Mostrando postagens com marcador Sistema Solar. Mostrar todas as postagens
Mostrando postagens com marcador Sistema Solar. Mostrar todas as postagens

sexta-feira, 22 de agosto de 2025

Descoberta uma nova lua em torno de Urano

Utilizando o telescópio espacial James Webb da NASA, uma equipe liderada pelo SwRI (Southwest Research Institute) identificou uma lua anteriormente desconhecida em órbita de Urano, elevando a família de satélites conhecidos do planeta para 29.

© NASA (nova lua de Urano)

Esta imagem mostra a lua, designada S/2025 U1, bem como 13 das outras 28 luas conhecidas que orbitam o planeta (a pequena lua Cordélia orbita mesmo no interior do anel mais exterior, mas não é visível nestas imagens devido ao brilho dos anéis). Devido às diferenças drásticas nos níveis de brilho, a imagem é uma composição de três tratamentos diferentes dos dados, permitindo ao observador ver detalhes da atmosfera planetária, dos anéis circundantes e das luas em órbita.

A detecção foi feita durante uma observação do Webb em 2 de fevereiro de 2025. Este objeto foi detectado numa série de 10 imagens de longa exposição com 40 minutos cada obtidas pelo instrumento NIRCam (Near-Infrared Camera). É uma lua pequena, mas uma descoberta significativa, que é algo que nem a nave espacial Voyager 2 da NASA, que passou por Urano no dia 24 de janeiro de 1986, viu durante o seu sobrevoo há quase 40 anos. 

Estima-se que a lua recém-descoberta tenha apenas 10 quilômetros de diâmetro, assumindo que tem uma refletividade (albedo) semelhante à dos outros pequenos satélites de Urano. Este tamanho minúsculo tornou-a provavelmente invisível à Voyager 2 e a outros telescópios.

Nenhum outro planeta tem tantas pequenas luas interiores como Urano, e as suas complexas inter-relações com os anéis sugerem uma história caótica que dilui a fronteira entre um sistema de anéis e um sistema de luas. Além disso, a nova lua é a menor e muito mais tênue do que a menor das luas interiores anteriormente conhecidas, o que torna provável que ainda haja mais complexidade por descobrir.

© SwRI (localização da nova lua de Urano)

Aimagem acima mostra a localização aproximada de S/2025 U 1, em amarelo. As elipses sólidas indicam anéis, enquanto as linhas em tracejado mostram as órbitas de muitas das luas interiores. A nova lua é o 14.º membro do intrincado sistema de pequenas luas que orbitam mais perto do que as maiores luas Miranda, Ariel, Umbriel, Titânia e Oberon (todas as luas de Urano têm nomes de personagens de Shakespeare e Alexander Pope).

A nova lua está localizada a cerca de 56.000 quilômetros do centro de Urano, orbitando o plano equatorial do planeta entre as órbitas de Ofélia (que está fora do sistema de anéis principal de Urano) e Bianca. A sua órbita quase circular sugere que pode ter sido formada perto da sua posição atual.

O nome da lua recém-descoberta terá de ser aprovado pela União Astronômica Internacional, a principal autoridade na atribuição de nomes e designações oficiais dos objetos astronômicos.

Fonte: Southwest Research Institute

sábado, 16 de agosto de 2025

A influência dos planetas pode atenuar a atividade solar

O nosso Sol é cerca de cinco vezes menos magneticamente ativo do que outras estrelas semelhantes.

© Solar Dynamics Observatory (ejeção de massa coronal do Sol)

A razão para isso pode residir nos planetas do nosso Sistema Solar, afirmam pesquisadores do HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Nos últimos dez anos, desenvolveram um modelo que deriva praticamente todos os ciclos de atividade conhecidos do Sol a partir da influência cíclica das forças de maré dos planetas. Agora, também conseguiram demonstrar que essa sincronização externa reduz automaticamente a atividade solar.

