terça-feira, 23 de julho de 2013

Imagem da Terra vista por nave espacial

Imagens coloridas da Terra foram feitas pela nave espacial Cassini da NASA, no último dia 19 de Julho de 2013 e mostram nosso planeta e a Lua como pontos brilhantes observados a 1,5 bilhões de quilômetros de distância.

Terra e Lua vista de Saturno

© Cassini (Terra e Lua vista de Saturno)

Nas imagens da Cassini, a Terra e a Lua aparecem como meros pontos, a Terra, um pálido ponto azul e a Lua uma mancha branca, visível entre os anéis de Saturno. Essa foi a primeira vez que a câmera de mais alta resolução da sonda Cassini capturou a Terra e a Lua como dois objetos distintos.

Terra e Lua

© Cassini (Terra e Lua)

Essa imagem também marcou a primeira vez que as pessoas na Terra souberam que o planeta seria fotografado com antecedência de uma distância interplanetária. A NASA convidou o público para celebrar esse momento, encontrando o planeta Saturno no céu e mandando uma verdadeira onda para o planeta, de abraços, sorrisos e imagens. Mais de 20.000 pessoas ao redor do mundo participaram dessa iniciativa.

Imagens da Terra, feitas das fronteiras externas do Sistema Solar são raras pois desta distância, a Terra aparece muito próxima do Sol. Os detectores sensíveis da câmera podem ser danificados ao visarem diretamente para o Sol, do mesmo modo como o olho humano pode ter a retina danificada quando fazemos o mesmo. A Cassini foi capaz de fazer essa imagem devido ao fato do Sol estar temporariamente escondido atrás de Saturno do ponto de vista da nave.

Uma imagem de grande angular da Terra será parte de um mosaico, dos anéis de Saturno que os cientistas estão montando. Não se espera que essa imagem esteja pronta nas próximas semanas pois ela necessita de um certo tempo e de um grande desafio para ser constituída da maneira correta, já que a geometria precisa ser ajustada, além dos diferentes níveis de iluminação dos alvos.

Fonte: NASA

segunda-feira, 22 de julho de 2013

Novos mundos em xeque

Falhas em discos de poeira que circundam estrelas jovens não são necessariamente causadas pelos efeitos gravitacionais decorrentes da existência de um exoplaneta nessa região.

disco de poeira ao redor da estrela Fomalhaut

© NASA (disco de poeira ao redor da estrela Fomalhaut)

A presença de gás, muitas vezes ignorada, pode alterar a dinâmica dos discos e originar finos e alongados anéis de poeira ao redor das estrelas. Essa é principal conclusão de simulações computacionais feitas pelo astrofísico brasileiro, Wladimir Lyra, do Laboratório de Propulsão a Jato da NASA, e seu colega americano Marc Kuchner, do Centro de Voo Espacial Goddard, também da agência espacial norte-americana. “Esses anéis eram tidos como uma prova da existência de um planeta”, diz Lyra, que, no final de 2011, ganhou uma bolsa Carl Sagan, da NASA, para tocar suas pesquisas. “Mas mostramos que eles podem se formar apenas em razão das interações de gás e poeira.”

O estudo de Lyra e Kuchner fornece uma explicação plausível para a dificuldade em se confirmar a existência de planetas ao redor de estrelas que apresentam tais falhas em seu disco de poeira. O caso mais conhecido é o da estrela Fomalhaut, a mais brilhante da constelação de Peixe Austral, distante 25 anos-luz da Terra. Falhas nos anéis de poeira são interpretadas como indícios de que haveria dois planetas mais ou menos do tamanho da Terra ao da estrela, que se formou há aproximadamente 440 milhões anos. No entanto, a existência desses possíveis novos mundos ainda não foi comprovada.

Segundo o astrofísico brasileiro, as simulações indicam que, se os níveis de gás forem equivalentes a pelo menos 10% da quantidade de poeira, já aparecem falhas nos discos em torno da estrela. Os anéis se formam de maneira mais evidente quando o total de gás representa cinco vezes o volume da poeira. O processo físico por trás da origem dos anéis seria o efeito fotoelétrico. Se tiver muita energia, a luz da estrela se comporta menos como onda e mais como se fosse uma bola de sinuca. Se atingir um elétron do grão de poeira, esse fóton de alta energia vai provavelmente arrancá-lo. Tal elétron, por sua vez, vai ricochetear em uma molécula do gás, à qual passa sua energia cinética. O efeito do processo é aquecer o gás. O resultado dessa interação de gás e poeira leva à formação de falhas no disco ao redor da estrela. “Nosso modelo fornece uma explicação simples para a origem dos anéis”, afirma Lyra.

Os discos de poeira que circundam estrelas jovens são análogos do Cinturão de Kuiper do Sistema Solar. São formados basicamente por planetesimais, pequenos pedaços do disco protoplanetário original que não conseguiram se aglutinar a ponto de gerarem corpos maiores, como os planetas. O planeta anão Plutão, por exemplo, é o objeto mais conhecido do Cinturão de Kuiper. Os discos de poeira são, portanto, originários de uma sobra de material do processo de formação de planetas.

Os resultados do estudo foram publicados na edição deste mês na revista Nature.

Fonte: FAPESP (Pesquisa)

Uma nebulosa planetária eclodindo

A imagem a seguir do telescópio espacial Hubble mostra a nebulosa planetária IC 289, localizada na constelação do norte, de Cassiopeia.

nebulosa planetária IC 289

© Hubble (nebulosa planetária IC 289)

Antigamente, era uma estrela como o Sol, e agora é apenas um gás ionizado sendo empurrado para o espaço pela parte remanescente do núcleo da estrela, visível  com um pequeno ponto brilhante no meio da nuvem.

