais rapidamente (que é identificado como a energia escura). No entanto, à escala das galáxias e dos aglomerados de galáxias, a variação destas forças no espaço gravitacionalmente limitado resulta numa gravidade extra (que se considera ser devida à matéria escura). Mas estas coisas podem ser apenas ilusões, resultantes da evolução das constantes que definem a força das forças".

E acrescenta: "Há dois fenômenos muito diferentes que devem ser explicados pela matéria escura e pela energia escura: o primeiro é à escala cosmológica, ou seja, a uma escala superior a 600 milhões de anos-luz, assumindo que o Universo é homogêneo e igual em todas as direções. O segundo é à escala astrofísica, ou seja, a uma escala menor o Universo é muito irregular e depende da direção. No modelo padrão, os dois cenários requerem equações diferentes para explicar as observações usando matéria escura e energia escura. O nosso é o único que as explica com a mesma equação e sem necessidade de matéria ou energia escuras".  "O que é realmente excitante é que esta nova abordagem permite-nos explicar o que vemos no céu: a rotação das galáxias, o agrupamento de galáxias e até a forma como a luz se curva em torno de objetos massivos, sem termos de imaginar que há algo escondido lá fora. Tudo isto é apenas o resultado da variação das constantes da natureza à medida que o Universo envelhece e se torna irregular".

No ano passado, o professor Gupta pôs em causa a existência da matéria escura no Universo no seu estudo à escala cosmológica. Neste trabalho à escala astrofísica, questionou os modelos teóricos atuais para as curvas de rotação das galáxias.

No novo modelo, o parâmetro frequentemente designado por α emerge do fato de se permitir a evolução das constantes de acoplamento. Com efeito, α comporta-se como uma "componente" extra nas equações gravitacionais que produz efeitos semelhantes aos que os astrônomos atribuem à matéria escura e à energia escura.

Em escalas cosmológicas, α é tratado como uma constante, por exemplo, determinado pelo ajuste de dados de supernovas. Mas localmente (à escala astrofísica), numa galáxia, dado que a distribuição da matéria comum (buracos negros, estrelas, planetas, gás, etc.) varia drasticamente, α varia, fazendo com que o efeito gravitacional extra dependa da localização dessa matéria. Assim, a nova teoria prevê que, em regiões onde existe muita matéria comum, o efeito gravitacional extra é menor, e onde a densidade de matéria detectável é baixa, é maior.

Em vez de adicionar halos de matéria escura à volta das galáxias, a atração gravitacional extra vem de α no novo modelo. Reproduz as "curvas de rotação planas" observadas (estrelas que se movem mais depressa do que o esperado nas partes exteriores das galáxias).

O professor Gupta pensa que esta ideia pode resolver alguns dos maiores quebra-cabeças da astronomia. "Durante anos, lutamos para explicar como é que as galáxias do Universo primitivo se formaram tão rapidamente e se tornaram tão massivas", afirma. "Com o nosso modelo, não é necessário assumir quaisquer partículas exóticas ou quebrar as regras da física. A linha temporal do Universo simplesmente estica-se, quase duplicando a idade do Universo e abrindo caminho para tudo o que observamos".

Efetivamente, a linha temporal alargada para a formação de estrelas e galáxias torna muito mais fácil explicar como é que estruturas grandes e complexas como galáxias e buracos negros podem ter aparecido tão cedo no Universo. Esta teoria pode mudar completamente a forma como pensamos sobre o Universo. Dá mesmo a entender que a procura de partículas de matéria escura, algo em que os cientistas gastaram anos e bilhões de dólares, poderá afinal não ser necessária. Mesmo que as partículas exóticas sejam encontradas experimentalmente, teriam de constituir cerca de seis vezes a massa da matéria comum. Talvez os maiores segredos do Universo sejam apenas constituídos pelas constantes evolutivas da natureza.

Um artigo foi publicado no periódico Galaxies.

Fonte: University of Ottawa

sexta-feira, 29 de novembro de 2024

Uma supernova próxima podia pôr fim à procura pela matéria escura

A procura pela matéria escura do Universo podia terminar amanhã, caso houvesse uma supernova próxima e tivéssemos um pouco de sorte.

© Casey Reed (ilustração de estrela de nêutrons altamente magnetizada)

A natureza da matéria escura ilude os astrônomos há 90 anos, desde que se percebeu que 85% da matéria do Universo não é visível através dos nossos telescópios. Atualmente, o candidato mais provável à matéria escura é o áxion, uma partícula leve que está sendo desesperadamente procurada. 

Os astrofísicos da Universidade da Califórnia, em Berkeley, argumentam agora que o áxion podia ser descoberto segundos após a detecção de raios gama provenientes da explosão de uma supernova próxima. Os áxions, se existirem, seriam produzidos em quantidades abundantes durante os primeiros 10 segundos após o núcleo de uma estrela massiva colapsar numa estrela de nêutrons, e esses áxions escapariam e seriam transformados em raios gama altamente energéticos no intenso campo magnético da estrela. 

Uma tal detecção só é possível hoje em dia se o único telescópio de raios gama no espaço, o telescópio espacial Fermi, estiver apontando na direção da supernova no momento em que esta explode. Tendo em conta o campo de visão do telescópio, isso representa cerca de uma hipótese em 10. No entanto, uma única detecção de raios gama permitiria determinar a massa do áxion, em particular o chamado áxion QCD (Quantum ChromoDynamics), numa enorme gama de massas teóricas, incluindo intervalos de massas que estão agora sendo analisados em experiências na Terra. 