De momento, o Sol está atingindo um nível máximo de atividade que só é observado a cada onze anos, aproximadamente. É por isso que nós, na Terra, observamos mais auroras polares e tempestades solares, bem como um clima espacial turbulento em geral. Isto tem impacto nos satélites espaciais e até mesmo na infraestrutura tecnológica da Terra. Apesar disso, em comparação com outras estrelas semelhantes ao Sol, as erupções de radiação mais fortes do nosso Sol são 10 a 100 vezes mais fracas.

Este ambiente relativamente tranquilo pode ser uma condição prévia importante para a Terra ser habitável. Não menos importante por esta razão, os físicos solares querem compreender o que impulsiona precisamente a atividade solar. Sabe-se que a atividade solar tem muitos padrões, flutuações periódicas mais curtas e mais longas, que variam de algumas centenas de dias a vários milhares de anos. Mas há maneiras muito diferentes de explicar os mecanismos físicos subjacentes.

O modelo desenvolvido pela equipa liderada por Frank Stefani, do Instituto de Dinâmica de Fluidos do HZDR, vê os planetas como marca-passos: segundo essa compreensão, aproximadamente a cada onze anos, Vênus, Terra e Júpiter concentram as suas forças de maré combinadas no Sol. Através de um mecanismo físico complexo, de cada vez que o fazem, dão um pequeno empurrão ao impulso magnético interno do Sol. Em combinação com o movimento orbital em forma de roseta do Sol, isto leva a flutuações periódicas sobrepostas de durações variáveis, exatamente como observado no Sol.

No trabalho recente, os pesquisadores dão o nome OQB (Oscilação Quasi-Bienal), uma flutuação aproximadamente bianual em vários aspetos da atividade solar. O ponto especial aqui é que, a OQB não só pode ser atribuída a um período preciso, mas também leva automaticamente a uma atividade solar atenuada. Até agora, os dados solares geralmente relatavam períodos de OQB de 1,5 a 1,8 anos.

Em trabalhos anteriores, alguns pesquisadores sugeriram uma ligação entre a OQB e os chamados eventos GLE (Ground Level Enhancement). São ocorrências esporádicas durante as quais partículas solares ricas em energia provocam um aumento repentino da radiação cósmica na superfície da Terra. Um estudo realizado em 2018 mostra que os eventos de radiação medidos perto do solo ocorreram mais na fase positiva de uma oscilação com um período de 1,73 anos. Ao contrário da suposição habitual de que essas erupções de partículas solares são fenômenos aleatórios, esta observação indica um processo cíclico fundamental. Foi descoberto a maior correlação para um período de 1,724 anos. 

Apesar do campo magnético do Sol oscilar entre o mínimo e o máximo ao longo de um período de onze anos, a OQB impõe um padrão adicional de curto prazo na intensidade do campo. Isto reduz a intensidade geral do campo, pois o campo magnético do Sol não mantém o seu valor máximo por tanto tempo. Um diagrama de frequência revela dois picos: um na intensidade máxima do campo e outro quando a OQB oscila de volta. Este efeito é conhecido como bimodalidade do campo magnético solar. No modelo, os dois picos fazem com que a intensidade média do campo magnético solar seja reduzida, uma consequência lógica da OQB.

Este efeito é muito importante porque o Sol é mais ativo durante as intensidades de campo mais altas. É quando ocorrem os eventos mais intensos, com enormes tempestades geomagnéticas, como o evento Carrington de 1859, quando auroras polares puderam ser vistas até em Roma e Havana, e altas tensões danificaram linhas telegráficas. Se o campo magnético do Sol permanecer em intensidades de campo mais baixas por um período significativamente mais longo, no entanto, isso reduz a probabilidade de eventos muito violentos.

Um artigo foi publicado no periódico Solar Physics.

Fonte: HZDR

terça-feira, 22 de julho de 2025

Urano é mais quente do que se pensava

Durante milênios, os astrônomos pensaram que Urano não era mais do que uma estrela distante. Só no final do século XVIII é que Urano foi universalmente aceito como um planeta.