Lembando que, as nebulosas planetárias não têm relação com planetas. Os antigos observadores, quando olhavam através dos pequenos telescópios, só podiam ver uma forma indefinida que parecia muito com os planetas gasosos, e consequentemente surgiu esse nome. O termo permaneceu mesmo depois que os modernos telescópios e até mesmo o Hubble já fizeram imagens claras desses objetos que mostram que eles nada têm a ver com planetas, mas são as camadas externas de estrelas mortas que estão sendo expelidas para o espaço.

As estrelas brilham como o resultado das reações de fusão nuclear que acontecem em seus núcleos, e que convertem hidrogênio em hélio. Todas as estrelas são estáveis, com um equilíbrio existente entre a força que a empurra para dentro causada pela sua gravidade com as pressões para fora devido à fusão nuclear que ocorre em seu núcleo. Quando todo o hidrogênio é consumido, o equilíbrio é rompido, as forças gravitacionais tornam-se mais poderosas do que a pressão para fora dos processos de fusão e o núcleo começa a colapsar, aquecendo-se. Quando o calor atinge um nível suficiente, o hélio no núcleo começa a se fundir em carbono e em oxigênio e o colapso cessa. Contudo, essa fase de queima do hélio é altamente instável e grandes pulsações ocorrem eventualmente tornando-se grandes o suficiente para soprar a atmosfera da estrela para o exterior.

Fonte: ESA

sexta-feira, 19 de julho de 2013

Idades e órbitas das estrelas em aglomerados

Astrônomos usando o telescópio espacial Hubble da NASA pela primeira vez conseguiram interligar duas distintas populações de estrelas em um antigo aglomerado estelar globular a sua dinâmica orbital única, oferecendo assim a prova de que as estrelas não compartilham da mesma data de nascimento.

aglomerado globular 47 Tucanae

© Hubble (aglomerado globular 47 Tucanae)

As análises do aglomerado globular 47 Tucanae mostram que as duas populações diferem em idade de menos de 100 milhões de anos. O aglomerado está localizado a 16.700 anos-luz de distância na constelação do sul de Tucana.

Os pesquisadores, liderados por Harvey Ricer da Universidade de British Columbia, em Vancouver, combinaram recentes observações feitas com o Hubble com oito anos de dados de arquivos de telescópios para determinar os movimentos das estrelas nesse aglomerado.

Estudos prévios de espectroscopia revelaram que muitos aglomerados globulares contém estrelas com composição química variável, sugerindo múltiplos episódios de nascimento. Essas análises do Hubble, dão um passo a frente, adicionando o movimento orbital das estrelas a essa análise.

“Quando analisamos os movimentos das estrelas, quanto maior o tempo de observação, com mais precisão podemos medir seus movimentos”, explicou Richer. “Esses dados são tão bons, que nós podemos na verdade ver pela primeira vez o tempo de movimento individual de estrelas no aglomerado. Os dados oferecem uma evidência detalhada para nos ajudar a entender como as várias populações de estrelas se formaram nesses aglomerados”.

Os aglomerados globulares da Via Láctea são relíquias sobreviventes da formação da nossa galáxia. Eles oferecem pistas sobre a história inicial da galáxia. O 47 Tucanae tem 10,5 bilhões de anos e é um dos mais brilhantes dos mais de 150 aglomerados globulares da Via Láctea. O aglomerado mede cerca de 120 anos-luz de largura.

Richer e sua equipe usou a Advanced Camera for Surveys do Hubble em 2010 para observar o aglomerado. Eles combinaram essas observações com 754 imagens de arquivos para precisamente medirem as mudanças nas posições de mais de 30.000 estrelas. Usando esses dados, eles puderam discernir com qual velocidade as estrelas estão se movendo. A equipe também mediu a luminosidade das estrelas bem como suas temperaturas.

Esse trabalho de arqueologia estelar identificou duas distintas populações de estrelas. A primeira consiste de estrelas mais avermelhadas, que são mais velhas e menos enriquecidas quimicamente, e possuem órbitas aleatórias circulares. A segunda população compreende estrelas mais azuladas, que são mais jovens, mais quimicamente enriquecidas e em órbitas mais elípticas.

“A geração avermelhada, que é deficiente em elementos pesados, reflete o movimento inicial do gás que se formou no aglomerado”, disse Richer. “Essas estrelas reteram uma memória de seu movimento original”.

Após as estrelas mais massivas terem completado sua evolução estelar, elas expeliram gás enriquecido com elementos mais pesados de volta para o aglomerado. Esse gás colidiu com outro gás e formou uma segunda geração de estrelas mais quimicamente enriquecida que ficou concentrada em direção ao centro do aglomerado. Vagarosamente com o passar do tempo, essas estrelas se moveram para fora, assumindo órbitas mais radiais.

Essa descoberta não é a primeira que o Hubble faz revelando múltiplas gerações de estrelas em aglomerados globulares. Em 2007, os pesquisadores do Hubble encontraram três gerações de estrelas no massivo aglomerado globular NGC 2808.

NGC 2808

© Hubble (NGC 2808)

A equipe de Richer, contudo, concatenou a dinâmica estelar para separar as populações estelares pela primeira vez. Encontrar múltiplas populações estelares em aglomerados globulares tem profundas implicações cosmológicas. Os astrônomos precisam resolver futuros enigmas dessas múltiplas gerações para melhor entender como as estrelas se formaram em galáxias distantes no início do Universo.