Contudo, a ausência de uma detecção eliminaria uma grande quantidade de massas potenciais para o áxion e tornaria irrelevante a maioria das atuais pesquisas por matéria escura. O problema é que, para que os raios gama sejam suficientemente brilhantes para serem detectados, a supernova tem de estar próxima, ou seja, dentro da Via Láctea ou de uma das suas galáxias satélite, e as estrelas próximas só explodem, em média, de poucas em poucas décadas. 

A última supernova próxima ocorreu em 1987 na Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea. Na ocasião, um telescópio de raios gama, o SMM (Solar Maximum Mission), apontava na direção da supernova, mas não era suficientemente sensível para detectar a intensidade prevista dos raios gama.

No entanto, os pesquisadores receiam que, quando a tão esperada supernova surgir no Universo próximo, não estejamos preparados para ver os raios gama produzidos pelos áxions. Os cientistas estão propondo a construção de telescópios de raios gama para avaliar a viabilidade de lançar um ou uma frota desses telescópios para cobrir 100% do céu 24 horas por dia e ter a certeza de apanhar qualquer explosão de raios gama. Até propuseram um nome para a sua constelação de satélites de raios gama de céu completo: GALAXIS (GALactic AXion Instrument for Supernova). 

A procura pela matéria escura centrou-se inicialmente nos tênues MACHOs (MAssive Compact Halo Objects), teoricamente espalhados pela nossa Galáxia e pelo cosmos, mas quando estes não se materializaram, os físicos começaram a procurar partículas elementares que teoricamente estão à nossa volta e deveriam ser detectáveis em laboratórios terrestres. Estas WIMPs (Weakly Interacting Massive Particles) também não foram detectadas.

Atualmente, o melhor candidato para a matéria escura é o áxion, uma partícula que se enquadra perfeitamente no modelo padrão da física e que resolve vários outros enigmas importantes da física de partículas. Os áxions também se enquadram perfeitamente na teoria das cordas, uma hipótese sobre a geometria subjacente do Universo, e pode ser capaz de unificar a gravidade, que explica as interações em escalas cósmicas, com a teoria da mecânica quântica, que descreve o infinitesimal.

O áxion teoricamente interage com toda a matéria, embora fracamente, através das quatro forças da natureza: gravidade, eletromagnetismo, a força forte, que mantém os átomos unidos, e a força fraca, que explica a quebra dos átomos. Uma das consequências é que, num campo magnético forte, um áxion pode ocasionalmente transformar-se numa onda eletromagnética, ou fóton. O áxion é distintamente diferente de outra partícula leve e de fraca interação, o neutrino, que apenas interage através da gravidade e da força fraca e ignora totalmente a força eletromagnética. 

As experiências de laboratório - como o Consórcio ALPHA (Axion Longitudinal Plasma HAloscope), o DMradio e o ABRACADABRA (A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus), todas elas envolvendo pesquisadores da UC Berkeley, utilizam cavidades compactas que, tal como um diapasão, ressoam e amplificam o fraco campo eletromagnético ou fóton produzido quando um áxion de baixa massa se transforma na presença de um forte campo magnético.

Em alternativa, os astrofísicos propuseram a procura de áxions produzidos no interior de estrelas de nêutrons imediatamente após uma supernova de colapso do núcleo, como SN 1987A. Até agora, no entanto, têm-se concentrado principalmente na detecção de raios gama resultantes da lenta transformação destes áxions em fótons nos campos magnéticos das galáxias. Porém, esse processo não é muito eficiente na produção de raios gama, ou pelo menos não o suficiente para ser detectado a partir da Terra. 

Ao invés, foi explorada a produção de raios gama por áxions nos fortes campos magnéticos em torno da própria estrela que os gerou. As simulações em supercomputador mostraram que esse processo cria, de forma muito eficiente, uma explosão de raios gama que depende da massa do áxion, e que a explosão deveria ocorrer simultaneamente com uma explosão de neutrinos do interior da estrela de nêutrons quente. 

As estrelas de nêutrons abrigam campos magnéticos muito fortes. Os campos magnéticos mais fortes do nosso Universo encontram-se em volta das estrelas de nêutrons, como os magnetares, que têm campos magnéticos dezenas de bilhões de vezes mais fortes do que qualquer coisa que possamos construir em laboratório. Isso ajuda a converter estes áxions em sinais observáveis

Há dois anos, os astrofísicos estabeleceram o melhor limite superior para a massa do áxion QCD em cerca de 16 milhões de elétrons-volt, ou seja, cerca de 32 vezes menos do que a massa do elétron. Este valor baseou-se na taxa de arrefecimento das estrelas de nêutrons, que arrefeceriam mais rapidamente se os áxions fossem produzidos juntamente com os neutrinos no interior destes corpos quentes e compactos. 

É previsto que uma detecção de raios gama permita identificar a massa do áxion QCD se esta for superior a 50 μeV (microelétrons-volt). Uma única detecção poderia reorientar as experiências existentes para confirmar a massa do áxion. Embora uma frota de telescópios de raios gama dedicados seja a melhor opção para detectar raios gama de uma supernova próxima, um golpe de sorte com o Fermi seria ainda melhor.

Um artigo foi publicado no periódico Physical Review Letters.

Fonte: University of California

sábado, 7 de setembro de 2024

A matéria escura na formação de buracos negros no início do Universo

A formação dos buracos negros supermassivos, como o que se encontra no centro da nossa Galáxia, a Via Láctea, é muito demorada.

