quarta-feira, 19 de abril de 2023

Um planeta em torno de uma estrela "oscilante"

Os dados da missão espacial Gaia da ESA permitiram aos astrônomos detectar um exoplaneta gigante utilizando o telescópio Subaru.

© Subaru (movimento do planeta ao redor de sua estrela)

Este mundo é o primeiro exoplaneta confirmado encontrado graças à capacidade do Gaia em sentir a atração gravitacional ou "oscilação" que um planeta induz na sua estrela. E a técnica aponta o caminho para o futuro da observação planetária direta. Quando se trata de detectar planetas ao redor de outras estrelas, conhecidos como exoplanetas, os astrônomos têm uma variedade de métodos à sua disposição. Estas técnicas enquadram-se em duas grandes categorias: diretas e indiretas. Ambas têm vantagens e inconvenientes. 

Historicamente, a maioria dos exoplanetas têm sido encontrados por métodos indiretos. Isto significa que se deduz que os planetas existem devido ao efeito que têm na sua estrela hospedeira. Enquanto que na observação direta, um telescópio vê efetivamente o planeta. 

Embora os astrônomos tenham detectado mais de 5.000 exoplanetas utilizando meios indiretos, apenas cerca de 20 foram observados diretamente. Isto porque para que os planetas sejam visíveis com o nosso atual nível de tecnologia, devem estar amplamente separados da sua estrela progenitora e ser muito mais massivos do que Júpiter, o maior planeta do nosso Sistema Solar. 

Como a natureza não forma muitos destes tipos de planetas, há necessidade de saber exatamente onde procurar. A maioria das procuras diretas são "cegas", ou seja, visam simplesmente as estrelas com base na sua idade e distância e na esperança de que um planeta seja "apanhado no ato". Das centenas de estrelas investigadas desta forma, apenas um punhado produziu estrelas.

Através da missão Gaia foi procuradas estrelas que literalmente oscilam no céu. Em particular, foi utilizado o Catálogo de Acelerações Hipparcos-Gaia. Este catálogo combina dados do Gaia com os da anterior missão de mapeamento estelar da ESA, Hipparcos, para fornecer uma linha de base de 25 anos para a comparação das posições precisas das estrelas. 

A medição da posição de uma estrela no céu é conhecida como astrometria. A partir desta base de dados, a equipe identificou uma série de estrelas que pareciam mudar de posição no céu noturno de uma forma que sugeria que cada uma delas era orbitada por um planeta gigante. Em seguida, voltaram-se para o telescópio Subaru do National Astronomical Observatory of Japan (NAOJ) em Mauna Kea, Havaí, e fizeram observações em julho e setembro de 2020, e em maio e outubro de 2021. 

O planeta recentemente descoberto chama-se HIP 99770 b. Tem cerca de 16 vezes a massa de Júpiter e orbita uma estrela que tem quase duas vezes a massa do Sol. Embora a órbita do planeta seja mais de três vezes maior do que a órbita de Júpiter em torno do Sol, recebe quase a mesma quantidade de luz que Júpiter porque a sua estrela hospedeira é muito mais luminosa do que o Sol. 

Este método de visar estrelas para a descoberta exoplanetária vai acelerar. Isto porque a quarta publicação de dados Gaia (DR4), que se baseará em 5,5 anos de dados (quase o dobro da linha de base do DR3), tornará muito mais fácil detectar quais as estrelas que estão oscilando. 

Em última análise, esta abordagem combinada permitirá visar outras Terras. Um planeta como a Terra estará muito mais próximo da sua estrela e por isso passará muito tempo à frente ou atrás dessa estrela, tornando impossível a sua observação. A descoberta de um planeta como o nosso continua sendo o grande objetivo dos astrônomos.

Um artigo foi publicado na revista Science

Fonte: W. M. Keck Observatory

Confirmada a descoberta do terceiro protoplaneta

Uma equipe internacional de pesquisadores obteve resultados da análise de dados que confirma a existência de um novo protoplaneta em torno da estrela HD 169142.

© VLT / SPHERE (sistema HD 169142)

A imagem acima do sistema HD 169142 mostra o sinal do protoplaneta HD 169142 b (perto da posição correspondente às 11 horas, indicado pela seta), bem como um braço em espiral brilhante resultante da interação dinâmica entre o planeta e o disco em que se encontra. O sinal da estrela, 100.000 vezes mais brilhante do que o planeta, foi subtraído por uma combinação de componentes ópticos e processamento de imagem (máscara no centro da imagem). Observações em diferentes momentos mostram o planeta avançando na sua órbita ao longo do tempo.

Este resultado foi possível graças a ferramentas avançadas de processamento de imagem desenvolvidas pelo PSILab da Universidade de Liège. Os cientistas utilizaram várias observações, entre 2015 e 2019, da estrela HD 169142 obtidas pelo instrumento SPHERE do VLT (Very Large Telescope) do ESO.