Os resultados obtidos pela equipe foram publicados na edição deste mês do periódico The Astrophysical Journal Letters.

Fonte: NASA

Observações reforçam teoria do Big Bang

Descobertas recentes feitas por cientistas do Brasil e do exterior derrubam algumas discrepâncias a cerca dos primeiros minutos após o Big Bang, a grande explosão que originou o Universo.

modelagem de uma estrela velha pobre em metais

© Karin Lind (modelagem de uma estrela velha pobre em metais)

A partir de dados de alta qualidade obtidos com o telescópio de 10 metros (o maior do mundo) do observatório Keck, localizado em Mauna Kea, no Havaí (EUA), os astrônomos acabam de eliminar uma discrepância que durava décadas. “Observações anteriores de estrelas muito antigas sugeriram que a quantidade de lítio-6 (Li-6) teria sido 200 vezes maior que o produzido nos primeiros minutos após a grande explosão, e que o lítio-7 (Li-7) entre três e cinco vezes menor que o calculado por cosmólogos e físicos teóricos”, conta o professor Jorge Meléndez, do Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da USP.

As observações recentes permitiram constatar, por meio de dados do telescópio Keck e de sofisticados cálculos, que o Li-6 não existe nas estrelas mais antigas de nossa Galáxia, o que está de acordo com os cálculos sobre a nucleossíntese do Big Bang, eliminando assim um dos principais problemas cosmológicos da atualidade.

Uma das provas da teoria do Big Bang é a proporção de elementos químicos mais simples produzidos nos primeiros instantes do Universo. A proporção dos diferentes isótopos mais ligeiros, como o Li-6 e Li-7, pode ser calculada com precisão pelo modelo de nucleossíntese do Big Bang, e essas previsões podem ser verificadas usando observações de objetos muito primitivos quimicamente, tais como estrelas muito pobres em metais. A previsão teórica é que apenas uma quantidade desprezível de Li-6 foi criada, tão pouco que seria impossível detectar Li-6 em estrelas. Portanto, as detecções anteriores de até 200 vezes mais Li-6 em estrelas do que o predito pelo Big Bang eram alarmantes, e muitos cosmólogos e físicos teóricos têm tentado explicar a discrepância usando teorias alternativas que incluem física exótica. “A descoberta da não existência de Li-6 em estrelas pobres em metais é de grande importância pois reconcilia as previsões teóricas do Big Bang com as recentes observações em estrelas”, afirma o Meléndez.

O docente integra a equipe liderada pela doutora Karin Lind, da Universidade de Cambridge, Inglaterra. Na opinião da pesquisadora, a teoria do Big Bang agora repousa sobre bases mais firmes. “Além disso, compreender o nascimento do nosso Universo é fundamental para a compreensão da posterior formação de todos os seus componentes, incluindo nós mesmos”, é o que declara a cientista em texto veiculado no site do Observatório Keck. Um artigo descrevendo os resultados acaba de ser publicado na revista internacional Astronomy & Astrophysics.

As primeiras observações que culminaram com o resultado atual tiveram início em 2005. Já em 2007, foi concluído o trabalho do tratamento dos dados observados no telescópio Keck e uma primeira análise dos dados. “Ao final de 2007 chegamos à surpreendente descoberta de Li-6 em estrelas muito mais primordiais do que se conhecia e preparamos um artigo para a revista Nature”, conta Melendez. No entanto, como a suposta presença de Li-6 poderia ser devida à convecção na atmosfera das estrelas (similar ao fenômeno observado na água fervente), a equipe optou por não submeter o artigo e investir em sofisticados modelos hidrodinâmicos de atmosferas estelares até chegar ao resultado recente.

As estrelas observadas são antigas, com cerca de 12 bilhões de anos, quase tão velhas quanto o Universo, que possui 13,8 bilhões de anos. Ao todo foram quatro as estrelas observadas, sendo uma delas tão primitiva que a quantidade de metais é de mais de mil vezes menor que o Sol. Elas têm em comum o fato de serem muito pobres em metais e, portanto, serem muito antigas, estando entre as primeiras estrelas formadas em nossa Galáxia. “Por serem estrelas muito antigas, elas são importantes para testar a teoria da nucleossíntese primordial do Big Bang. A não detecção de Li-6 está de acordo com as previsões dessa teoria, reforçando assim o nosso conhecimento sobre os primeiros instantes do Universo”, conta Meléndez.

Fonte: USP

quinta-feira, 18 de julho de 2013

Neve num sistema planetário recém nascido

Uma equipe internacional de astrônomos conseguiu obter pela primeira vez a imagem de uma linha de neve num sistema planetário recém nascido.

ilustração das linhas de neve em torno de estrela

© ESO (ilustração das linhas de neve em torno de estrela)

A linha de neve, situada no disco que rodeia a estrela do tipo solar TW Hydrae, promete ensinar-nos mais sobre a formação de planetas e cometas, incluindo os fatores que determinam a sua composição e consequentemente sobre a história do nosso próprio Sistema Solar.

