segunda-feira, 2 de agosto de 2021

Descoberta erupção de raios gama mais curta abastecida por supernova

Os astrônomos descobriram o GRB (Gamma-Ray Burst) mais curto provocado pela implosão de uma estrela massiva.

© M. Zamani (estrela em colapso produzindo dois jatos GRB curtos)

Usando o Observatório Gemini, um programa do NOIRLab, os astrônomos identificaram a causa deste surto de raios gama de 0,6 segundos como uma explosão de supernova numa galáxia distante. Os GRBs provocados por supernovas têm geralmente mais do dobro da duração, o que sugere que alguns GRBs curtos podem ser produzidos por supernovas.

Os GRBs estão entre os eventos mais brilhantes e energéticos do Universo. Os GRBssão divididos em duas grandes categorias com base na sua duração. Os GRBs curtos ganham vida em menos de dois segundos e pensa-se que sejam provocados pela fusão de estrelas de nêutrons binárias. Os GRBs longos têm sido associados a explosões de supernova provocadas pela implosão de estrelas massivas.

Este e alguns outros GRBs associados a supernovas estão parecendo curtos porque os jatos de raios gama que emergem dos polos da estrela em colapso não são fortes o suficiente para escapar completamente da estrela, e que outras estrelas colapsantes têm jatos tão fracos que nem produzem GRBs. 

Esta descoberta também pode ajudar a explicar um mistério astronômico. Os GRBs longos estão associados a um tipo específico de supernova, de Tipo Ic-BL. No entanto, os astrônomos observam muitas mais destas supernovas do que GRBs longos. Esta descoberta do GRB mais curto associado a uma supernova sugere que alguns destes GRBs desencadeados por uma supernova estão se mascararando como GRBs curtos que se pensa serem criados pelas fusões de estrelas de nêutrons e, portanto, não estão sendo contados como do tipo supernova.

A equipe foi capaz de determinar que este GRB, identificado como GRB 200826A, teve origem numa explosão de supernova graças às capacidades do instrumento GMOS (Gemini Multi-Object Spectrograph) do Gemini North no Havaí. Os pesquisadores usaram o Gemini North para obter imagens da galáxia hospedeira do GRB por uma rede de observatórios que incluía o telescópio espacial de raios gama Fermi da NASA. 

As observações do Gemini permitiram detetar o aumento revelador de energia que assinala uma explosão, apesar da localização da explosão numa galáxia a 6,6 bilhões de anos-luz de distância. 

Este resultado mostra que classificar GRBs com base apenas na sua duração pode não ser a melhor abordagem, e que são necessárias observações adicionais para determinar a causa de um GRB. 

A instrumentação dedicada, a ser implementada na próxima década, manterá a liderança do Gemini no acompanhamento destes eventos cósmicos inspiradores.

Fonte: Gemini Observatory

Retrato de uma galáxia girando

A galáxia espiral IC 1954 ocupa o centro do palco nesta imagem do telescópio espacial Hubble.

© Hubble (IC 1954)

A galáxia, que fica a aproximadamente 45 milhões de anos-luz da Terra na constelação Horologium (O Relógio), possui uma barra central brilhante e braços espirais preguiçosamente sinuosos entremeados com nuvens escuras de poeira.

Este retrato de IC 1954 foi captado com a Wide Field Camera 3 do Hubble que observou grupos de estrelas jovens em galáxias próximas em comprimentos de onda no ultravioleta e no visível enquanto o ALMA (Atacama Large Millimeter/submillimeter Array), uma rede de radiotelescópios baseados em terra, coletou dados sobre discos formadores de estrelas e nuvens de gás frio.

A combinação dos dois conjuntos de observações permitiu aos astrônomos juntar os pontos e entender as conexões entre as estrelas jovens e as nuvens de gás frio que as originam. Estas observações também estabelecem as bases para observações futuras com o próximo telescópio espacial James Webb, que examinará galáxias próximas e observará as primeiras fases da formação estelar.

Fonte: ESA

sexta-feira, 30 de julho de 2021

Primeira detecção de luz por trás de um buraco negro

Observando raios X lançados para o Universo por buracos negros supermassivos no centro de uma galáxia a 800 milhões de anos-luz de distância, o astrofísico Dan Wilkins, da Universidade de Stanford, percebeu um padrão intrigante.