Os planetas formam-se a partir de aglomerados de material em discos que rodeiam estrelas recém-nascidas. Quando o planeta ainda está se formando, ou seja, quando ainda está acretando material, é chamado de protoplaneta. 

Até à data, apenas dois protoplanetas tinham sido inequivocamente identificados como tal, PDS 70 b e c, ambos orbitando a estrela PDS 70. Este número aumentou agora para três com a descoberta e confirmação de um protoplaneta no disco de gás e poeira que envolve HD 169142, uma estrela a 374 anos-luz de distância. 

Os planetas estão quentes quando se formam, pelo que o telescópio obteve imagens infravermelhas de HD 169142 para procurar a sua assinatura térmica. Com estes dados, puderam confirmar a presença de um planeta, HD 169142 b, a cerca de 37 UA (unidade astronômica, a distância da Terra ao Sol) da sua estrela, ligeiramente mais longe do que a órbita de Netuno. Já em 2019, pesquisadores tinham anteriormente levantado a hipótese de que uma fonte compacta vista nas suas imagens poderia indicar a presença de um protoplaneta. O estudo recente confirma esta hipótese através de uma nova análise dos dados utilizados no seu estudo, bem como da inclusão de novas observações de melhor qualidade. 

As novas imagens confirmam que o planeta deve ter esculpido uma lacuna no disco, como previsto pelos modelos. Esta divisão é claramente visível nas observações de luz polarizada do disco. No infravermelho, podemos também ver um braço em espiral no disco, provocado pelo planeta e visível no seu rasto, sugerindo que outros discos protoplanetários contendo espirais também podem abrigar planetas ainda não descobertos. 

As imagens de luz polarizada, bem como o espectro infravermelho medido, indicam ainda que o planeta está enterrado numa quantidade significativa de poeira acretada a partir do disco protoplanetário. Esta poeira pode estar na forma de um disco circumplanetário, um pequeno disco que se forma à volta do próprio planeta, o qual, por sua vez, pode formar luas. 

Esta descoberta importante demonstra que a detecção de planetas por observação direta é possível mesmo numa fase muito precoce da sua formação. Ao longo dos últimos dez anos têm havido detecções de planetas em formação com muitos falsos positivos. 

O protoplaneta HD 169142 b parece ter propriedades diferentes dos protoplanetas no sistema PDS 70, o que é muito interessante. Parece que foi capturado numa fase mais jovem da sua formação e evolução, uma vez que ainda está completamente enterrado ou rodeado por muita poeira. Dado o número muito pequeno de planetas em formação confirmados até à data, a descoberta desta fonte e o seu acompanhamento deverá fornecer uma melhor compreensão de como os planetas, e em particular os planetas gigantes como Júpiter, são formados. 

Uma maior caracterização do protoplaneta e confirmação independente poderá ser obtida com futuras observações pelo telescópio espacial James Webb. A elevada sensibilidade do JWST à luz infravermelha deverá permitir a detecção emissões térmicas provenientes da poeira quente ao redor do planeta. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: Université de Liège

segunda-feira, 17 de abril de 2023

Um aspersor estelar

Esta fotografia mostra o jovem objeto estelar 244-440 na Nebulosa de Órion observado com o Very Large Telescope (VLT) do ESO, a imagem mais nítida alguma vez obtida para este objeto.

© ESO / VLT (objeto estelar 244-440 na Nebulosa de Órion)

A estrutura sinuosa magenta trata-se de um jato de matéria lançado perto da estrela, mas porque é que terá esta forma? 

As estrelas muito jovens encontram-se frequentemente rodeadas por discos de material, que cai em direção à estrela. Parte deste material pode ser expelido em poderosos jatos perpendiculares ao disco. O jato em forma de S de 244-440 sugere que o que se esconde no centro deste objeto não é uma, mas sim duas estrelas em órbita uma da outra.

Este movimento orbital altera periodicamente a orientação do jato, de modo semelhante ao funcionamento de um aspersor de água. Outra explicação plausível prende-se com a possibilidade da forte radiação de outras estrelas na nuvem de Órion poder estar alterando a forma do jato. 

Estas observações foram obtidas com o instrumento MUSE (Multi Unit Spectroscopic Explorer) montado no VLT, no Chile. As cores vermelha, verde e azul mostram a distribuição de ferro, nitrogênio e oxigênio, respectivamente. Mas isto é apenas uma pequena fração de todos os dados recolhidos pelo MUSE, que capta simultaneamente milhares de imagens em diferentes cores, ou comprimentos de onda permitindo assim aos astrônomos estudar não só a distribuição de muitos elementos químicos diferentes, mas também a forma como estes se deslocam. 