Na Terra, as linhas de neve formam-se a altitudes elevadas, onde as temperaturas baixas transformam a umidade do ar em neve. Esta linha é claramente visível numa montanha, no local onde o pico coberto de neve termina e a face rochosa descoberta começa.

linha de neve do monóxido de carbono

© ESO (linha de neve do monóxido de carbono)

As linhas de neve em torno das estrelas jovens formam-se de maneira semelhante, nas regiões distantes e frias dos discos de poeira, a partir dos quais se formam os sistemas planetários. Partindo da estrela em direção ao exterior, a água (H2O), é a primeira a congelar, formando a primeira linha de neve. Mais longe da estrela, à medida que as temperaturas descem, as moléculas mais exóticas podem congelar e transformar-se em neve, tais como o dióxido de carbono (CO2), o metano (CH4) e o monóxido de carbono (CO). Estes diferentes tipos de neve dão aos grãos de poeira uma camada exterior pegajosa e desempenham um papel importante, ajudando os grãos a ultrapassarem a sua tendência natural para se quebrarem por meio de colisões, e permitindo-lhes tornarem-se os blocos constituintes cruciais de planetas e cometas. A neve também aumenta a quantidade de matéria sólida disponível, podendo fazer acelerar drasticamente o processo de formação planetária.
Cada uma destas diferentes linhas de neve - água, dióxido de carbono, metano e monóxido de carbono - podem estar ligadas à formação de tipos particulares de planetas. Por exemplo, os planetas rochosos secos formam-se no lado interior da linha de neve da água (mais próximo da estrela), onde apenas a poeira pode existir. No outro extremo encontram-se os planetas gigantes gelados que se formam para lá da linha de neve do monóxido de carbono. Em torno de uma estrela do tipo solar, num sistema planetário como o nosso, a linha de neve da água corresponderia à distância entre as órbitas de Marte e Júpiter, e a linha de neve do monóxido de carbono corresponderia à órbita de Netuno.
A linha de neve descoberta pelo ALMA (Atacama Large Millimeter/submillimeter Array ) é o primeiro indício que temos da linha de neve de monóxido de carbono em torno de TW Hydrae, uma estrela jovem situada a 175 anos-luz de distância da Terra. Os astrônomos acreditam que este sistema planetário em formação partilha muitas das características do nosso Sistema Solar, quando este tinha apenas alguns milhões de anos de idade.
“O ALMA deu-nos a primeira imagem real de uma linha de neve em torno de uma estrela jovem, o que é tremendamente excitante, pelo que podemos aprender sobre o período inicial da história do nosso Sistema Solar”, disse Chunhua “Charlie” Qi (Harvard-Smithsonian Center for Astrophysics, Cambridge, EUA), um dos autores principais do artigo científico que descreve este trabalho.

A presença da linha de neve do monóxido de carbono pode ter também consequências mais importantes do que apenas a formação de planetas. O gelo de monóxido de carbono é necessário à formação de metanol, que é um dos blocos constituintes das moléculas orgânicas mais complexas essenciais à vida. Se os cometas levarem estas moléculas a planetas recém formados, do tipo da Terra, estes planetas poderiam também ficar equipados com os ingredientes necessários à vida.
Até hoje, nunca se tinham obtido imagens diretas de linhas de neve, já que estas linhas se formam sempre no plano central relativamente estreito do disco protoplanetário e por isso, tanto a sua localização precisa como a sua extensão nunca tinham sido determinadas. Acima e abaixo da região estreita onde as linhas de neve existem, a radiação da estrela impede a formação de gelo. A concentração de gás e poeira no plano central é indispensável para isolar a área da radiação estelar, de modo a que o monóxido de carbono e outros gases possam arrefecer e congelar nesta zona.
A equipe de astrônomos conseguiu espreitar para o interior deste disco, onde a neve se formou, utilizando um truque. Em vez de procurarem a neve, que não pode ser observada diretamente, procuraram uma molécula chamada diazenylium (N2H+), a qual brilha intensamente na região do milímetro do espectro electromagnético e é por isso um alvo perfeito para um telescópio como o ALMA. Esta molécula frágil é facilmente destruída na presença de monóxido de carbono gasoso, por isso só aparecerá em quantidades susceptíveis de serem detectadas em regiões onde o monóxido de carbono se transformou em neve, não podendo por isso destruir a molécula. Ou seja, de uma maneira geral, a chave para encontrar a neve de monóxido de carbono consiste em encontrar diazenylium.
A sensibilidade e resolução únicas do ALMA permitiram aos astrônomos detectar a presença e traçar a distribuição de diazenylium, e com isso encontrar uma fronteira claramente definida a cerca de 30 UA (unidades astronômicas) da estrela (30 vezes a distância entre a Terra e o Sol), o que dá, efetivamente, uma imagem contrária da neve de monóxido de carbono no disco que rodeia TW Hydrae, que pode ser usada para ver a linha de neve do monóxido de carbono precisamente onde a teoria prevê que deva estar, na zona interior do anel de diazenylium.
“Nestas observações usamos apenas 26 das antenas ALMA, que serão um total de 66. Indicações de linhas de neve em torno de outras estrelas começam já a aparecer noutras observações ALMA, e estamos convencidos que futuras observações que usarão a rede total revelarão e fornecerão mais pistas sobre a formação e evolução de planetas. Aguardemos estes resultados“, conclui Michiel Hogerheijde do Observatório de Leiden, Holanda.

Os resultados foram publicados hoje na revista Science Express.

Fonte: ESO

Ouro da Terra veio de colisão de estrelas

Cientistas registraram uma explosão de raios gama após a colisão de duas estrelas de nêutrons.

ilustração mostra a colisão das estrelas de nêutrons

© Dana Berry (ilustração mostra a colisão das estrelas de nêutrons)

O resultado do evento cataclísmico foi a produção de diversos elementos; foi ejetado o equivalente a 100 vezes a massa do Sol em material. Há muito ouro nessa gigantesca quantidade de matéria, estima-se 10 vezes a massa da Lua.