© Dan Wilkins (ilustração da emissão de raios X num buraco negro)

Ele observou uma série de clarões de raios X, e então os telescópios registaram algo inesperado: flashes adicionais de raios X que eram menores, posteriores e de "cores" diferentes dos surtos brilhantes. Segundo a teoria, estes ecos luminosos eram consistentes com os raios X refletidos por trás do buraco negro, mas até mesmo uma compreensão básica dos buracos negros nos diz que este é um lugar estranho para a luz daí surgir.

"Qualquer luz que entra naquele buraco negro não sai, de modo que não devemos ser capazes de ver nada que esteja por trás do buraco negro," disse Wilkins, que é pesquisador no Instituto Kavli para Astrofísica de Partículas e Cosmologia em Stanford e no Laboratório Nacional do Acelerador SLAC. 

É outra característica estranha do buraco negro, que torna esta observação possível. A razão pela qual é possível ver isto é porque aquele buraco negro está distorcendo o espaço, curvando a luz e torcendo os campos magnéticos em torno deles próprios.

A estranha descoberta é a primeira observação direta da luz por trás de um buraco negro - um cenário que foi previsto pela teoria da relatividade geral de Einstein, mas nunca confirmado, até agora.

Há cinquenta anos, quando os astrofísicos começaram a especular sobre como o campo magnético poderia comportar-se perto de um buraco negro, não tinham ideia de que um dia poderíamos ter as técnicas para observar isto diretamente e ver a teoria da relatividade geral de Einstein em ação. 

A motivação original por trás desta pesquisa era a de aprender mais sobre uma característica misteriosa de certos buracos negros chamada coroa. O material que cai num buraco negro supermassivo alimenta as fontes de luz contínuas mais brilhantes do Universo e, ao fazê-lo, forma uma coroa em torno do buraco negro. Esta luz (raios X) pode ser analisada para mapear e caracterizar um buraco negro.

A principal teoria do que é uma coroa começa com o gás deslizando para o buraco negro, onde é superaquecido a milhões de graus. A esta temperatura, os elétrons separam-se dos átomos, criando um plasma magnetizado. Preso na poderosa rotação do buraco negro, o campo magnético arqueia-se tão alto acima do buraco negro, e gira tanto sobre si próprio, que eventualmente quebra-se completamente, uma situação tão reminiscente do que acontece ao redor do nosso próprio Sol.

A missão de caracterizar e compreender as coroas continua e vai exigir mais observações. No futuro, as coroas serão exploradas através do observatório de raios X Athena (Advanced Telescope for High-ENergy Astrophysics) da ESA.

A descoberta foi publicada na revista Nature.

Fonte: Stanford University

Evidências de vapor de água na lua Ganimedes

Os astrônomos usaram conjuntos de dados de arquivo do telescópio espacial Hubble para revelar as primeiras evidências de vapor de água na atmosfera da lua de Júpiter, Ganimedes, o resultado do escape térmico de vapor de água da superfície gelada da lua.


© Juno (Ganimedes)

A lua Ganimedes, é a maior do planeta Júpiter e o nono maior objeto do Sistema Solar. Pode conter mais água do que todos os oceanos da Terra, mas as temperaturas lá são tão frias que a água à superfície congela e o oceano fica a cerca de 160 quilômetros abaixo da crosta. No entanto, onde há água pode haver vida como a conhecemos. Identificar água líquida em outros mundos é crucial na busca por planetas habitáveis além da Terra. E agora, pela primeira vez, foram encontradas evidências de uma atmosfera de água sublimada na lua gelada Ganimedes. 

Em 1998, o instrumento STIS (Space Telescope Imaging Spectrograph) do Hubble tirou as primeiras fotos ultravioleta (UV) de Ganimedes, que revelaram um padrão particular nas emissões observadas da atmosfera da lua. Ganimedes exibe bandas aurorais que são um tanto ou quanto semelhantes às observadas na Terra e em outros planetas com campos magnéticos. 

Estas imagens foram evidências ilustrativas de que Ganimedes tem um campo magnético permanente. As semelhanças entre as duas observações ultravioleta foram explicadas pela presença do oxigênio molecular, O2. As diferenças eram explicadas à época pela presença de oxigênio atômico, O, que produz um sinal que afeta uma cor UV mais do que outra. 