Além disso, o MUSE está instalado no telescópio principal nº 4 do VLT, o qual se encontra equipado com uma infraestrutura de óptica adaptativa avançada que corrige a turbulência atmosférica, fornecendo imagens mais nítidas do que as obtidas pelo telescópio espacial Hubble. Estas novas observações permitirão aos astrônomos estudar com um detalhe sem precedentes como é que as estrelas nascem em nuvens massivas como a de Órion. 

Fonte: ESO

Em busca da explosão de supernova numa galáxia espiral

A galáxia espiral barrada UGC 678 ocupa o centro do palco nesta imagem do telescópio espacial Hubble.

© Hubble (UGC 678)

A espetacular galáxia fica a cerca de 260 milhões de anos-luz da Terra na constelação de Peixes e está quase de frente, permitindo que seus braços espirais preguiçosamente sinuosos se estendam por esta imagem. Em primeiro plano, uma galáxia menor parece dividir a porção superior de UGC 678. 

Assim como os humanos, as estrelas têm um ciclo de vida natural; elas nascem, crescem e eventualmente envelhecem e morrem. Estudar esse ciclo de vida estelar, geralmente chamado de evolução estelar, é um tópico importante para os astrônomos. O fim da vida das estrelas pode ser marcado por eventos verdadeiramente espetaculares, incluindo explosões titânicas de supernovas, a criação de estrelas de nêutrons inimaginavelmente densas e até mesmo o nascimento de buracos negros.

A UGC 678 foi recentemente considerada a anfitriã de um desses eventos; em 2020, o telescópio robótico ATLAS escaneando o céu noturno em busca de asteroides perigosos descobriu evidências de uma enorme explosão da supernova AT2020abjq na galáxia. 

Duas observações separadas do Hubble se voltaram para UGC 678 para vasculhar a galáxia em busca das consequências de sua explosão de supernova. Uma equipe de astrônomos usou a Advanced Camera for Surveys do Hubble e a outra a Wide Field Camera 3, mas ambas pretendiam explorar UGC 678 na esperança de descobrir pistas sobre a identidade da estrela que produziu a supernova de 2020. 

Fonte: ESA

terça-feira, 11 de abril de 2023

Fontes ultraluminosas de raios X quebram limites

Objetos cósmicos exóticos, conhecidos como fontes ultraluminosas de raios X, produzem cerca de 10 milhões de vezes mais energia do que o Sol.

© NASA / JPL-Caltech (ilustração de uma fonte ultraluminosa de raios X)

Na verdade, são tão radiantes que parecem ultrapassar um limite físico chamado limite de Eddington, que coloca uma restrição no brilho que um objeto pode ter com base na sua massa. Estas Ultra-luminous X-ray sources (ULXs) excedem regularmente este limite em 100 a 500 vezes, deixando os cientistas perplexos. 

Num estudo recente, os pesquisadores relatam uma primeira medição de uma ULX feita com o NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA. A descoberta confirma que estes emissores de luz são tão brilhantes como parecem e que quebram o limite de Eddington. 

Uma hipótese sugere que este brilho avassalador é devido aos fortes campos magnéticos da ULX. Mas os cientistas só podem testar esta ideia através de observações: até bilhões de vezes mais poderosos do que os ímãs mais fortes alguma vez construídos na Terra, os campos magnéticos das ULXs não podem ser reproduzidos num laboratório. Os fótons exercem um pequeno empurrão sobre objetos que encontram. Se um objeto cósmico como uma ULX emitir luz suficiente por determinada área, o empurrão dos fótons pode ser superior à atração da gravidade do objeto. Quando isto acontece, um objeto atingiu o limite de Eddington e a luz do objeto, teoricamente, empurrará para longe qualquer gás ou outro material que caia na sua direção.

Esta mudança é importante, porque o material que cai sobre uma ULX é a fonte do seu brilho. Isto é algo que os cientistas observam frequentemente em buracos negros: quando a sua forte gravidade atrai gás e poeira, estes materiais podem aquecer e irradiar luz. Os cientistas costumavam pensar que as ULX deviam ser buracos negros rodeados por grandes quantidades de gás brilhante. Mas, em 2014, os dados do NuSTAR revelaram que uma ULX com o nome de M82 X-2 é, na realidade, um objeto menos massivo chamado de estrela de nêutrons. Tal como os buracos negros, as estrelas de nêutrons formam-se quando uma estrela morre e colapsa, compactando mais do que a massa do nosso Sol numa área não muito maior do que uma cidade média. Esta densidade incrível também cria uma atração gravitacional, à superfície da estrela de nêutrons, cerca de 100 trilhões de vezes mais forte do que a atração gravitacional à superfície da Terra.