Valorizamos o ouro por vários motivos: sua beleza, sua utilidade como joias, e sua raridade. O ouro é raro na Terra, em parte, porque também é raro no Universo. Ao contrário de elementos mais comuns, como carbono ou ferro, o ouro não é criado dentro das estrelas. Para isso, são necessários eventos mais extremos. No caso registrado, duas estrelas de nêutrons - o núcleo que sobrou de duas estrelas que explodiram como supernova - colidiram, o que levou a uma explosão de raios gama. Diversos elementos foram produzidos, entre eles o metal raro. O material rico pela colisão de estrelas de nêutrons podem gerar tais elementos, que então se submetem ao decaimento radioativo, emitindo um brilho que é dominado pela luz infravermelha, exatamente o que a equipe observou. Os pesquisadores calculam que cerca de um centésimo da massa solar do material foi ejetado pela explosão de raios gama, algumas das quais era de ouro. Ao combinar o ouro estimado produzido por um único GRB curto com o número de tais explosões que ocorreram durante a existência do Universo, todo o ouro no cosmos pode ter vindo de explosões de raios gama.

A explosão de raios gama (GRB) é um flash de luz de alta energia (raios gama) a partir de uma explosão extremamente enérgica. A maioria são encontrados no Universo distante. Os pesquisadores estudaram a GRB 130603B, cuja explosão ocorreu a 3,9 bilhões de anos-luz da Terra, uma das mais próximas já registradas, e foi vista pelo satélite Swift, da NASA, em 3 de junho. Ela durou menos de dois décimos de segundo.

"Parafraseando Carl Sagan, somos todos produtos das estrelas, e nossas joias são produtos de colisões de estrelas", diz o autor principal do artigo, Edo Berger, do Centro de Astrofísica Harvard-Smithsonian (EUA).

O estudo foi divulgado na revista Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 17 de julho de 2013

Despedaçada por um buraco negro

Novas observações obtidas com o Very Large Telescope (VLT) do ESO mostram pela primeira vez uma nuvem de gás sendo despedaçada pelo buraco negro de massa extremamente elevada que se encontra no centro da nossa Galáxia.

nuvem de gás sendo despedaçada pelo buraco negro

© ESO (nuvem de gás sendo despedaçada pelo buraco negro)

A imagem mostra as observações do VLT de 2006, 2010 e 2013, em azul, verde e vermelho, respectivamente. A nuvem está tão esticada que a sua parte da frente já passou pelo ponto mais próximo e desloca-se agora para longe do buraco negro a mais de 10 milhões de quilômetros por hora, enquanto a cauda da nuvem ainda cai em direção ao buraco negro.

gráfico da velocidade em função da posição

© ESO (gráfico da velocidade em função da posição)

Em 2011 o VLT descobriu uma nuvem de gás com várias vezes a massa da Terra acelerando em direção ao buraco negro, conhecido pelo nome formal de Sgr A*, que se encontra no centro da Via Láctea. Esta nuvem está agora efetuando a sua máxima aproximação a este objeto e as novas observações do VLT mostram que a nuvem está sendo esticada pelo campo gravitacional extremo do buraco negro.
“O gás que se encontra numa das extremidades da nuvem está esticado ao longo de mais de 160 bilhões de quilômetros em torno do ponto da órbita mais próximo do buraco negro. E o ponto de maior aproximação está a apenas um pouco mais que 5 bilhões de quilômetros de distância do buraco negro propriamente dito, por pouco não caindo lá dentro”, explica Stefan Gillessen (Instituto Max Planck de Física Extraterrestre, Garching, Alemanha), que liderou a equipe de observação. “A nuvem está tão esticada que atingir o ponto de maior aproximação ao buraco negro é um processo que dura não apenas um instante, mas um longo período de pelo menos um ano”. A distância da maior aproximação corresponde a cerca de cinco vezes a distância Netuno ao Sol, o que é realmente muito próximo para um buraco negro com uma massa de quatro milhões de vezes a do Sol!
À medida que a nuvem de gás se estica, a sua radiação torna-se mais difícil de observar. Mas utilizando o instrumento SINFONI montado no VLT, para observar a região próxima do buraco negro durante mais de 20 horas de exposição - a exposição mais profunda já feita nesta região com um espectrógrafo de campo integral - a equipe conseguiu medir as velocidades das diferentes partes da nuvem à medida que esta se aproxima o máximo possível do buraco negro central. Num espectrógrafo de campo integral a radiação coletada em cada pixel é separada individualmente nas suas componentes de cor, e por isso a cada pixel corresponde um espectro. Estes espectros são seguidamente analisados individualmente e usados para, por exemplo, criar mapas da velocidade e das propriedades químicas de cada parte do objeto observado.
“O mais excitante que vemos nestas novas observações é a extremidade da nuvem deslocando-se outra vez na nossa direção, ao longo da órbita, a mais de 10 milhões km/h, cerca de 1% da velocidade da luz”, acrescenta Reinhard Genzel, líder do grupo de pesquisa que estuda esta região há quase vinte anos. “O que significa que a parte dianteira da nuvem já passou pelo ponto da órbita mais próximo do buraco negro”.
A origem da nuvem de gás permanece um mistério, embora não haja falta de ideias sobre este assunto. É possível que a nuvem de gás possa ter sido criada por ventos estelares emitidos por estrelas que orbitam o buraco negro. Ou pode também ser o resultado de um jato emitido a partir do centro galático. Outra opção era a de uma estrela estar no centro da nuvem e neste caso o gás viria, ou de um vento desta estrela, ou de um disco planetário de gás e poeira que se encontrasse em redor da estrela.