Como parte de um grande programa de observação para apoiar a missão Juno da NASA em 2018, Lorenz Roth, do Instituto Real de Tecnologia, em Estocolmo, Suécia, liderou uma equipe que se propôs a capturar espectros UV de Ganimedes com o COS (Cosmic Origins Spectrograph) do Hubble a fim de medir a quantidade de oxigênio atômico. Realizaram uma análise combinada de novos espectros obtidos em 2018 com o COS e imagens de arquivo do instrumento STIS de 1998 e 2010. Para sua surpresa, e em contraste com as interpretações originais dos dados de 1998, descobriram que quase não havia oxigênio atômico na atmosfera de Ganimedes. Isto significa que deve haver outra explicação para as diferenças aparentes entre as imagens UV das auroras.

A explicação foi então descoberta na distribuição relativa das auroras nas duas imagens. A temperatura da superfície de Ganimedes varia fortemente ao longo do dia e, por volta do meio-dia, perto do equador, pode tornar-se suficientemente quente para que a superfície gelada libere algumas pequenas quantidades de moléculas de água. Realmente, as diferenças percebidas entre as imagens UV estão diretamente correlacionadas com o local onde a água seria esperada na atmosfera da lua.

Esta descoberta acrescenta antecipação à próxima missão JUICE (JUpiter ICy moons Explorer) da ESA, a primeira grande missão do programa Cosmic Vision da ESA. Com lançamento planejado para 2022 e chegada a Júpiter em 2029, passará pelo menos três anos fazendo observações detalhadas de Júpiter e de três das suas maiores luas, com ênfase particular em Ganimedes como corpo planetário e potencial mundo habitável.

Ganimedes foi identificado para investigação mais detalhada porque fornece um laboratório natural para a análise da natureza, evolução e potencial habitabilidade de mundos gelados em geral e devido ao papel que desempenha dentro do sistema de satélites galileanos e às suas interações magnéticas e de plasma com Júpiter e o seu ambiente.

Compreender o sistema joviano e desvendar a sua história, desde a sua origem até ao possível aparecimento de ambientes habitáveis, vai proporcionar-nos uma melhor compreensão de como os planetas gigantes e os seus satélites se formam e evoluem. Além disso, espera-se que sejam encontradas novas informações sobre o potencial para o aparecimento de vida em sistemas exoplanetários semelhantes a Júpiter.

Um artigo foi publicado na revista Science.

Fonte: ESA

segunda-feira, 26 de julho de 2021

Encontrada nuvem de gás gigante que escapou de galáxia

Uma nuvem de gás foi descoberta em 2017 pela emissão em vermelho escuro de seu hidrogênio ionizado, localizado no aglomerado de Leo (Abell 1367) a cerca de 330 milhões de anos-luz de distância.

© ESA/XMM-Newton (nuvem em Abell 1367)

A nuvem órfã é a parte em forma de guarda-chuva azul desta imagem, que é codificada por cores para mostrar a parte de raios X da nuvem em azul e o gás hidrogênio ionizado em vermelho. A luz visível é mostrada em branco.

Dez bilhões de sóis de gás estão pairando no espaço na forma de uma nuvem com quase 6 milhões de anos-luz de diâmetro, sendo maior do que a Via Láctea, e provavelmente foi arrancada da galáxia que outrora residia.

Quando uma galáxia cai em um aglomerado, ela não passa por um vácuo vazio. O gás quente preenche o espaço entre as galáxias do aglomerado e empurra de volta contra a galáxia, como o vento que você sente quando anda de bicicleta.

Os astrônomos já viram gás fluindo atrás das galáxias desta maneira antes, apelidando-as de "água-viva" por sua aparência. Mesmo desprovida de seu reservatório de formação de estrelas, a galáxia continuará navegando através do aglomerado, suas estrelas e matéria escura aderindo a ele. As estrelas envelhecerão se tornando mais vermelhas, e nenhuma nova estrela as substituirá. 

O gás da nuvem deve se misturar ao meio ambiente mais quente e esparso ao longo do tempo, evaporando completamente em 30 milhões de anos. Com base em observações espectroscópicas dos movimentos dentro da nuvem e na falta de uma galáxia progenitora, os pesquisadores estimam que ela tenha meio bilhão de anos. 