© JWST (Urano)

Ainda hoje, este mundo azul e com anéis subverte as expectativas dos cientistas, mas uma nova pesquisa da NASA ajuda a esclarecer alguma da mística do planeta. Urano é diferente de qualquer outro planeta do nosso Sistema Solar. Gira de lado, o que significa que cada polo está diretamente virado para o Sol durante um "verão" contínuo de 42 anos. Úrano também gira na direção oposta à de todos os planetas, exceto Vênus.

Os dados do sobrevoo da Voyager 2 da NASA por Urano, em 1986, também sugerem que o planeta é incomumente frio no seu interior, desafiando a reconsideração de teorias fundamentais de como os planetas se formaram e evoluíram no nosso Sistema Solar.

As projeções de Urano foram feitas a partir de uma única medição de perto do calor emitido pelo planeta, feita pela Voyager 2: Agora, usando uma técnica avançada de modelação por computador e revisitando décadas de dados, foi descoberto que Urano gera algum calor.

O calor interno de um planeta pode ser calculado comparando a quantidade de energia que recebe do Sol com a quantidade de energia que libera para o espaço sob a forma de luz refletida e calor emitido. Os outros planetas gigantes do Sistema Solar: Saturno, Júpiter e Netuno emitem mais calor do que o que recebem, o que significa que o calor extra vem do interior, em grande parte devido aos processos altamente energéticos que formaram os planetas há 4,5 bilhões de anos.

A quantidade de calor que um planeta emana pode ser uma indicação da sua idade: quanto menos calor liberado em relação ao calor absorvido do Sol, mais velho é o planeta. Urano destacava-se dos outros planetas porque parecia liberar tanto calor como o que recebia, o que implicava que não tinha calor próprio. Este fato intrigou os cientistas. Alguns levantaram a hipótese de que talvez o planeta seja muito mais velho do que todos os outros e tenha arrefecido completamente. Outros propuseram que uma colisão gigantesca, a mesma que pode ter colocado o planeta de lado, teria liberado todo o calor de Urano. Mas nenhuma destas hipóteses são satisfatórias. Será que não existe mesmo calor interno em Urano?

Após refazer os cálculos para ver quanta luz solar é refletida por Urano, os cientistas perceberam que ele é mais refletivo do que as pessoas tinham estimado. Os pesquisadores propuseram-se determinar o orçamento energético total de Urano: a quantidade de energia que recebe do Sol, a quantidade que reflete como luz solar e a quantidade que emite como calor. Para isso, precisavam de estimar a quantidade total de luz refletida pelo planeta em todos os ângulos.

Foram usados dados da atmosfera de Urano a partir de décadas de observações de telescópios terrestres e espaciais, incluindo o telescópio espacial Hubble e o IRTF (Infrared Telescope Facility) da NASA no Havaí. Um modelo computacional foi desenvolvido incluindo informações sobre as neblinas, nuvens e mudanças sazonais do planeta, que afetam a forma como a luz solar é refletida e como o calor escapa. Os pesquisadores descobriram que Urano libera cerca de 15% mais energia do que a que recebe do Sol.

Estes estudos sugerem que Urano tem o seu próprio calor, embora ainda muito menos do que o seu vizinho Netuno, que emite mais do dobro da energia que recebe. Desvendar o passado de Urano é útil não só para mapear a cronologia de quando os planetas do Sistema Solar se formaram e migraram para as suas órbitas atuais, mas também ajuda os cientistas a compreender melhor muitos dos exoplanetas, a maioria dos quais têm o mesmo tamanho que Urano.

Dois artigos foram publicados nos periódicos Geophysical Research Letters e Monthly Notices of the Royal Astronomical Society.

Fonte: NASA

segunda-feira, 23 de junho de 2025

A nossa água é mais velha do que o Sol?

Uma equipe liderada por astrônomos da Universidade de Leiden, nos Países Baixos, e do NRAO (National Radio Astronomy Observatory), na Virgínia (EUA), detectou, pela primeira vez, água gelada semipesada em torno de uma jovem estrela semelhante ao Sol.