“Tal como um desafortunado astronauta num filme de ficção científica, vemos que a nuvem está ficando tão esticada que parece um espaguete, o que quer dizer que provavelmente não terá uma estrela no seu interior”, conclui Gillessen. “Neste momento pensamos que o gás veio muito provavelmente das estrelas que orbitam o buraco negro”.
O culminar deste evento cósmico único no centro da nossa Galáxia está acontecendo e sendo observado de perto por astrônomos em todo o mundo. A extensa campanha de observação fornecerá uma riqueza de dados, revelando mais não somente sobre a nuvem de gás, mas também sobre as regiões próximas do buraco negro, as quais não tinham ainda sido estudadas anteriormente, e os efeitos da gravidade extremamente elevada, gerando efeitos turbulentos relacionados com hidrodinâmica complexa.

Este trabalho será publicado na revista especializada Astrophysical Journal.

Fonte: ESO

terça-feira, 16 de julho de 2013

Encontrada nova lua de Netuno

O telescópio espacial Hubble da NASA descobriu uma nova lua orbitando o distante azul esverdeado planeta Netuno.

Netuno e a nova lua

© Hubble (Netuno e a nova lua)

Agora são 14 satélites conhecidos circulando o gigantesco planeta.

Estima-se que o corpo tem diâmetro estimado de 19,3 quilômetros de diâmetro, fazendo dele a menor lua conhecida no sistema Netuniano. Ela é tão pequena que escapou da detecção da sonda Voyager 2 da NASA, que voou por Netuno em 1989 e sobreviveu às luas e anéis do sistema de Netuno.

Mark Showalter do SETI Institute em Mountain View, na Califórnia, descobriu a lua em 1 de Julho de 2013, enquanto estudava os apagados arcos de anéis de Netuno. “As luas e arcos orbitam Netuno a uma alta velocidade, por isso tivemos que usar uma maneira para seguir seu movimento com o objetivo de obter detalhes do sistema”, disse ele. “Essa é a mesma razão porque um fotógrafo de esportes rastreia um atleta correndo, o atleta se mantém no foco, mas o fundo fica borrado”.

Por um capricho, Showalter estendeu suas análises para regiões bem além do sistema de anéis, e notou um ponto branco extra a aproximadamente 70.000 quilômetros de Netuno, localizado entre as órbitas das luas Larissa e Proteus.

Showalter então analisou mais de 150 fotos de arquivos de Netuno feitas pelo Hubble de 2004 até 2009. O mesmo ponto branco apareceu várias vezes. Ele então plotou uma órbita circular para a lua, que completa uma revolução ao redor de Netuno a cada 23 horas.

A lua, designada como S/2004 N1, é tão pequena e apagada que ela é aproximadamente uma centena de milhões de vezes mais apagada do que a estrela mais débil que podemos ver a olho nu.

A maior lua de Netuno, Tritão, que tem o tamanho aproximado da Lua da Terra, pode ser um planeta anão congelado capturado do Cinturão de Kuiper no anel externo do nosso Sistema Solar. Essa captura teria gravitacionalmente repartido qualquer satélite original do sistema de Netuno. Muitas das luas agora vistas orbitando o planeta, provavelmente formadas depois que Tritão foi colocado na sua órbita incomum em movimento retrógrado ao redor de Netuno.

Fonte: NASA

segunda-feira, 15 de julho de 2013

Uma fusão monstuosa de galáxias

Comparável à fusão de placas tectônicas na Terra formando um supercontinente maciço conhecido como Pangea ocorrido a 250 milhões de anos, o telescópio espacial Spitzer captou imagens de quatro galáxias massivas colidindo-se e disprersando bilhões de estrelas como grãos de areia!

ilustração da colisão das quatro galáxias

© NASA/JPL-Caltech (ilustração da colisão das quatro galáxias)

É o maior engavetamento galáctico conhecido no Universo, que irá produzir uma enorme prole estelar.

A colisão maciça produzirá a união das quatro galáxias gerando uma única galáxia gigante que será cerca de 10 vezes maior do que a nossa Via Láctea. Do ponto de vista científico, este avistamento raro fornece dados sem precedentes da formação de galáxias mais massivas.
A nova fusão quádrupla foi descoberta por acaso, durante uma pesquisa do Spitzer de um aglomerado de galáxias distante, chamado CL0958 4702, localizado a cerca de cinco bilhões de anos-luz de distância.

aglomerado de galáxias CL0958+4702

© NASA/Spitzer & Chandra (aglomerado de galáxias CL0958+4702)

A imagem mostra dados do telescópio infravermelho Spitzer, em vermelho, e do observatório de raios X Chandra, em azul.

O telescópio infravermelho observou invulgarmente pela primeira vez uma grande pluma em forma de leque de luz que está saindo da reunião das quatro galáxias em forma de bolha, ou elíptica. Três das galáxias são aproximadamente do tamanho da Via Láctea, enquanto a quarta é três vezes maior.