© EHT (imagem polarizada do buraco negro Sagitário A*)

Normalmente, o nascimento de um buraco negro requer que uma estrela gigante com a massa de pelo menos algumas vezes a do Sol esgote o seu combustível nuclear; um processo que pode demorar bilhões de anos, e que o seu núcleo colapse sobre si próprio.

Mesmo assim, o buraco negro resultante está muito longe do buraco negro com 4 milhões de massas solares, Sagitário A*, situado no centro da Via Láctea, ou dos buracos negros supermassivos com bilhões de massas solares encontrados em outras galáxias. Estes buracos negros gigantescos podem formar-se a partir de buracos negros menores, por acreção de gás e estrelas e por fusão com outros buracos negros, o que demora bilhões de anos. 

Por que razão, então, o telescópio espacial James Webb está descobrindo buracos negros supermassivos perto do início dos tempos, antes de se poderem formar? Os astrofísicos da UCLA (University of California Los Angeles) têm uma resposta tão misteriosa como os próprios buracos negros: a matéria escura impediu que o hidrogênio arrefecesse o tempo suficiente para que a gravidade o condensasse em nuvens suficientemente grandes e densas para se transformarem em buracos negros em vez de estrelas. 

Alguns astrofísicos têm postulado que uma grande nuvem de gás pode colapsar para formar diretamente um buraco negro supermassivo, contornando a longa história de combustão estelar, acreção e fusões. Mas há um senão: a gravidade vai, de fato, juntar uma grande nuvem de gás, mas não numa única nuvem. Em vez disso, junta seções de gás em pequenos halos que flutuam perto uns dos outros, mas não formam um buraco negro. A razão é que a nuvem de gás arrefece demasiado depressa. Enquanto o gás estiver quente, a sua pressão pode contrariar a gravidade. No entanto, se o gás arrefecer, a pressão diminui e a gravidade pode triunfar em muitas pequenas regiões, que colapsam em objetos densos antes da gravidade ter a oportunidade de puxar toda a nuvem para um único buraco negro.

A rapidez com que o gás arrefece tem muito a ver com a quantidade de hidrogênio molecular. Os átomos de hidrogênio ligados entre si numa molécula dissipam energia quando encontram um átomo de hidrogênio livre. As moléculas de hidrogênio tornam-se agentes de arrefecimento ao absorverem energia térmica e ao irradiá-la. As nuvens de hidrogênio no início do Universo tinham demasiado hidrogênio molecular e o gás arrefeceu rapidamente, formando pequenos halos em vez de grandes nuvens. 

Apenas uma ínfima parte da matéria do Universo é do tipo que compõe os nossos corpos, o nosso planeta, as estrelas e tudo o mais que podemos observar. A grande maioria da matéria, detectada pelos seus efeitos gravitacionais em objetos estelares e pela curvatura da luz de fontes distantes, é feita de algumas partículas novas. As formas e propriedades da matéria escura são, portanto, um mistério que continua por resolver. Embora não saibamos o que é a matéria escura, os teóricos de partículas há muito que especulam que pode conter partículas instáveis que podem decair em fótons, as partículas de luz. A inclusão desta matéria escura em simulações forneceu a radiação necessária para que o gás permanecesse numa grande nuvem enquanto colapsava num buraco negro.

A matéria escura pode ser feita de partículas que decaem lentamente, ou pode ser feita de mais do que uma espécie de partícula: algumas estáveis e outras que decaem em momentos precoces. Em qualquer dos casos, o produto do decaimento pode ser radiação sob a forma de fótons, que quebram o hidrogênio molecular e evitam que as nuvens de hidrogênio arrefeçam demasiado depressa. Mesmo um decaimento muito ligeiro da matéria escura produziu radiação suficiente para impedir o arrefecimento, formando grandes nuvens e, eventualmente, buracos negros supermassivos.

Um artigo foi publicado no periódico Physical Review Letters

Fonte: University of California

domingo, 28 de julho de 2024

A matéria escura numa colisão entre aglomerado de galáxias

Os astrônomos desvendaram uma colisão confusa entre dois enormes aglomerados de galáxias, na qual as vastas nuvens de matéria escura dos aglomerados se separaram da chamada matéria normal.

© Adam Makarenko (ilustração da colisão entre dois aglomerados de galáxias)

As novas observações são as primeiras a sondar diretamente a dissociação das velocidades da matéria escura e da matéria normal.

Os dois aglomerados contêm cada um milhares de galáxias e estão situados a bilhões de anos-luz da Terra. Ao atravessarem-se um pelo outro, a matéria escura - uma substância invisível que sente a força da gravidade, mas não emite luz - passou à frente da matéria normal. 

Os aglomerados de galáxias estão entre as maiores estruturas do Universo, coladas umas às outras pela força da gravidade. Apenas 15 por cento da massa destes aglomerados é matéria normal, a mesma matéria que constitui os planetas, as estrelas e as pessoas. Desta matéria normal, a grande maioria é gás quente, enquanto o resto são estrelas e planetas. Os restantes 85% da massa do aglomerado corresponde à matéria escura. 

Durante a luta que ocorreu entre os aglomerados, conhecidos coletivamente como MACS J0018.5+1626 (MACS J0018.5), as galáxias individuais saíram praticamente ilesas porque existe muito espaço entre elas. Mas quando as enormes reservas de gás entre as galáxias (a matéria normal) colidiram, o gás tornou-se turbulento e sobreaquecido. Embora toda a matéria, incluindo a matéria normal e a matéria escura, interaja através da gravidade, a matéria normal também interage através do eletromagnetismo, que a torna mais lenta durante uma colisão. Assim, enquanto a matéria normal ficou atolada, as "poças" de matéria escura dentro de cada aglomerado navegaram em frente. 