O gás e outros materiais atraídos por esta gravidade são acelerados até milhões de quilômetros por hora, liberando tremendas quantidades de energia quando atingem a superfície da estrela de nêutrons (um marshmallow deixado cair sobre a superfície de uma estrela de nêutrons a atingiria com a energia de cem mil bombas de hidrogênio). Isto produz os raios X altamente energéticos que o NuSTAR detecta. 

O estudo recente visou a mesma ULX no núcleo da descoberta de 2014 e descobriu que, tal como um parasita cósmico, M82 X-2 está roubando cerca de 9x0²¹ de toneladas de material, por ano, de uma estrela vizinha, o equivalente a 1,5 vezes a massa da Terra. Sabendo a quantidade de material que atinge a superfície da estrela de nêutrons, os cientistas podem estimar quão brilhante deve ser a ULX e os seus cálculos coincidem com medições independentes da sua luminosidade. 

O trabalho confirmou que M82 X-2 excede o limite de Eddington. Se os cientistas conseguirem confirmar o brilho de mais ULXs, podem colocar de lado uma hipótese persistente que explicaria o brilho aparente destes objetos sem que as ULXs tivessem de exceder o limite de Eddington. Esta hipótese, com base em observações de outros objetos cósmicos, postula que ventos fortes formam um cone oco em torno da fonte de luz, concentrando a maior parte da emissão num só sentido. Se apontado diretamente para a Terra, o cone poderia criar uma espécie de ilusão ótica, fazendo-o aparecer [falsamente] como se a ULX estivesse excedendo o limite de luminosidade. Mesmo que este seja o caso para algumas ULXs, uma hipótese alternativa apoiada pelo novo estudo sugere que fortes campos magnéticos distorcem os átomos aproximadamente esféricos em formas alongadas. Isto reduziria a capacidade dos fotões em afastar átomos, acabando por aumentar o brilho máximo possível de um objeto.

Estas observações permitem-nos ver os efeitos destes campos magnéticos incrivelmente fortes que nunca poderíamos reproduzir na Terra com a tecnologia atual, temos de esperar que o Universo nos mostre os seus segredos. 

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: Jet Propulsion Laboratory

Um possível buraco negro fugitivo criando um rasto de estrelas

Há um monstro invisível à solta e viajando pelo espaço intergaláctico tão depressa que se estivesse no nosso Sistema Solar, podia viajar da Terra à Lua em 14 minutos.

© STScI (ilustração de buraco negro supermassivo fugitivo)

Este buraco negro supermassivo, com até 20 milhões de vezes a massa do Sol, deixou para trás um rasto de estrelas recém-nascidas com o dobro do diâmetro da nossa Galáxia, a Via Láctea. É provavelmente o resultado de um raro e bizarro "jogo de bilhar" galáctico entre três buracos negros enormes. Em vez de engolir estrelas à sua frente, como um Pac-Man cósmico, o buraco negro veloz está lavrando gás à sua frente para desencadear a formação de novas estrelas ao longo de um corredor estreito. 

O buraco negro está viajando demasiado depressa para se alimentar. Nunca se tinha visto nada assim, mas foi captado por acidente pelo telescópio espacial Hubble. Deve ter muitas estrelas novas, dado que tem quase metade do brilho da galáxia hospedeira a que está ligado. O buraco negro encontra-se numa das extremidades da coluna que se estende até à sua galáxia progenitora. Há um nó extremamente brilhante de oxigênio ionizado na ponta mais externa da coluna. Os pesquisadores pensam que o gás é provavelmente aquecido pelo movimento do buraco negro quando o atinge, ou pode ser radiação de um disco de acreção em torno do buraco negro.

Por ser tão estranho, os astrônomos fizeram espectroscopia de acompanhamento com os Observatórios W. M. Keck no Havaí. Isto levou à conclusão de que estavam a observando o rescaldo de um buraco negro voando através de um halo de gás que rodeava a galáxia hospedeira. 

Os astrônomos suspeitam que as duas primeiras galáxias se tenham fundido há talvez 50 milhões de anos. Isso juntou dois buracos negros supermassivos nos seus centros. Giravam um à volta do outro como um buraco negro binário. Depois surgiu outra galáxia com o seu próprio buraco negro supermassivo. Esta mistura de três buracos negros supermassivos levou-os a uma configuração caótica e instável. Um dos buracos negros roubou momento aos outros dois e foi expulso da galáxia hospedeira. O binário original pode ter permanecido intacto, ou o novo buraco negro intruso pode ter substituído um dos dois que estavam no binário original e expulso o companheiro anterior. 

Quando o buraco negro individual foi expelido numa direção, os buracos negros do binário foram disparados na direção oposta. Há uma característica vista no lado oposto da galáxia hospedeira que pode ser o buraco negro binário fugitivo. Uma evidência circunstancial disto é que não existem sinais de um buraco negro ativo no núcleo da galáxia. 