Para ajudar em sua sobrevivência, a equipe sugere que um campo magnético pode interceptar o gás. Um campo de 6 microgauss seria suficiente para manter a nuvem unida, ou seja, cerca de 100.000 vezes mais fraco do que o campo magnético da Terra, mas quase a mesma força que o campo no gás interestelar que cerca o Sol. 

Embora os astrônomos tenham visto outras nuvens solitárias no aglomerado de Virgem mais próximo, nenhuma delas emite raios X como esta. Os raios X indicam que também há gás muito quente, além do hidrogênio ionizado meramente quente. 

Por que esta nuvem sobreviveu quando outras parecidas presumivelmente não sobreviveram? A origem da nuvem por meio da remoção parece a melhor explicação, mas também levanta muitas questões interessantes. A obtenção de mais informações sobre o gás mais frio na nuvem será a chave para desvendar seus mistérios, observações que a equipe está trabalhando agora para adquirir.

A descoberta foi relatada no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Sky & Telescope

sábado, 24 de julho de 2021

Elefante, Morcego e Lula

As extensas nebulosas de emissão IC 1396 e Sh2-129 misturam gás interestelar brilhante e nuvens de poeira escura neste amplo campo de visão de 10 graus em direção à constelação norte de Cefeu.

© Patrick Hsieh (IC 1396, Sh2-129 e Ou4)

Energizado por sua estrela central azulada IC 1396 (esquerda) tem centenas de anos-luz de diâmetro e cerca de 3.000 anos-luz de distância. As formas escuras intrigantes da nebulosa incluem uma nuvem escura sinuosa popularmente conhecida como Tromba do Elefante abaixo e à direita do centro. Com dezenas de anos-luz de comprimento, ela contém a matéria-prima para a formação de estrelas e é conhecida por esconder protoestrelas em seu interior.

Localizado a uma distância semelhante do planeta Terra, os nós brilhantes e as cristas de emissão de Sh2-129 à direita sugerem seu nome popular, Nebulosa do Morcego Voador. Dentro desta nebulosa, a adição mais recentemente reconhecida a este zoológico cósmico real é a fraca emissão azulada de Ou4, a Nebulosa da Lula Gigante.

Fonte: NASA

O núcleo da radiogaláxia mais escura

Uma equipe internacional apoiada pela Colaboração EHT (Event Horizon Telescope), conhecida por captar a primeira imagem de um buraco negro na galáxia M87, fotografou agora o coração da vizinha radiogaláxia Centauro A em detalhes sem precedentes.

© EHT (emissão de jato em Centaurus A)

Os astrônomos identificam a localização do buraco negro supermassivo central e revelam como um jato gigantesco que está nascendo. O mais notável é que apenas as bordas externas do jato parecem emitir radiação, o que desafia os modelos teóricos dos jatos.

No rádio, Centauro A emerge como um dos maiores e mais brilhantes objetos no céu noturno. Depois de ter sido identificada como uma das primeiras fontes extragaláticas de rádio conhecidas em 1949, Centauro A tem sido estudada extensivamente em todo o espectro eletromagnético por uma variedade de observatórios no rádio, no infravermelho, no visível, em raios X e em raios gama. No centro de Centauro A encontra-se um buraco negro com 55 milhões de vezes a massa do Sol, que fica entre as escalas de massa do buraco negro de M87 (6,5 bilhões de massas solares) e do buraco negro no centro da nossa própria Galáxia (cerca de 4 milhões de sóis).

Este trabalho analisou dados das observações de 2017 pelo EHT para construir uma imagem de Centauro A em detalhes sem precedentes. Isto permite, pela primeira vez, ver e estudar um jato extragalático de rádio em escalas menores do que a distância que a luz percorre num dia. Comparado com todas as observações anteriores de alta resolução, o jato de Centauro A é fotografado com uma frequência dez vezes mais alta e com uma resolução dezesseis vezes mais nítida. 

Com o poder de resolução do EHT, podemos agora ligar as vastas escalas da fonte, que são tão grandes quanto 16 vezes o diâmetro angular da Lua no céu, à sua origem perto do buraco negro numa região com apenas a largura de uma maçã situada na Lua quando projetada no céu. Isto é um fator de ampliação de um bilhão de vezes. 