A descoberta foi feita utilizando dados do CSO (Caltech Submillimeter Observatory, recentemente retirado do seu local em Maunakea, no Havaí, que será transferido para o Chile), do observatório W.M. Keck em Maunakea, do observatório de raios X Chandra, do telescópio espacial Hubble, do observatório espacial Herschel, do observatório Planck e do ASTE (Atacama Submillimeter Telescope Experiment) no Chile. 

Algumas das observações foram efetuadas há décadas, enquanto a análise completa utilizando todos os conjuntos de dados teve lugar nos últimos dois anos. Esta dissociação entre a matéria escura e a matéria normal já foi observada anteriormente, sendo a mais famosa a do Aglomerado Bullet. Nesta colisão, o gás quente pode ser visto claramente ficando atrás da matéria escura, depois dos dois aglomerados de galáxias se terem atravessado um ao outro. 

A situação que ocorreu em MACS J0018.5 é semelhante, mas a orientação da fusão girou cerca de 90 graus em relação à do Aglomerado Bullet, ou seja, um dos aglomerados massivos de MACS J0018.5 está voando quase direito em direção à Terra, enquanto o outro está se afastando.

Para medir a velocidade da matéria normal, ou gás, no aglomerado, os pesquisadores utilizaram um método de observação conhecido como efeito cinético Sunyaev-Zel'dovich (ou efeito SZ). Os astrônomos fizeram a primeira detecção observacional do efeito cinético SZ num objeto cósmico individual, um aglomerado de galáxias chamado MACS J0717, em 2013, utilizando dados do CSO (as primeiras observações do efeito SZ feitas de MACS J0018.5 datam de 2006). 

O efeito cinético SZ ocorre quando os fótons do início do Universo, a radiação cósmica de fundo em micro-ondas, se dispersam nos elétrons do gás quente a caminho da Terra. Os fótons sofrem um desvio, o chamado efeito Doppler, devido aos movimentos dos elétrons nas nuvens de gás ao longo da nossa linha de visão. Medindo a mudança de brilho da radiação cósmica de fundo em micro-ondas devido a este efeito, foi possível determinar a velocidade das nuvens de gás dentro dos aglomerados de galáxias. 

Em 2019, os pesquisadores tinham efetuado estas medições do efeito cinético SZ em vários aglomerados de galáxias, o que lhes indicava a velocidade do gás, ou matéria normal. Também utilizaram o Keck para conhecer a velocidade das galáxias no aglomerado, o que indicou, por aproximação, a velocidade da matéria escura (porque a matéria escura e as galáxias se comportam de forma semelhante durante a colisão). 

A equipe também usou os dados do Hubble para mapear a matéria escura usando um método conhecido como lente gravitacional. Adicionalmente, John ZuHone, do Centro de Astrofísica do Harvard & Smithsonian, ajudou a simular a destruição do aglomerado. Estas simulações foram usadas em combinação com os dados dos vários telescópios para determinar a geometria e a fase evolutiva do encontro entre os aglomerados

Os cientistas descobriram que, antes de colidirem, os aglomerados estavam se movendo um para o outro a cerca de 3.000 quilômetros/segundo, o que equivale a cerca de um por cento da velocidade da luz. 

Com uma imagem mais completa do que estava se passando, os pesquisadores conseguiram perceber porque é que a matéria escura e a matéria normal pareciam estar viajando em direções opostas. Embora seja difícil de visualizar, a orientação da colisão, juntamente com o fato da matéria escura e da matéria normal se terem separado uma da outra, explica as estranhas medições de velocidade. 

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: California Institute of Technology

terça-feira, 19 de março de 2024

Um novo modelo refuta a matéria escura

O modelo teórico atual para a composição do Universo diz que este é feito de matéria normal, energia escura e matéria escura.

© NightCafeStudio (galáxias e planetas no Universo primitivo)

Um novo estudo da Universidade de Ottawa põe em causa este modelo. Em cosmologia, o termo "matéria escura" descreve tudo o que parece não interagir com a luz ou com o campo eletromagnético, ou que só pode ser explicado através da força gravitacional. Não a podemos ver, nem sabemos de que é feita, mas ajuda-nos a compreender como as galáxias, os planetas e as estrelas se comportam. 

Rajendra Gupta, professor de física na Faculdade de Ciências da Universidade de Ottawa, utilizou uma combinação das teorias das constantes de acoplamento covariantes e da "luz cansada" (o chamado modelo CCC+TL) para chegar a esta conclusão. Este modelo combina duas ideias: sobre a forma como as forças da natureza diminuem ao longo do tempo cósmico e sobre o fato de a luz perder energia quando viaja uma longa distância. 

Foi testado e demonstrou estar de acordo com várias observações, nomeadamente sobre a forma como as galáxias estão espalhadas e como a luz do Universo primitivo evoluiu. Esta descoberta teórica desafia a compreensão dominante do Universo, que sugere que cerca de 27% do mesmo é composto por matéria escura e menos de 5% por matéria comum, sendo o restante energia escura. 

"As descobertas deste estudo confirmam que o nosso trabalho anterior (um artigo científico denominado "JWST early Universe observations and ΛCDM cosmology") sobre a idade do Universo ser de 26,7 bilhões de anos permitiu-nos descobrir que o Universo não precisa de matéria escura para existir", explica Gupta. 