© STScI / Webb (sistema protoestelar L1527 IRS)

Os pesquisadores utilizaram o telescópio espacial James Webb, cujos resultados reforçam a hipótese de que parte da água no nosso Sistema Solar se formou antes do Sol e dos planetas.

Uma das formas de os astrônomos descobrirem a origem da água é através da medição da taxa de deuteração. Esta é a fração de água que contém um átomo de deutério em vez de um dos hidrogênios. Assim, em vez de H2O, é HDO, que também é chamada água semipesada. Uma fração elevada de água semipesada é um sinal de que a água se formou num local muito frio, como as nuvens escuras primitivas de poeira, gelo e gás de onde nascem as estrelas.

Nos nossos oceanos, nos cometas e nas luas geladas, uma em cada dois milhares de moléculas de água é constituída por água semipesada. Este valor é cerca de dez vezes superior ao esperado com base na composição do nosso Sol. Por isso, foi colocada a hipótese de parte da água do nosso Sistema Solar ter tido origem como gelo em nuvens escuras, centenas de milhares de anos antes do nascimento do Sol.

Para confirmar esta hipótese, é necessário medir a taxa de deuteração da água gelada nestas regiões de formação estelar. Astrônomos detectaram agora uma proporção muito elevada de água gelada semipesada num invólucro protoestelar. Esta é a nuvem de material que rodeia uma estrela na sua fase embrionária. Antes, a taxa de deuteração da água em regiões de formação estelar só podia ser medida de forma confiável na fase gasosa, onde pode ser quimicamente alterada. Agora, com a sensibilidade sem precedentes do Webb, foi observada uma assinatura muito clara de água gelada semipesada na direção da protoestrela L1527 IRS, localizada na constelação de Touro, a cerca de 460 anos-luz da Terra.

A taxa de deuteração da água em L1527 IRS é muito semelhante à taxa de alguns cometas, bem como ao do disco protoplanetário de uma estrela jovem mais evoluída, o que sugere origens químicas antigas e frias semelhantes para a água encontrada em todos estes objetos.

Esta descoberta vem juntar-se às evidências crescentes de que a maior parte da água gelada faz a sua viagem praticamente inalterada desde as primeiras até às últimas fases da formação estelar. No entanto, a taxa de deuteração da água gelada medido em L1527 IRS é ligeiramente superior às taxas medidas em alguns cometas do nosso Sistema Solar e à taxa de água na Terra.

Uma variedade de fatores pode causar esta diferença. Por exemplo, alguma da água nestes cometas e na Terra pode ter sido quimicamente alterada no disco. Ou a nuvem escura que formou o nosso Sol pode ser diferente da nuvem escura onde L1527 IRS se formou. Estão planejadas mais observações de água gelada semipesada para investigar possíveis razões para estas diferenças em 30 novas protoestrelas e nuvens escuras primitivas.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Leiden University

domingo, 15 de junho de 2025

As luas de Urano revelam uma surpresa

Cientistas recorreram ao telescópio espacial Hubble para procurar evidências de um fenômeno e encontraram outro bem diferente.

© STScI (Urano e suas luas clássicas)

Os pesquisadores estudaram as quatro maiores luas do gigante gelado Urano, o sétimo planeta a contar do Sol, procurando sinais de interações entre a sua magnetosfera e as superfícies das luas. A magnetosfera é uma região em torno de um corpo celeste onde as partículas com carga elétrica são afetadas pelo campo magnético do objeto astronômico. Em particular, foi previsto que, com base nas interações com a magnetosfera de Urano, os lados "dianteiros" destas luas com acoplamento de maré, ou seja, que têm sempre o mesmo lado voltado para o planeta, seriam mais brilhantes do que os lados "traseiros", sempre virados para o lado oposto. Isto deve ser devido ao escurecimento da radiação dos seus lados ocultos [para o planeta] por partículas carregadas, tais como elétrons presos na magnetosfera de Urano.