Algumas das estrelas que foram lançadas na fusão monstruosa irão orbitar em áreas isoladas fora das fronteiras de qualquer das galáxias. Tais estrelas abandonadas teriam planetas com vistas noturnas muito diferentes da nossa. Ao invés de ver muitas estrelas individuais, não haveriam galáxias mais visíveis que adornam o céu noturno.

As colisões entre galáxias são importantes na formação do nosso Universo. Nossa própria galáxia canibaliza galáxias menores que são absorvidas há milhões de anos. Embora as estrelas durante a fusão de galáxias são jogadas por aí como grãos de areia, a tensão de cisalhamento do espaço entre os objetos permite que as galáxias sobrevivem à viagem. A Via Láctea colidirá com a galáxia de Andrômeda, uma galáxia espiral muito maior, em cerca de cinco bilhões de anos.

Quando a fusão das quatro galáxias estiver concluída, a galáxia resultante será uma das maiores no Universo.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 12 de julho de 2013

Estrela em ciclo magnético hiperativo

O relacionamento entre estrelas e planetas normalmente é bastante unidirecional: a estrela governa seus servos celestiais, banhando-os com radiação e calor.

ilustração da reversão de campo magnético em estrela

© IfA (ilustração da reversão de campo magnético em estrela)

Os pequenos planetas simplesmente são influenciados pela estrela progenitora. Mas às vezes um planeta é tão massivo, e está tão perto de sua estrela, que esse pequeno objeto pode exercer uma influência considerável em seu vizinho estelar.
Esse é o caso do planeta orbitando a estrela Tau Boötis (Tau Boo). O mundo gigante, com seis vezes a massa de Júpiter, foi descoberto em 1996 circulando a brilhante estrela a cerca de 50 anos-luz do Sol. Tau Boo b, como o planeta é conhecido, passa tão perto da estrela em sua órbita, menos de 1/20 da distância entre a Terra e o Sol, que arrasta a superfície estelar consigo, assim sincronizando a rotação da estrela com a órbita do planeta.
A interação gravitacional também pode levar a uma mudança hiperativa do campo magnético da estrela.
Novas pesquisas mostram que os polos magnéticos da estrela se revertem em escalas temporais de um ano terrestre ou menos, de modo que o campo magnético volta à sua orientação original a cada dois anos. O ciclo magnético da estrela Tau Boo é pelo menos 10 vezes mais rápido que o do Sol.
Os pesquisadores declaram que Tau Boo é apenas a segunda estrela, depois do Sol, que teve seu ciclo magnético completo documentado. Mas a progressão de Tau Boo é muito mais rápida que a do ciclo magnético correspondente do Sol, que demora 22 anos para ser completado.
A pesquisa confirma indicações anteriores do rápido ciclo magnético de Tao Boo com base em observações preliminares com apenas alguns anos.
“Quando você só tem três pontos de dados, você poderia dizer que existe a possibilidade de um ciclo, mas é bom obter mais pontos de dados para ter certeza”, explica a astrofísica Rim Fares, da University of Saint Andrews, na Escócia. Ela apresentou os novos dados esta semana, na Reunião Nacional de Astronomia do Reino Unido. 
De 2006 a 2011, Fares e seus colegas rastrearam o campo magnético de Tau Boo e de outras nove estrelas usando o telescópio Franco-Canadense-Havaiano em Mauna Kea, no Havaí, e telescópio Bernard Lyot, nos Pirineus Franceses.
As novas observações apoiam a sugestão, oferecida por Fares e seus colegas em 2009, de que o ciclo magnético da estrela dura cerca de dois anos, mas os pesquisadores não são capazes de medir precisamente a duração do ciclo. “Podemos ver a reversão a cada 12 meses. Será que outras reversões acontecem nesse intervalo? Não podemos ter certeza absoluta disso”, observa Fares.
A causa das rápidas oscilações de Tau Boo em seu campo magnético de grande escala ainda não foi identificada, mas o planeta próximo é um suspeito interessante. “Essa estrela é interessante porque tem um planeta muito massivo”, comenta Fares. “Ela tem um Júpiter quente muito massivo, em uma órbita muito próxima”. O arrasto gravitacional do planeta pode estar contribuindo com forças de cisalhamento para a camada convectiva da estrela, onde o plasma em rotação cria o campo magnético. 
Outros estudos de campos magnéticos de estrelas, com e sem planetas, ajudarão a esclarecer os efeitos que o mundo gigante Tau Boo b tem sobre sua estrela. Fares e seus colegas estão trabalhando para coletar dados de outras estrelas, mas até agora nenhuma delas mostrou um ciclo tão claro de reversão magnética. “Nós observamos algumas mudanças na polaridade, mas a maioria delas foram bem caóticas”, conta Fares. “Acho que precisamos observar muito mais para ter certeza de que existem ciclos nessas estrelas”.

A pesquisa foi enviada para publicação no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Scientific American Brasil

quinta-feira, 11 de julho de 2013

A cor real de um exoplaneta

Astrônomos determinaram pela primeira vez a verdadeira cor de um planeta na órbita de uma estrela diferente do Sol.

ilustração do planeta azul HD 189733b

© NASA (ilustração do planeta azul HD 189733b)

Se visto por olhos humanos, o planeta conhecido como HD 189733b seria de um profundo azul cobalto, parecido com as cores da Terra quando vista do espaço.

Esse planeta extrassolar azul é um gigante gasoso que orbita muito próximo de sua estrela. A atmosfera ali é abrasadora, com uma temperatura que ultrapassa os 1.000ºC, e lá ocorre precipitação de partículas de silicato condensado carregadas por ventos de 7.000 km/h.