"Na cosmologia padrão, diz-se que a expansão acelerada do Universo é causada pela energia escura, mas na realidade deve-se ao enfraquecimento das forças da natureza à medida que se expande, e não à energia escura", indaga Gupta. 

 Os desvios para o vermelho referem-se a quando a luz é desviada para a parte vermelha do espetro. O pesquisador analisou dados recentes acerca da distribuição de galáxias a baixos desvios para o vermelho e do tamanho angular do "horizonte sonoro" na literatura com altos desvios para o vermelho. "Há vários trabalhos que questionam a existência da matéria escura, mas o meu é o primeiro, que eu saiba, que elimina a sua existência cosmológica ao mesmo tempo que é consistente com as observações cosmológicas fundamentais que tivemos tempo de confirmar", diz Gupta. 

Ao pôr em causa a necessidade de matéria escura no Universo e ao fornecer evidências para um novo modelo cosmológico, este estudo abre novas vias para a exploração das propriedades fundamentais do Universo.

Um artigo científico foi publicado no periódico The Astrophysical Journal

Fonte: University of Ottawa

sábado, 28 de maio de 2022

Em busca da matéria escura

A matéria escura é um dos maiores mistérios da ciência moderna.

© Chandra/Hubble/Magellan (aglomerado de galáxias Bala)

Detecções do observatório de raios X Chandra mostram a separação da matéria comum (rosa) e da maioria da massa (azul) em uma colisão de galáxias do Aglomerado Bala, uma evidência convincente da existência de matéria escura.

Segundo a física teórica Chanda Prescod-Weinstein, toda a matéria observável que os instrumentos atuais conseguem apreender corresponde a cerca de 20% do Universo (e somente a 4%, se levarmos em conta a equivalência massa e energia): o resto deve ser populado por uma substância misteriosa, que contribui para a gravidade que observamos afetar os astros, mas não parece interagir de nenhuma forma com nossos detectores. 

Apesar de já ter sido sugerida desde os anos 1920, a primeira evidência conclusiva da existência da matéria escura veio nos anos 1960. A responsável foi a astrônoma Vera C. Rubin que observou que as estrelas na periferia da galáxia estavam se movendo rápido demais, se levarmos em consideração apenas a gravidade da matéria comum que compõe o Modelo Padrão. A partir daí, Rubin e o astrônomo Kent Ford publicaram extensas pesquisas sobre a substância nos anos 1970, e no início da década de 1980, os cientistas já concordavam sobre a matéria escura ser um problema da física. 

A separação dos campos abriu espaço para os físicos tentarem detectá-la em três categorias de experimentos. A detecção direta procura pela interação da matéria escura com a matéria comum dentro da força atômica fraca ou de outras forças hipotéticas. A abordagem oposta é a usada nos colisores de partículas, como o LHD (Grande Colisor de Hádrons), na França e Suíça, que busca colidir a matéria comum para tentar produzir matéria escura. E, a última delas é a detecção indireta, que procura por interações dessa substância consigo mesma, esperando gerar efeitos (como partículas ou colisões) detectáveis. 

Ainda que nenhuma das categorias tenha encontrado o que a matéria escura é, elas ajudaram a diminuir as possibilidades do que a substância pode ser. Atualmente, o modelo mais aceito é o da “matéria escura fria”, que a associa a partículas se movendo a velocidades muito inferiores a velocidade da luz. Dentro deste modelo, uma das linhas de explicação clássica são as WIMPs, que são partículas massivas que interagem fracamente.

Presumidamente, elas se formaram no Universo primitivo e podem interagir com a matéria comum através da força fraca. Um dos candidatos mais populares para a matéria escura estão na classe dos férmions, da qual também fazem parte elétrons e quarks. Porém, com o passar dos anos e a ausência da sua presença nos experimentos, os cientistas passaram a favorecer outra explicação: áxions, que são muito mais leves que as WIMPs e que possuem propriedades quânticas diferentes. 

Notavelmente, alguns teóricos afirmam que elas poderiam formar condensados de Bose-Einstein, um estado da matéria em que todas as partículas agem de forma coletiva, como uma espécie de “superpartícula”. 

A parte mais intrigante dessa teoria é que, se a matéria escura escura realmente corresponder a essas partículas, poderia formar este condensado naturalmente, no espaço, em diferentes estruturas de acordo com seus parâmetros e propriedades quânticas. Podem ser aglomerados semelhantes a asteroides, como defende Chanda Prescod-Weinstein, ou enormes halos ao redor de galáxias, em diferentes formatos, como defendem outros teóricos.

Se isso for verdadeiro, detectar a matéria escura pode ser uma questão de sondar o espaço e analisar o formato dessas estruturas; é aí que a astronomia se torna importante para os avanços da física de partículas. e o problema retorna para o campo no qual se originou, com as descobertas de Rubin. 

Ainda sabemos pouco sobre essa substância, e as chances de simplesmente detectá-la no espaço são mínimas. Ainda assim, o recente aumento de relevância nas pesquisas de matéria escura abre espaço para uma união entre físicos e astrônomos em busca de solucionar esse mistério. Com os achados da física, astrônomos podem vasculhar os céus por laboratórios já prontos, mais extremos do que qualquer um que possamos construir aqui na Terra, e talvez seja apenas nessas condições que a matéria escura se revele para nós. 