Em vez disso, não foram encontradas evidências de escurecimento nos hemisférios traseiros das luas, e evidências claras de escurecimento dos lados dianteiros das luas exteriores. Isto surpreendeu a equipe e indica que a magnetosfera de Urano pode não interagir muito com as suas grandes luas, contrariando os dados existentes recolhidos nos comprimentos de onda do infravermelho próximo.

A nítida visão ultravioleta e as capacidades espectroscópicas do Hubble foram fundamentais para permitir a exploração das condições da superfície destas luas e revelar a surpreendente descoberta, apresentada no passado dia 10 de junho na 246.ª reunião da Sociedade Astronómica Americana, em Anchorage, Alasca. 

As quatro luas deste estudo: Ariel, Umbriel, Titânia e Oberon sofrem acoplamento de maré, de modo que mostram sempre o mesmo lado para o planeta Urano. A ideia era que as partículas carregadas presas ao longo das linhas do campo magnético atingissem principalmente o lado oculto de cada lua, o que escureceria este hemisfério. 

Urano tem uma inclinação de 98 graus em relação à eclíptica. Isto significa que ele está dramaticamente inclinado em relação ao plano orbital dos planetas. Urano viaja muito lentamente em torno do Sol, de lado, à medida que completa a sua órbita de 84 anos terrestres. Durante o sobrevoo da Voyager 2, a magnetosfera de Urano estava inclinada cerca de 59 graus em relação ao plano orbital dos satélites. Por isso, há uma inclinação adicional do campo magnético. Como Urano e as suas linhas de campo magnético giram mais depressa do que as suas luas orbitam o planeta, passam constantemente por elas. Se a magnetosfera de Urano interagir com as suas luas, as partículas carregadas deverão atingir preferencialmente a superfície dos hemisférios traseiros. Estas partículas carregadas, bem como os raios cósmicos da Via Láctea, devem escurecer os hemisférios traseiros de Ariel, Umbriel, Titânia e Oberon e possivelmente gerar o dióxido de carbono detectado nestas luas.

A equipe esperava que, especialmente no caso das luas interiores Ariel e Umbriel, estes hemisférios fossem mais escuros do que os lados dianteiros nos comprimentos de onda do ultravioleta e no visível. Mas não foi isso que descobriram. Ao que parece, os hemisférios dianteiro e traseiro de Ariel e Umbriel são de fato muito semelhantes em termos de brilho. No entanto, os pesquisadores observaram uma diferença entre os hemisférios das duas luas exteriores, Titânia e Oberon. Ainda mais estranho é o fato de a diferença de brilho ser o oposto do que esperavam. As duas luas exteriores têm hemisférios dianteiros mais escuros e mais vermelhos do que os hemisférios traseiros. Os astrônomos pensam que a poeira de alguns dos satélites irregulares de Urano está cobrindo os lados dianteiros de Titânia e Oberon. 

Os satélites irregulares são corpos naturais que têm órbitas grandes, excêntricas e inclinadas em relação ao plano equatorial do seu planeta. Micrometeoritos estão constantemente atingindo as superfícies dos satélites irregulares de Urano, liberando pequenos pedaços de material para órbita do planeta. Ao longo de milhões de anos, este material poeirento move-se para dentro em direção a Urano e eventualmente atravessa as órbitas de Titânia e de Oberon.

Estas luas exteriores varrem a poeira e apanham-na principalmente nos seus hemisférios dianteiros, que estão virados para o planeta. É como os insetos que batem no para-brisas do carro quando se conduz numa rodovia. Este material faz com que Titânia e Oberon tenham hemisférios dianteiros mais escuros e mais avermelhados. Estas luas exteriores protegem efetivamente as luas interiores Ariel e Umbriel da poeira, razão pela qual os hemisférios das luas interiores não mostram uma diferença de brilho.

Fonte: Space Telescope Science Institute

terça-feira, 27 de maio de 2025

Encontrado um primo extremo de Plutão?