O próximo passo é fazer observações de acompanhamento com o telescópio espacial James Webb e com o observatório de raios X Chandra para confirmar a explicação proposta pelos pesquisadores. O futuro telescópio espacial Nancy Grace Roman da NASA terá uma visão de grande angular do Universo com a requintada resolução do Hubble. Como um telescópio de levantamento, isto pode exigir aprendizagem de máquina, utilizando algoritmos para encontrar formas estranhas específicas num mar de outros dados astronômicos. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: Space Telescope Science Institute

domingo, 9 de abril de 2023

A Terra tem uma nova quase-lua?

O asteroide 2023 FW13, recentemente descoberto, criou um certo rebuliço entre os observadores de asteroides.

© Tonny Dunn (trajetória do asteroide 2023 FW13)

Acontece que ele está em uma órbita que não está apenas em ressonância 1:1 com a Terra, mas segue um caminho que realmente circunda a Terra, embora em uma órbita tão excêntrica que se estende a meio caminho de Marte e a meio caminho de Vênus. Na imagem, a trajetória descrita pelo asteroide (em verde)  mostra um referencial rotativo que mantém a linha Terra-Sol estacionária.

Não existe uma definição formal para objetos como este, que às vezes são chamados de quase-luas ou quase-satélites. Eles seguem um caminho ao redor da Terra, mas geralmente por não mais do que algumas décadas. Talvez o mais conhecido desses objetos, o Kamoʻoalewa, foi encontrado em 2016 e é considerado o menor, mais próximo e mais estável quase-satélite conhecido. Tem uma órbita que está em ressonância estável com a Terra há quase um século, e assim permanecerá nos próximos séculos, segundo cálculos de Paul Chodas, do Jet Propulsion Laboratory. 

Mas este asteroide recém-descoberto, se os cálculos orbitais preliminares estiverem corretos, ultrapassará facilmente esse recorde. Algumas estimativas dizem que ele circulou a Terra desde pelo menos 100 aC e provavelmente continuará a fazê-lo até cerca de 3700 dC. Possivelmente, o 2023 FW13 seria o quase-satélite mais estável da Terra já encontrado. 

O asteroide foi observado pela primeira vez em 28 de março pelo observatório PanSTARRS no topo de Haleakalā, no Havaí. Após mais observações do telescópio Canada France Hawaii em Mauna Kea, e de observatórios em Kitt Peak e Mount Lemmon, a descoberta foi anunciada oficialmente em 1º de abril.

Embora  o asteroide 2023 FW13 realmente circule a Terra, há um problema: “A dimensão do loop (cerca de 0,18 unidade astronômica em raio) é tão grande que a Terra não desempenha praticamente nenhum papel em seu movimento,” disse Alan Harris, do Space Science Institute. Para referência, Mercúrio orbita o Sol de 0,4 UA.

O asteroide está realmente orbitando o Sol e não está gravitacionalmente ligado à Terra. No entanto, está em ressonância com o nosso planeta, e é por isso que seu caminho gira amplamente ao redor da Terra. Mesmo a chance de acabar em uma quase órbita, estima Harris, não é única. Um cálculo rápido sugere que existem cerca de 2 milhões de asteroides próximos da Terra de seu tamanho ou maiores (com uma magnitude absoluta de 26), e que deve haver cerca de três desses objetos atualmente girando em torno da posição da Terra.

"Estima-se que o tamanho desse objeto seja de cerca de 10 a 15 metros de diâmetro. Sua quase correspondência com a órbita da Terra torna sua velocidade relativa baixa o suficiente para que possam ser acessados por espaçonaves em questão de meses," disse o especialista em asteroides de longa data, Richard Binzel, do Massachusetts Institute of Technology (MIT). 

Fonte: Sky & Telescope

A gravidade curva a luz para revelar um dos maiores buracos negros

Uma equipe de astrônomos, liderada pelo Dr. James Nightingale do Departamento de Física da Universidade de Durham, descobriu um dos maiores buracos negros jamais encontrados, através  do fenômeno de lente gravitacional.

© Hubble (Abell 1201)

A imagem acima mostra a galáxia elíptica Abell 1201 focalizada pelo telescópio espacial Hubble, onde o quadro à esquerda destaca a região do infravermelho próximo e o quadro à direita destaca a região do óptico.

As lentes gravitacionais - onde uma galáxia em primeiro plano curva a luz de um objeto mais distante e a amplia - e as simulações de supercomputador nas instalações DiRAC (Distributed Research Utilising Advanced Computing) HPC (High Performance Computing) permitiram à equipe examinar de perto como a luz é "dobrada" por um buraco negro no interior de uma galáxia a centenas de milhões de anos-luz da Terra.