Os buracos negros supermassivos que residem no centro de galáxias como Centauro A alimentam-se de gás e poeira que são atraídos pela sua enorme força gravitacional. Este processo libera grandes quantidades de energia, tornando a galáxia "ativa". A maior parte da matéria perto da orla do buraco negro cai para o interior. No entanto, algumas das partículas circundantes escapam momentos antes da captura e são lançadas para o espaço: nascem assim os jatos, uma das características mais misteriosas e energéticas das galáxias.

Os astrônomos têm contado com diferentes modelos de como a matéria se comporta perto do buraco negro para melhor entender este processo. Mas ainda não sabem exatamente como os jatos são lançados da sua região central e como podem estender-se por escalas maiores do que as suas galáxias hospedeiras sem se dispersar. O EHT visa resolver este mistério. 

A nova imagem mostra que o jato lançado por Centauro A é mais brilhante nas extremidades do que no centro. Este fenômeno é conhecido em outros jatos, mas nunca tinha sido visto antes de forma tão pronunciada. Agora modelos teóricos de jatos, que não conseguem reproduzir este brilho nas orlas, podem ser descartados. 

Com as novas observações EHT do jato de Centauro A, foi identificada a provável posição do buraco negro. Com base nesta localização, os pesquisadores preveem que observações futuras num comprimento de onda ainda menor e resolução mais alta sejam capazes de fotografar o buraco negro central de Centauro A. Isto exigirá a utilização de observatórios espaciais. 

Estes dados são da mesma campanha de observação que forneceu a famosa imagem do buraco negro de M87. Os novos resultados mostram que o EHT fornece um tesouro de dados sobre a rica variedade de buracos negros.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Max Planck Institute for Radio Astronomy

quinta-feira, 22 de julho de 2021

Galáxia Pequeno Sombreiro com supernova

Aponte seu telescópio para a constelação de Pégaso e você poderá encontrar esta extensão de estrelas da Via Láctea e galáxias distantes.

© CHART32 Team (NGC 7814 & SN 2021rhu)

A galáxia NGC 7814 está centrada no bonito campo de visão que quase seria coberto pela lua cheia. Ela é às vezes chamada de Pequeno Sombreiro por sua semelhança com o mais brilhante e mais famoso M104, a Galáxia Sombreiro. Ambas são galáxias espirais vistas de lado, e têm halos extensos e protuberâncias centrais cortadas por um disco fino com linhas de poeira mais finas na silhueta.

Na verdade, a galáxia NGC 7814 está a cerca de 40 milhões de anos-luz de distância e possui cerca de 60.000 anos-luz de diâmetro. Isto faz com que o Pequeno Sombreiro tenha aproximadamente o mesmo tamanho físico de seu homônimo mais conhecido, parecendo menor e mais fraco apenas porque está mais longe. 

Nesta visão telescópica, a galáxia NGC 7814 está hospedando uma supernova recém-descoberta, dominante imediatamente à esquerda do núcleo da galáxia. A supernova é catalogada como SN 2021rhu, cuja explosão estelar foi identificada como uma supernova Tipo Ia, útil para calibrar a escala de distância do Universo.

Fonte: NASA

Disco formando satélites em torno de exoplaneta

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), os astrônomos detectaram pela primeira vez de forma clara a presença de um disco em torno de um planeta fora do nosso Sistema Solar.

© ALMA (sistema PDS 70)

Estas observações nos dão novas pistas sobre como é que luas e planetas se formam em sistemas estelares jovens. 

O disco em questão, chamado disco circumplanetário, rodeia o exoplaneta PDS 70c, um dos dois planetas gigantes do tipo de Júpiter que orbitam uma estrela localizada a quase 400 anos-luz de distância da Terra. Os astrônomos já tinham descoberto anteriormente indícios da existência de um disco de formação de luas em torno deste exoplaneta, mas, uma vez que não conseguiam separar o disco do meio circundante, não tinha sido possível até agora confirmar a sua presença. 

Além disso, com o auxílio do ALMA, os astrônomos descobriram que o diâmetro do disco tem um tamanho aproximado correspondente à distância Terra-Sol e massa suficiente para formar até três satélites do tamanho da nossa Lua. Estes resultados não são apenas cruciais para descobrir como é que as luas se formam, mas também são extremamente importantes para comprovar teorias de formação planetária.

