Os astrônomos pensam agora saber porque é que Urano e Netuno têm cores diferentes. Usando observações do telescópio espacial Hubble, bem como do telescópio Gemini North e do IRTF (Infrared Telescope Facility) da NASA, os pesquisadores desenvolveram um modelo atmosférico único que corresponde às observações de ambos os planetas.
© NASA/ESA (Urano e Netuno)
O telescópio espacial Hubble mostra, na imagem à esquerda, em 25 de outubro de 2021, o brilhante "capô" polar no norte do planeta Urano. E na imagem à direita, obtida dia 7 de setembro de 2021, o telescópio espacial Hubble mostra Netuno com o hemisfério norte escurecido.
O modelo revela que o excesso de neblina em Urano acumula-se na atmosfera estagnada e faz com que pareça ter um tom mais leve do que Netuno. Os planetas Netuno e Urano têm muito em comum, possuem massas, tamanhos e composições atmosféricas semelhantes, mas as suas aparências são notavelmente diferentes.
Em comprimentos de onda visíveis, Netuno tem um tom azul rico e profundo, enquanto Urano tem um tom ciano nitidamente pálido. Os astrônomos têm agora uma explicação para o fato de os dois planetas terem cores diferentes. Novas observações sugerem que uma camada de neblina concentrada, presente em ambos os planetas, é mais espessa em Urano do que em Netuno e, portanto, "branqueia" a aparência de Urano mais do que a de Netuno. Se não houvesse névoa nas atmosferas de Netuno e Urano, ambos seriam quase igualmente azuis como resultado da luz azul espalhada nas suas atmosferas.
As cores vermelhas da luz do Sol, espalhadas pela neblina e pelas moléculas de ar, são mais absorvidas pelas moléculas de metano nas atmosferas dos planetas. Este processo, conhecido como dispersão de Rayleigh, é o que torna o céu azul aqui na Terra, embora na nossa atmosfera a luz solar seja na sua maioria dispersa por moléculas de nitrogênio em vez de moléculas de hidrogênio. A dispersão de Rayleigh ocorre predominantemente em comprimentos de onda mais curtos e azuis.
Esta conclusão provém de um modelo que uma equipe internacional liderada por Patrick Irwin, professor de física planetária na Universidade de Oxford, desenvolveu para descrever as camadas de aerossol nas atmosferas de Netuno e Urano.
Pesquisas anteriores das atmosferas superiores destes planetas focaram-se na aparência da atmosfera apenas em comprimentos de onda específicos. No entanto, este novo modelo consiste em múltiplas camadas atmosféricas e corresponde a observações de ambos os planetas através de uma vasta gama de comprimentos de onda. O novo modelo também inclui partículas de neblina dentro de camadas mais profundas que anteriormente se pensava conterem apenas nuvens geladas de metano e sulfureto de hidrogênio.
O modelo consiste em três camadas de aerossóis em diferentes alturas. A camada chave que afeta as cores é a camada intermediária, que é uma camada de partículas de névoa que é mais espessa em Urano do que em Netuno. A equipa suspeita que, em ambos os planetas, o metano gelado condensa-se nas partículas desta camada, puxando as partículas mais para dentro da atmosfera numa chuva de neve de metano. Dado que Netuno tem uma atmosfera mais ativa e turbulenta do que Urano, é possível que a atmosfera de Netuno é mais eficiente em agitar as partículas de metano para a camada de neblina e a produzir esta neve. Isto remove mais da névoa e mantém a camada de névoa de Netuno mais fina do que em Urano, com o resultado de que a cor azul de Netuno parece mais forte.
O telescópio espacial Hubble fornece excelentes vistas das distintas tempestades atmosféricas partilhadas pelos dois planetas conhecidas como "manchas escuras", que são conhecidas há muitos anos. Não se sabia exatamente que camadas atmosféricas eram perturbadas pelas manchas escuras para as tornar visíveis ao Hubble. O modelo produzido pela equipe explica o que dá uma aparência escura às manchas e porque são mais facilmente detectáveis em Urano em comparação com Netuno. Os pesquisadores pensavam que um escurecimento dos aerossóis na camada mais profunda do seu modelo produziria manchas escuras semelhantes às vistas em Netuno e talvez em Urano.
Um artigo foi publicado na revista Journal of Geophysical Research: Planets.
Fonte: ESA