Fonte: Scientific American

terça-feira, 22 de junho de 2021

Galáxias com matéria escura em falta

A medição de distância mais precisa, até à data, da galáxia ultradifusa (UDG) NGC 1052-DF2 (DF2) confirma, sem sombra de dúvida, que lhe falta matéria escura.

© STScI/Hubble (estrelas vermelhas velhas na galáxia ultradifusa DF2)

Esta imagem pelo Hubble fornece uma amostra de estrelas vermelhas velhas na galáxia ultradifusa DF2. A ampliação à direita revela as muitas estrelas gigantes vermelhas velhas nos limites da galáxia, usadas como marcadores intergalácticos de distância. 

Os pesquisadores calcularam uma distância mais precisa de DF2 usando o Hubble para observar cerca de 5.400 gigantes vermelhas. Estas estrelas mais velhas alcançam todas o mesmo pico de brilho, de modo que são "réguas" confiáveis para medir distâncias a galáxias. Estima-se que a DF2 esteja a 72 milhões de anos-luz da Terra. 

Dizem que a medição de distância solidifica a afirmação que DF2 tem matéria escura em falta. A galáxia contém no máximo 1/400 da quantidade de matéria escura que os astrônomos esperavam, com base na teoria e em observações de muitas outras galáxias. Chamada uma galáxia ultradifusa, esta galáxia estranha tem quase o diâmetro da Via Láctea mas contém apenas 1/200 do seu número de estrelas. A galáxia fantasmagórica não parece ter uma região central perceptível, braços espirais ou um disco. As observações foram feitas entre dezembro de 2020 e março de 2021 com o instrumento ACS (Advanced Camera for Surveys) do Hubble. 

A distância recentemente medida de 22,1 +/-1,2 megaparsecs foi obtida por uma equipe internacional de pesquisadores liderados por Zili Shen e Pieter van Dokkum da Universidade de Yale e Shany Danieli, ligada ao Hubble no IAS (Institute for Advanced Study). A nova medição relatada neste estudo tem implicações cruciais para estimar as propriedades físicas da galáxia, confirmando assim a sua falta de matéria escura.

Os resultados são baseados em 40 órbitas do telescópio espacial Hubble, com imagens pelo instrumento ACS e uma análise TRGB ("tip of the red giant branch"), o padrão de ouro para estas medições refinadas. Em 2019, a equipe publicou resultados medindo a distância à vizinha UDG NGC 1052-DF4 (DF4) com base em 12 órbitas do Hubble e numa análise TRGB, que forneceu evidências convincentes da ausência de matéria escura. 

Este método preferido expande os estudos da equipe de 2018 que se baseavam em "flutuações de brilho da superfície" para medir a distância. Ambas as galáxias foram descobertas com o Dragonfly Telephoto Array no observatório New Mexico Skies.

Além de confirmar as descobertas de distância anteriores, os resultados do Hubble indicaram que as galáxias estavam localizadas um pouco mais longe do que se pensava anteriormente, reforçando o caso de que contêm pouca ou nenhuma matéria escura. Se DF2 estivesse mais perto da Terra, como afirmam alguns astrônomos, seria intrinsecamente mais fraca e menos massiva, e a galáxia precisaria de matéria escura para explicar os efeitos observados da massa total. 

A matéria escura é amplamente considerada um ingrediente essencial das galáxias, mas este estudo fornece mais evidências de que a sua presença pode não ser inevitável. Embora a matéria escura ainda não tenha sido observada diretamente, a sua influência gravitacional é como uma cola que mantém as galáxias unidas e governa o movimento da matéria visível.

No caso de DF2 e DF4, foi possível explicar o movimento das estrelas com base apenas na massa estelar, sugerindo uma falta ou ausência de matéria escura. Ironicamente, a detecção de galáxias deficientes em matéria escura provavelmente ajudará a revelar a sua natureza intrigante e fornecerá novas informações sobre a evolução galáctica. Apesar de DF2 e DF4 serem ambas comparáveis em tamanho à Via Láctea, as suas massas totais são apenas cerca de um por cento da massa da nossa Galáxia. Também se descobriu que estas galáxias ultradifusas têm uma grande população de aglomerados globulares especialmente luminosos. 

Esta pesquisa gerou um grande interesse acadêmico, bem como um debate energético entre os proponentes de teorias alternativas para a matéria escura, como a teoria MOND (Modified Newtonian Dynamics). No entanto, com as descobertas mais recentes, incluindo as distâncias relativas das duas UDGs a NGC1052, tais teorias alternativas parecem menos prováveis. Além disso, agora há pouca incerteza nas medições de distância, dada a utilização do método TRGB. Com base na física fundamental, este método depende da observação de estrelas gigantes vermelhas que emitem um flash depois de queimar o seu reservatório de hélio que sempre ocorre com o mesmo brilho. 

Seguindo em frente, os pesquisadores vão continuar caçando mais destas galáxias estranhas, enquanto consideram uma série de questões: como é que as UDGs são formadas? O que nos dizem sobre os modelos cosmológicos padrão? Quão comuns são estas galáxias, e que outras propriedades únicas têm? Será necessário descobrir muitas mais galáxias sem matéria escura para resolver estes mistérios e a questão final sobre o que realmente é a matéria escura.

Os resultados foram publicados periódico The Astrophysical Journal Letters.

Fonte: Institute for Advanced Study

sábado, 19 de junho de 2021

Matéria escura está diminuindo a rotação da barra da Via Láctea

De acordo com um novo estudo realizado por pesquisadores da University College London (UCL) e da Universidade de Oxford, a rotação da barra galáctica da Via Láctea, que é composta por bilhões de estrelas agrupadas, diminuiu cerca de um-quarto desde a sua formação.