Os planetas se formam em discos de poeira em torno de estrelas jovens, esculpindo cavidades à medida que “engolem” material do disco circumstelar para crescer. Durante este processo, um planeta pode adquirir o seu próprio disco circumplanetário, o que contribui para o crescimento do planeta, regulando a quantidade de material que cai sobre ele. Ao mesmo tempo, o gás e a poeira do disco circumplanetário podem se juntar em corpos progressivamente maiores por meio de colisões múltiplas, levando por fim ao nascimento de luas em órbita destes planetas. No entanto, os astrônomos ainda não compreendem muito bem estes processos.

Até agora foram descobertos mais de 4.000 exoplanetas, mas todos eles fazem parte de sistemas já maduros. PDS 70b e PDS 70c, que formam um sistema que lembra o par Júpiter-Saturno, são os dois únicos exoplanetas detectados até agora que ainda estão no processo de formação. Apesar da semelhança com o par Júpiter-Saturno, o disco em torno do PDS 70c é cerca de 500 vezes maior do que os anéis de Saturno.

Os dois exoplanetas que compõem o sistema, foram descobertos inicialmente com o auxílio do Very Large Telescope (VLT) do ESO em 2018 e 2019, respectivamente, e a sua natureza única significa que foram já observados posteriormente e diversas vezes por outros telescópios e instrumentos. O PDS 70b foi descoberto com o auxílio do instrumento SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch), enquanto PDS 70c foi observado pela primeira vez com o MUSE (Multi Unit Spectroscopic Explorer), ambos montados no VLT. O sistema de dois planetas também já foi observado com o instrumento X-shooter, também instalado no VLT.

Estas observações de alta resolução do ALMA permitiram agora aos astrônomos descobrir mais sobre este sistema. Além de terem confirmado a presença de um disco circumplanetário em torno de PDS 70c e estimarem o seu tamanho e massa, os pesquisadores descobriram também que PDS 70b não apresenta evidências claras de um tal disco, o que indica que o seu local de nascimento deve ter ficado desprovido de poeira devido ao seu companheiro, PDS 70c. 

Com o Extremely Large Telescope (ELT) do ESO, que está sendo construído no Cerro Armazones no deserto chileno do Atacama, será possível compreender ainda melhor este sistema planetário. Em particular, usando o instrumento METIS (Mid-infrared ELT Imager and Spectrograph) que será montado no ELT, a equipe conseguirá ver os movimentos do gás que rodeia PDS 70c, obtendo deste modo uma visão tridimensional do sistema. 

Esta pesquisa foi apresentada no artigo “A Circumplanetary Disk Around PDS 70c” publicado na revista The Astrophysical Journal Letters.

Fonte: ESO

terça-feira, 20 de julho de 2021

Explosões de raios gama oriundas de um magnetar

Os magnetares são objetos bizarros, estrelas de nêutrons massivas e giratórias com campos magnéticos dos mais poderosos conhecidos, capazes de disparar breves explosões de ondas de rádio tão brilhantes que são visíveis por todo o Universo.

© NASA/Chris Smith (ilustração de campo magnético de um magnetar)

Uma equipe de astrofísicos descobriu agora outra peculiaridade dos magnetares: podem emitir rajadas de raios gama de baixa energia num padrão nunca antes visto em qualquer outro objeto astronômico. Não se sabe exatamente qual a razão para tal, pois também ainda mal conhecemos os próprios magnetares, com dúzias de teorias sobre como produzem surtos de rádio e raios gama.

O reconhecimento deste padrão incomum de atividade de raios gama pode ajudar os teóricos a descobrir os mecanismos envolvidos. "Os magnetares, que estão ligados às FRBs (Fast Radio Bursts), têm alguma coisa periódica no topo da sua aleatoriedade," disse Bruce Grossan, astrofísico no Laboratório de Ciências Espaciais da Universidade da Califórnia, em Berkeley. 

Os pesquisadores descobriram o padrão no ano passado em rajadas oriundas de um SGR (Soft Gama Repeater), de nome SGR 1935+2154, que é um magnetar, uma fonte prolífica de explosões de raios gama de baixa energia e a única fonte conhecida de FRBs na Via Láctea. Eles descobriram que o objeto emite rajadas aleatoriamente, mas apenas dentro de janelas regulares de quatro meses, cada janela ativa separada por três meses de inatividade.