Uma pequena equipe liderada por Sihao Cheng, da Escola de Ciências Naturais do IAS (Institute for Advanced Study), descobriu um extraordinário objeto trans-Netuniano (OTN) denominado 2017 OF201, no limite do nosso Sistema Solar.

© NASA / Sihao Cheng (OTN e planetas anões)

Os cinco planetas anões reconhecidos pela União Astronômica Internacional, juntamente com o recém-descoberto OTN 2017 OF201.

O OTN é potencialmente grande o suficiente para ser classificado como um planeta anão, a mesma categoria que o muito mais conhecido Plutão. O novo objeto é um dos objetos visíveis mais distantes do nosso Sistema Solar e, significativamente, sugere que a seção vazia do espaço que se pensa existir para além de Netuno, no Cinturão de Kuiper, não está vazia.

Cheng fez a descoberta juntamente com os colegas Jiaxuan Li e Eritas Yang da Universidade de Princeton, utilizando métodos computacionais avançados para identificar a trajetória do objeto no céu. O novo objeto foi oficialmente anunciado pelo Centro de Planetas Menores da União Astronômica Internacional no passado dia 21 de maio de 2025. 

Os objetos trans-Netunianos são planetas menores que orbitam o Sol a uma distância média superior à da órbita de Netuno. O novo OTN é especial por duas razões: a sua órbita extrema e o seu grande tamanho. O afélio do objeto, ou seja, o ponto mais distante da órbita em torno do Sol, é mais de 1.600 vezes superior ao da órbita da Terra. Entretanto, o seu periélio, ou seja, o ponto da sua órbita mais próximo do Sol, é 44,5 vezes superior à órbita da Terra, semelhante à órbita de Plutão. 

Cheng descobriu o objeto como parte de um projeto de pesquisa em curso para identificar OTNs e possíveis novos planetas no Sistema Solar exterior. O objeto foi identificado através da observação de pontos brilhantes numa base de dados de imagens astronômicas do telescópio Victor M. Blanco e do CFHT (Canada–France–Hawaii Telescope), e tentando ligar todos os grupos possíveis desses pontos que pareciam mover-se no céu da mesma forma que um único OTN. 

Esta busca foi efetuada utilizando um algoritmo computacionalmente eficiente produzido por Cheng. Em última análise, identificaram 2017 OF201 em 19 exposições diferentes, captadas ao longo de 7 anos. A descoberta tem implicações significativas para a nossa compreensão do Sistema Solar exterior. A área localizada para além do Cinturão de Kuiper, onde se encontra o objeto, foi anteriormente considerada como estando essencialmente vazia, mas a descoberta da equipe sugere que não é bem assim.

© Jiaxuan Li / Sihao Cheng (localização atual de Plutão, Netuno e 2017 OF201)

A imagem acima mostra a órbita e localização atual do OTN 2017 OF201, o planeta anão plutão e o planeta Netuno.

O 2017 OF201 passa apenas 1% do seu tempo orbital suficientemente perto de nós para ser detectável. A presença deste único objeto sugere que poderá haver mais uma centena de outros objetos com órbita e tamanho semelhantes; estão apenas demasiado longe para serem detectáveis agora. Embora os avanços nos telescópios nos tenham permitido explorar partes distantes do Universo, ainda há muito a descobrir sobre o nosso próprio Sistema Solar.

A detecção também demonstra o poder da ciência aberta. Todos os dados que foram utilizados para identificar e caracterizar este objeto são dados de arquivo que estão disponíveis para qualquer pessoa, não apenas para os astrônomos profissionais. Isto significa que as descobertas inovadoras não estão limitadas àqueles que têm acesso aos maiores telescópios do mundo. Qualquer pesquisador, estudante ou mesmo cientista cidadão com as ferramentas e conhecimentos adequados poderia ter feito esta descoberta, realçando o valor da partilha de recursos científicos.

Fonte: Institute for Advanced Study