A equipe simulou luz que viajava pelo Universo centenas de milhares de vezes, com cada simulação incluindo um buraco negro de massa diferente, mudando a viagem da luz à Terra. Quando os pesquisadores incluíram um buraco negro ultramassivo numa das suas simulações, o percurso tomado pela luz da galáxia distante, até chegar à Terra, coincidiu com o percurso visto em imagens reais captadas pelo telescópio espacial Hubble. 

Foi encontrado um buraco negro ultramassivo, um objeto com mais de 30 bilhões de vezes a massa do nosso Sol, na galáxia em primeiro plano, uma escala raramente vista pelos astrônomos. A maioria dos maiores buracos negros que conhecemos estão num estado ativo, onde a matéria que é puxada para perto do buraco negro aquece e libera energia sob a forma de luz, raios X e outros tipos de radiação. 

A lente gravitacional torna possível o estudo de buracos negros inativos, algo atualmente não possível em galáxias distantes. Esta abordagem poderia permitir aos astrônomos descobrir muitos mais buracos negros inativos e ultramassivos do que se pensava anteriormente e investigar como ficaram tão grandes.

A história desta descoberta em particular começou em 2004 quando o astrônomo da Universidade de Durham, o professor Alastair Edge, notou um arco gigante de uma lente gravitacional ao rever imagens de um levantamento de galáxias. Avançando rapidamente 19 anos com a ajuda de algumas imagens de altíssima resolução pelo telescópio espacial Hubble e das instalações do supercomputador DiRAC COSMA8 da Universidade de Durham, o Dr. Nightingale e a sua equipe puderam revisitá-lo e explorá-lo mais a fundo. 

Espera-se que este seja o primeiro passo para permitir uma exploração mais profunda dos mistérios dos buracos negros e que os futuros grandes telescópios ajudem os astronomos a estudar buracos negros ainda mais distantes para aprenderem mais sobre o seu tamanho e escala. 

Este é o primeiro buraco negro encontrado usando lentes gravitacionais e as descobertas foram publicadas no periódico Monthly Notices of the Royal Astronomical Society

Fonte: Royal Astronomical Society

Encontrado um quasar duplo no Universo distante

O Universo primitivo era um lugar exuberante onde as galáxias frequentemente esbarravam umas nas outras e frequentemente se fundiam.

© Hubble (quasar duplo)

Utilizando o telescópio espacial Hubble e outros observatórios espaciais e terrestres, os astrônomos fizeram uma descoberta inesperada e rara: um par de quasares gravitacionalmente ligados, ambos dentro de duas galáxias em fusão. Existiram quando o Universo tinha apenas 3 bilhões de anos. 

Os quasares são objetos brilhantes alimentados por buracos negros supermassivos e vorazes que expelem quantidades enormes de energia enquanto se alimentam de gás, poeira e qualquer outra coisa dentro do seu alcance gravitacional.

Há cada vez mais evidências de que as grandes galáxias são construídas através de fusões. Os sistemas menores juntam-se para formar sistemas e estruturas cada vez maiores. Durante este processo, formaram-se pares de buracos negros dentro das galáxias em fusão. 

Esta foi uma procura parecida à de uma agulha num palheiro que exigiu o poder combinado do telescópio espacial Hubble e do Observatório W. M. Keck no Havaí. O observatório espacial Gaia da ESA ajudou na descoberta original do quasar duplo. O Hubble mostra inequivocamente que se trata de fato de um par genuíno de buracos negros supermassivos, em vez de duas imagens do mesmo quasar criadas pelos efeitos ópticos de uma lente gravitacional em primeiro plano. 

E o Hubble mostra uma característica de maré da fusão das duas galáxias, onde a gravidade distorce a forma das galáxias, formando duas caudas de estrelas. No entanto, a nítida resolução do Hubble, por si só, não é suficientemente boa para procurar estes faróis de luz dupla. Foi empregado o Gaia, um satélite lançado em 2013, para identificar potenciais candidatos a quasar duplo. O Gaia mede as posições, distâncias e movimentos de objetos celestes próximos de forma muito precisa. Os quasares aparecem como objetos individuais nos dados do Gaia porque estão tão próximos uns dos outros. No entanto, os seus instrumentos conseguem captar um movimento sutil e inesperado que imita uma mudança aparente na posição de alguns dos quasares que observa. 

Os quasares não estão se movendo pelo espaço de forma mensurável. Ao invés, o movimento sutil pode ser evidência de flutuações aleatórias de luz, uma vez que cada membro do par de quasares varia em brilho e em escalas de tempo de dias a meses, dependendo do "horário de alimentação" do buraco negro. Este brilho alternado entre o par de quasares é semelhante a ver um sinal de travessia de uma linha férrea à distância. Como as luzes de ambos os lados do sinal estacionário piscam alternadamente, o sinal dá a ilusão de se mover. 