© P. C. Budassi (ilustração da Via Láctea)

Durante 30 anos, os astrofísicos previram esta desaceleração, mas esta é a primeira vez que foi medida. Os pesquisadores afirmam que fornece um novo tipo de visão sobre a natureza da matéria escura, que atua como um contrapeso, desacelerando a rotação.

No estudo, os pesquisadores analisaram observações do telescópio espacial Gaia de um grande grupo de estrelas, a corrente de Hércules, que estão em ressonância com a barra, isto é, giram em torno da Galáxia à mesma velocidade que a barra.

Estas estrelas estão capturadas gravitacionalmente pela barra giratória. O mesmo fenômeno ocorre com os asteroides gregos e troianos de Júpiter, que orbitam nos pontos Lagrange de Júpiter (à frente e atrás de Júpiter). Se a rotação da barra diminuir, espera-se que estas estrelas se movam para mais longe na Galáxia, mantendo o seu período orbital igual à rotação da barra. 

Os cientistas descobriram que as estrelas na corrente transportam uma impressão digital química, são mais ricas em elementos mais pesados (metais), provando que se afastaram do centro galáctico, onde as estrelas e os gases que as formam são cerca de 10 vezes mais ricos em metais em comparação com as seções exteriores da nossa Galáxia.

Usando estes dados, a equipe inferiu que a barra, composta por bilhões de massas solares, diminuiu a sua rotação em pelo menos 24% desde que se formou. Os astrofísicos há muito que suspeitam que a barra giratória no centro da nossa Galáxia está diminuindo de velocidade, mas só agora foi encontrada as primeiras evidências de tal acontecimento. O contrapeso que reduz esta rotação deve ser a matéria escura. Até agora, só foi possível inferir a matéria escura mapeando o potencial gravitacional das galáxias e subtraindo a contribuição da matéria visível.

Este estudo fornece um novo tipo de medição da matéria escura, não da sua energia gravitacional, mas da sua massa inercial, ou seja, a resposta dinâmica, que diminui a velocidade de rotação da barra.

Pensa-se que a Via Láctea, como as outras galáxias, esteja embebida num "halo" de matéria escura que se estende bem além da sua orla visível. A matéria escura é invisível e a sua natureza é desconhecida, mas a sua existência é inferida de galáxias que se comportam como se estivessem envoltas numa massa significativamente maior do que aquilo que é possível ver. Existe cerca de cinco vezes mais matéria escura no Universo do que matéria visível comum.

As teorias alternativas da gravidade, como a dinâmica Newtoniana modificada, rejeitam a ideia de matéria escura, e ao invés procuram explicar as discrepâncias ajustando a teoria da relatividade geral de Einstein. 

A Via Láctea é uma galáxia espiral barrada, com uma espessa barra de estrelas no meio e braços espirais que se estendem pelo disco. A barra gira na mesma direção que a Galáxia.

O estudo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University College London

segunda-feira, 29 de março de 2021

O aglomerado de estrelas mais próximo do Sol está sendo destruído?

Dados do satélite de mapeamento estelar Gaia da ESA revelaram evidências tentadoras de que o aglomerados de estrelas mais próximo do Sol está sendo perturbado pela influência gravitacional de uma estrutura massiva, mas invisível, na nossa Galáxia.

© Hubble (Híades)

A ser verdade, isto pode fornecer evidências de uma população suspeita de "sub-halos de matéria escura". Estas nuvens invisíveis de partículas são consideradas relíquias da formação da Via Láctea, e estão agora espalhadas pela Galáxia, formando uma subestrutura invisível que exerce uma influência gravitacional perceptível em qualquer coisa que se aproxime demais. 

A pesquisadora Tereza Jerabkova e colegas da ESA e do ESO fizeram a descoberta enquanto estudavam a forma como um aglomerado estelar próximo está se fundindo com o plano de fundo geral das estrelas na nossa Galáxia. Esta descoberta teve por base o catálogo EDR3 (Early third Data Release) do Gaia e dados do segundo catálogo. 

A equipe escolheu as Híades como o seu alvo porque é o aglomerado de estrelas mais próximo do Sol. Está localizado a pouco mais de 153 anos-luz de distância e é facilmente visível para os observadores do céu nos hemisfério norte e sul como uma forma conspícua em "V" de estrelas brilhantes que assinalam a cabeça da constelação de Touro.

Além das estrelas brilhantes facilmente visíveis, os telescópios revelam cerca de cem estrelas mais fracas contidas numa região esférica do espaço com aproximadamente 60 anos-luz de diâmetro. Um aglomerado perderá estrelas naturalmente, porque à medida que estas estrelas se movem dentro do aglomerado, puxam-se gravitacionalmente. Estas atrações gravitacionais constantes mudam ligeiramente as velocidades das estrelas, movendo algumas para as orlas do aglomerado. 

A partir daí, as estrelas podem ser varridas pela atração gravitacional da galáxia, formando duas longas caudas. Uma cauda segue o aglomerado, a outra vai à sua frente. São conhecidas como caudas de maré e foram amplamente estudadas em galáxias em colisão, mas até muito recentemente ninguém as tinha visto num aglomerado estelar aberto próximo.

A chave para detectar caudas de maré é identificar quais as estrelas no céu que se movem de maneira semelhante ao aglomerado estelar. O Gaia torna isto fácil porque mede com precisão a distância e o movimento de mais de um bilhão de estrelas na nossa Galáxia. 