Esse mundo alienígena está localizado à distância de 63 anos-luz da Terra, e é um dos exoplanetas mais próximos de nós que pode ser visto cruzando sua estrela. O HD 189733b tem sido intensivamente estudado pelo Hubble e outros telescópios, possibilitando descobrir que sua atmosfera é muito variável e exótica, com nevoeiros e violentas erupções. Agora, o planeta foi alvo de um estudo que determinou de maneira inédita a cor visível de um exoplaneta.

"Esse planeta foi bem estudado no passado, mas medir sua cor é algo realmente novo, podemos imaginar de verdade como esse planeta seria se fôssemos capazes de vê-lo diretamente", afirmou Frédéric Pont, da Universidade de Exeter, autor do estudo.

A cor azul desse planeta se deve à turbulenta atmosfera que está misturada com partículas de silicato que dispersam luz azul. Para determinar como seria o planeta aos olhos humanos, os astrônomos mediram o albedo, ou seja, quanta luz era refletida da superfície do HD 189733b.

A pesquisa será publicada na edição de agosto da revista Astrophysical Journal Letters.

Fonte: NASA

quarta-feira, 10 de julho de 2013

Ecografia revela embrião de uma estrela

Novas observações obtidas pelo ALMA (Atacama Large Millimeter / submillimeter Array) deram aos astrônomos a melhor vista de uma estrela gigantesca se formando no seio de uma nuvem escura.

nascimento de uma estrela monstruosa

© ESO/ALMA (nascimento de uma estrela monstruosa)

Descobriu-se um útero estelar com cerca de 500 vezes a massa solar, o maior descoberto na Via Láctea, que ainda está evoluindo. A estrela embrionária no interior da nuvem alimenta-se vorazmente do material que colapsa. Pensa-se que esta nuvem irá dar origem a uma estrela muito brilhante com uma massa que poderá atingir cerca de 100 massas solares.

As estrelas mais brilhantes e de maior massa da nossa Galáxia formam-se no interior de nuvens escuras e frias, no entanto este processo mantém-se envolto tanto em poeira como em mistério. Uma equipe internacional de astrônomos utilizou o ALMA para fazer uma ecografia em microondas de modo a ter uma ideia mais clara sobre a formação destas estrelas gigantescas, localizada a cerca de 11.000 anos-luz de distância, numa nuvem conhecida como Nuvem Escura de Spitzer (sigla do inglês, SDC) 335.579-0.292.
Existem duas teorias para a formação de estrelas de massa muito elevada. Uma sugere que a nuvem escura progenitora se fragmenta, criando vários núcleos pequenos que colapsam por si próprios, formando eventualmente estrelas. A outra é mais dramática: uma nuvem inteira começa a colapsar, com o material se deslocando rapidamente para o centro da nuvem, criando nessa região uma ou mais estrelas de massa muito elevada. A equipe liderada por Nicolas Peretto do CEA/AIM Paris/Saclay, França e Universidade de Cardiff, Reino Unido, compreendeu que o ALMA era a ferramenta perfeita para descobrir o que se está realmente se passando no interior destas nuvens.
Com o auxílio do telescópio espacial Spitzer da NASA e o observatório espacial Herschel da ESA, a SDC 335.579-0.292 revelou-se inicialmente como sendo um ambiente dramático de filamentos de gás escuros e densos. Agora com a utilização da sensibilidade única do ALMA para observar em detalhe, tanto a quantidade de poeira como o movimento do gás se deslocando no interior da nuvem escura, foi descoberto um verdadeiro monstro.
“As observações do ALMA permitiram-nos ver pela primeira vez com todo o pormenor o que se passa no interior desta nuvem,” diz Peretto. “Queríamos ver como é que estrelas monstruosas se formam e crescem, e conseguimos! Uma das fontes que encontramos é uma verdadeira gigante, o maior núcleo protoestelar jamais encontrado na Via Láctea.”
Este núcleo, o útero da estrela embrionária, tem mais de 500 vezes a massa do nosso Sol serpenteando no seu interior. E as observações do ALMA mostram que muito mais matéria está ainda  sendo acretada, aumentando esta massa ainda mais. Todo este material eventualmente colapsará para formar uma estrela jovem que poderá atingir as 100 massas solares, um monstro muito raro.
“Embora soubéssemos já que esta região era uma boa candidata a uma nuvem na formação de estrelas de grande massa, não esperávamos encontrar uma estrela embrionária tão grande no seu centro,” diz Peretto. “Pensa-se que este objeto formará uma estrela que pode atingir as 100 massas solares. De todas as estrelas da Via Láctea apenas uma em cada dez milhares atinge este tipo de massa!”
“Estas estrelas não são apenas raras, mas o seu nascimento é também extremamente rápido e a sua infância é muito curta. É por isso que encontrar um objeto com tanta massa numa fase tão inicial da sua evolução é, de fato, um resultado espetacular, ” acrescenta o membro da equipe Gary Fuller da Universidade de Manchester, Reino Unido.
Outro membro da equipe, Ana Duarte Cabral do Laboratoire d´Astrophysique  de Bordeaux, França, enfatiza que “as observações do ALMA revelam os detalhes espetaculares dos movimentos da rede de filamentos de gás e poeira e mostram que uma enorme quantidade de gás está se deslocando para a região central compacta”. Este aspecto apoia fortemente a teoria do colapso global para a formação de estrelas de grande massa, em vez da fragmentação.

Fonte: ESO