Outro desafio é que, dado que a gravidade distorce o espaço, uma galáxia em primeiro plano poderia dividir a imagem de um quasar distante em dois, criando a ilusão de que se trata de um binário. O telescópio Keck foi utilizado para garantir que não havia uma galáxia servindo como lente gravitacional entre a Terra e o quasar duplo suspeito. 

Uma vez que o Hubble observa o passado distante, este quasar duplo já não existe. Ao longo dos 10 bilhões de anos que se seguiram, as suas galáxias hospedeiras provavelmente fundiram-se numa galáxia elíptica gigante, como as que hoje se veem no Universo local. E os quasares fundiram-se para formar um único buraco negro supermassivo e gigantesco no seu centro. 

A M87, uma galáxia elíptica gigante nossa vizinha, tem um buraco negro supermassivo com 6,5 bilhões de vezes a massa do nosso Sol. Talvez este buraco negro tenha sido criado a partir de uma ou mais fusões galácticas ao longo dos últimos bilhões de anos. 

O futuro telescópio espacial Nancy Grace Roman da NASA, com a mesma acuidade visual que o Hubble, é ideal para caçar quasares binários. O Hubble tem sido utilizado para registar cuidadosamente dados de alvos individuais. Mas a visão infravermelha e de grande angular do Roman é 200 vezes maior do que a do Hubble. Muitos quasares podem ser sistemas binários. O telescópio Roman pode fazer enormes avanços nesta área de pesquisa.

Um artigo foi publicado na revista Nature

Fonte: W. M. Keck Observatory

sábado, 1 de abril de 2023

O nascimento de um aglomerado de galáxias no Universo primordial

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), uma equipe de astrônomos descobriu um vasto reservatório de gás quente no aglomerado de galáxias ainda em formação em torno da galáxia Teia de Aranha; trata-se da mais distante detecção de gás quente efetuada até agora.


© ALMA / Hubble (Teia de Aranha)

Os aglomerados de galáxias são uns dos maiores objetos conhecidos no Universo e este resultado revela-nos quão primordiais são de fato estas estruturas. Os aglomerados de galáxias, tal como o nome sugere, são constituídos por um enorme número de galáxias, que pode chegar a vários milhares. Estas estruturas contêm ainda um imenso meio “intra-aglomerado” gasoso que permeia o espaço entre as galáxias do aglomerado. Este gás tem consideravelmente mais massa do que as galáxias propriamente ditas. 

Muita da física dos aglomerados de galáxias é bem conhecida; no entanto observações das fases mais primordiais da formação do meio intra-aglomerado ainda são escassas. Anteriormente, este meio só tinha sido estudado em aglomerados de galáxias próximos e completamente formados. Contudo, detectar o meio intra-aglomerado em protoaglomerados distantes, isto é, em aglomerados de galáxias ainda se formando, permite aos astrônomos observar estas estruturas nas suas fases de formação iniciais.

Uma equipe liderada por Luca Di Mascolo, autor principal deste estudo e pesquisador na Universidade de Trieste, Itália, pretendeu detectar o meio intra-aglomerado num protoaglomerado do Universo primordial. Os aglomerados de galáxias são tão massivos que atraem gás que cai na direção dele e que, consequentemente, aquece.

Há mais de uma década que simulações cosmológicas preveem a presença de gás quente em protoaglomerados, no entanto, a confirmação observacional destas previsões tem faltado. Os astrônomos pretendem explorar o protoaglomerado Teia de Aranha, localizado numa época em que o Universo tinha apenas 3 bilhões de anos. Apesar de ser o protoaglomerado mais estudado, a presença do meio infra-aglomerado tem-se mantido elusiva.

A descoberta de um grande reservatório de gás quente no Teia de Aranha indicaria que o sistema estaria a caminho de ser tornar um aglomerado de galáxias propriamente dito e duradouro ao invés de se dispersar. A equipa de Di Mascolo detectou o meio intra-aglomerado do Teia de Aranha usando um efeito térmico chamado Sunyaev-Zeldovich (SZ). Este efeito ocorre quando a radiação cósmica de fundo de micro-ondas, ou seja, uma radiação vestígio do Big Bang, passa pelo meio intra-aglomerado e interage com os elétrons do gás quente que se deslocam em altas velocidades, o que faz com que a sua energia aumente um pouco e a sua cor, ou comprimento de onda, varie ligeiramente.

Nos comprimentos de onda adequados, o efeito SZ aparece-nos como um efeito de sombra do aglomerado de galáxias na radiação cósmica de fundo. Ao medir estas sombras na radiação cósmica de fundo, os astrônomos conseguem assim inferir a existência de gás quente, estimar a sua massa e mapear a sua forma

Os pesquisadores determinaram que o protoaglomerado Teia de Aranha contém um vasto reservatório de gás quente com uma temperatura de algumas dezenas de milhões de graus Celsius. Tinha sido já detectado anteriormente neste protoaglomerado gás frio, no entanto a massa de gás quente encontrada neste novo estudo é muito superior, da ordem de milhares de vezes maior. Este resultado mostra que o protoaglomerado Teia de Aranha deverá efetivamente transformar-se num aglomerado massivo de galáxias dentro de uns 10 bilhões de anos, aumentando ainda a sua massa de, pelo menos, um fator dez. 