As tentativas anteriores por outras equipes tiveram apenas sucesso limitado porque os foram procuradas estrelas que correspondessem intimamente ao movimento do aglomerado. Isto excluiu membros que partiram no início da sua história de 600-700 milhões de anos e que estão agora viajando em órbitas diferentes. 

Para entender o alcance das órbitas foi construído um modelo de computador que simulava as várias perturbações que as estrelas fugitivas do aglomerado poderiam sentir durante as suas centenas de milhões de anos no espaço. Foi depois de executar este código e, em seguida, comparar as simulações com os dados reais, que a verdadeira extensão das caudas de maré das Híades foram reveladas.

Tereza e colegas encontraram milhares de ex-membros nos dados do Gaia. Estas estrelas estendem-se agora por milhares de anos-luz ao longo da Galáxia em duas enormes caudas de maré. Mas a verdadeira surpresa foi que a cauda de maré traseira parecia ter estrelas em falta. Isto indica que algo muito mais brutal está ocorrendo do que o aglomerado estelar se dispersando suavemente.Notou-se que os dados poderiam ser reproduzidos se aquela cauda colidisse com uma nuvem de matéria contendo cerca de 10 milhões de massas solares.

Mas o que poderia ser este amontoado de matéria? Não existem observações de uma nuvem de gás ou de um aglomerado estelar tão massivo nas proximidades. Se nenhuma estrutura visível for detectada mesmo em levantamentos futuros, Tereza sugere que este objeto pode ser um sub-halo de matéria escura. 

Estes são agregados naturais de matéria escura que se pensa ajudarem a moldar a galáxia durante a sua formação. Este novo trabalho mostra como o Gaia está ajudando os astrônomos a mapear esta estrutura invisível de matéria escura da Galáxia. "Com o Gaia, a forma como vemos a Via Láctea mudou completamente. E tendo provado a técnica com as Híades, os pesquisadores estão agora estendendo o trabalho à procura de caudas de maré em outros aglomerados de estrelas mais distantes.

Fonte: ESA

quarta-feira, 3 de março de 2021

Os buracos negros supermassivos são formados de matéria escura?

Um novo estudo teórico propôs um curioso mecanismo para a criação de buracos negros supermassivos a partir de matéria escura.

© ESO/L. Calçada (galáxia espiral num halo de matéria escura)

A equipe internacional descobriu que, em vez dos cenários de formação convencionais envolvendo matéria "normal", os buracos negros supermassivos poderiam ao invés formar-se diretamente a partir de matéria escura em regiões de alta densidade no centro das galáxias.

O resultado tem implicações importantes para a cosmologia no início do Universo. Exatamente como os buracos negros supermassivos se formaram inicialmente é um dos maiores problemas de hoje no estudo da evolução galáctica. Os buracos negros supermassivos foram observados 800 milhões de anos após o Big Bang, e permanece inexplicável como podem ter crescido tão depressa.

Os modelos de formação padrão envolvem matéria bariônica normal, ou seja, os átomos e os elementos que compõem as estrelas, planetas e todos os objetos visíveis, colapsando sob a gravidade para formar buracos negros, que então crescem com o tempo.

No entanto, o novo trabalho investiga a existência potencial de núcleos galácticos estáveis feitos de matéria escura e rodeados por um halo de matéria escura diluída, descobrindo que os centros destas estruturas podem tornar-se tão concentrados que também podem colapsar em buracos negros supermassivos, assim que é atingido um limite crítico. 

De acordo com o modelo, isto poderia ter acontecido muito mais depressa do que outros mecanismos de formação propostos e teria permitido que os buracos negros supermassivos no início do Universo se formassem antes das galáxias que habitam, ao contrário da compreensão atual. 

Carlos R. Argüelles, o pesquiador da Universidade Nacional de La Plata e do ICRANet (International Center for Relativistic Astrophysics Network) que liderou a pesquisa, comenta: "Este novo cenário de formação pode fornecer uma explicação natural para como os buracos negros supermassivos se formaram no início do Universo, sem exigir a formação prévia de estrelas ou a necessidade de invocar 'sementes' de buracos negros com ritmos de acreção irrealistas." 

Outra consequência intrigante do novo modelo é que a massa crítica para o colapso num buraco negro pode não ser alcançada para halos menores de matéria escura, por exemplo aqueles que rodeiam algumas galáxias anãs. Os autores sugerem que isso pode deixar as galáxias anãs menores com um núcleo central de matéria escura em vez do esperado buraco negro. Este núcleo de matéria escura ainda poderia imitar as assinaturas gravitacionais de um buraco negro central convencional, enquanto o halo externo de matéria escura também poderia explicar as curvas de rotação observadas da galáxia.

"Este modelo mostra como os halos de matéria escura podem abrigar densas concentrações nos seus centros, o que pode desempenhar um papel crucial para ajudar a entender a formação de buracos negros supermassivos," acrescentou Carlos. 

Isto prova pela primeira vez que estas distribuições de matéria escura de núcleo-halo podem, realmente, se formar numa estrutura cosmológica e permanecer estáveis por toda a vida do Universo.

Os autores esperam que mais estudos esclareçam a formação de buracos negros supermassivos nos primeiros dias do nosso Universo, bem como investiguem se os centros de galáxias não ativas, incluindo a Via Láctea, podem hospedar estes densos núcleos de matéria escura.

O resultado foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society