O futuro Extremely Large Telescope (ELT) do ESO e os seus instrumentos de vanguarda, tais como o HARMONI e o MICADO, serão capazes de observar protoaglomerados e mostrar as galáxias que aí residem com muito detalhe. Juntamente com as capacidades do ALMA em traçar o meio intra-aglomerado, fornecendo informação crucial sobre a formação das maiores estruturas do Universo primordial. 

Este trabalho foi publicado na revista Nature.

Fonte: ESO

Medindo a temperatura de um exoplaneta rochoso

Uma equipe internacional de pesquisadores utilizou o telescópio espacial James Webb para medir a temperatura do exoplaneta rochoso TRAPPIST-1 b.

© STScI (ilustração do exoplaneta TRAPPIST-1 b)

A medição baseia-se na emissão térmica do planeta: energia emitida sob a forma de luz infravermelha detectada pelo MIRI (Mid-Infrared Instrument) do Webb. O resultado indica que o lado diurno do planeta tem uma temperatura de aproximadamente 500 K (cerca de 227º C) e sugere que não tem uma atmosfera significativa. 

Esta é a primeira detecção de qualquer forma de luz emitida por um exoplaneta tão pequeno e frio como os planetas rochosos do nosso próprio Sistema Solar. O resultado marca um passo importante para determinar se os planetas que orbitam estrelas pequenas e ativas como TRAPPIST-1 podem sustentar atmosferas necessárias para suportar vida.

No início de 2017, os astrônomos relataram a descoberta de sete planetas rochosos em órbita de uma estrela anã vermelha ultrafria (ou anã M) a 40 anos-luz da Terra. O que é notável acerca dos planetas é a sua semelhança em tamanho e massa com os planetas rochosos interiores do nosso próprio Sistema Solar. Embora todos eles orbitem muito mais perto da sua estrela do que os nossos orbitam o Sol, todos cabiam confortavelmente dentro da órbita de Mercúrio, eles recebem quantidades comparáveis de energia da sua pequena estrela. 

O TRAPPIST-1 b, o planeta mais interior, tem uma distância orbital de cerca de um centésimo da da Terra e recebe cerca de quatro vezes a quantidade de energia que a Terra recebe do Sol. Embora não esteja dentro da zona habitável do sistema, as observações do planeta podem fornecer informações importantes sobre os seus planetas irmãos, bem como sobre outros sistemas em torno de anãs M. Há dez vezes mais estrelas como esta na Via Láctea do que estrelas como o Sol, e é duas vezes mais provável que tenham planetas rochosos do que estrelas como o Sol. Mas também são muito ativas, são muito brilhantes quando são jovens e emitem surtos e raios X que podem destruir a atmosfera.

Observações anteriores de TRAPPIST-1 b com o telescópio espacial Hubble, bem como com o telescópio espacial Spitzer da NASA, não encontraram evidências de uma atmosfera inchada, mas não foram capazes de descartar uma atmosfera densa. Uma forma de reduzir a incerteza é medir a temperatura do planeta. Este planeta sofre bloqueio de maré, com o mesmo lado sempre virado para a estrela e o outro em escuridão permanente. Se tiver uma atmosfera para circular e redistribuir o calor, o lado diurno será mais fresco do que se não houver atmosfera. 

A equipe utilizou uma técnica chamada fotometria de eclipse secundário, na qual o MIRI mediu a mudança no brilho do sistema à medida que o planeta se movia por detrás da estrela. Embora TRAPPIST-1 b não seja suficientemente quente para emitir a sua própria luz visível, brilha no infravermelho. Ao subtrair o brilho da estrela por si só do brilho combinado da estrela e do planeta, foram capazes de calcular com sucesso quanta luz infravermelha está sendo emitida pelo planeta. A detecção de um eclipse secundário pelo Webb é um marco importante. Sendo a estrela mais de 1.000 vezes mais brilhante do que o planeta, a mudança de brilho é inferior a 0,1%.

A análise dos dados de cinco observações separadas do eclipse secundário indica que TRAPPIST-1 b não tem uma atmosfera. Os resultados são quase perfeitamente consistentes com um corpo negro feito de rocha nua e sem atmosfera para fazer circular o calor. Também não foi observado quaisquer sinais de luz sendo absorvida pelo dióxido de carbono, o que seria aparente nestas medições.

Um artigo foi publicado na revista Nature

Fontes: ESA & Space Telescope Science Institute