A confirmação da previsão surpreendeu e entusiasmou os cientistas, que pensam que este pode ser um novo exemplo de um fenômeno que poderia caracterizar emissões de outros objetos astronômicos. No ano passado, os pesquisadores sugeriram que a emissão de FRBs, que normalmente duram alguns milésimo de segundo, de galáxias distantes pode ser agrupada num padrão de janela periódica. Mas os dados eram intermitentes e as ferramentas estatísticas e computacionais para estabelecer com firmeza tal afirmação com dados esparsos não estavam bem desenvolvidas.

O instrumento Konus a bordo da nave espacial Wind, lançada em 1994, registrou explosões de raios gama suaves deste objeto, que também exibe FRBs, desde 2014 e provavelmente nunca perdeu um brilhante. A observação recente de cinco explosões dentro da sua janela temporal prevista, vista pela Wind e por outras sondas que monitoram explosões de raios gama, aumenta a sua confiança. Foram observadas rajadas em 10 janelas periódicas desde 2014, e a probabilidade de que sejam na verdade aleatórias é de 3 em 10.000, o que significa que há 99,97% de hipótese de estarem certos. Uma simulação Monte Carlo indicou que a chance de estarem observando um padrão que não existe é provavelmente inferior a 1 em 1 bilhão. No entanto, uma única explosão futura, observada fora da janela de tempo, refutaria toda a teoria ou faria com que a análise deveria ser completamente refeita.

Pensa-se que os SGRs de magnetares envolvam sismos estelares, talvez desencadeados por interações entre a crosta da estrela de nêutrons e o seu intenso campo magnético. Os magnetares giram uma vez a cada poucos segundos e, se a rotação for acompanhada por uma precessão, ou seja, uma oscilação na rotação, isto pode fazer com que a fonte de emissão da explosão aponte para a Terra apenas dentro de uma determinada janela de tempo. Outra possibilidade é que uma nuvem densa e giratória de material obscurante pode rodear o magnetar, mas tem uma espécie de orifício que só permite que as rajadas saiam e atinjam a Terra periodicamente.

Um artigo científico foi publicado no periódico Physical Review D.

Fonte: University of California

segunda-feira, 19 de julho de 2021

Estrela em forma de lágrima aponta para supernova futura

Os astrônomos fizeram uma rara observação de duas estrelas que espiralam para a sua destruição, avistando sinais reveladores de uma estrela em forma de lágrima.

© U. de Warwick/Mark Garlick (ilustração do sistema HD265435)

A forma trágica é provocada por uma massiva anã branca próxima, que distorce a estrela com a sua intensa gravidade, que também será o catalisador para uma eventual supernova que consumirá ambas.

Descoberto por uma equipe internacional de astrônomos e astrofísicos liderados pela Universidade de Warwick, é um dos poucos sistemas estelares descobertos que um dia verá uma anã branca reacender o seu núcleo. Uma nova pesquisa confirma que as duas estrelas estão nos estágios iniciais de uma espiral que provavelmente terminará numa supernova do Tipo Ia, um tipo que ajuda na determinação do ritmo a que o Universo está se expandindo.

O sistema HD265435 está localizado a cerca de 1.500 anos-luz de distância e consiste de uma sub-anã quente e de uma anã branca que se orbita uma à outra a um ritmo de mais ou menos 100 minutos. As anãs brancas são estrelas "mortas" que queimaram todo o seu combustível e que entraram em colapso, tornando-as pequenas mas extremamente densas. Uma supernova do Tipo Ia geralmente ocorre quando o núcleo de uma anã branca reacende-se, levando a uma explosão termonuclear. 

Existem dois cenários em que isto pode acontecer. No primeiro, a anã branca ganha massa suficiente para atingir 1,4 vezes a massa do nosso Sol, conhecido como limite de Chandrasekhar. HD265435 encaixa-se no segundo cenário, no qual a massa total de um sistema estelar constituído por várias estrelas está próximo ou acima deste limite. Sabemos apenas de um punhado de outros sistemas estelares que vão atingir este limite e resultar numa supernova do Tipo Ia. 

Uma maneira de ocorrer é se a anã branca acumular massa suficiente da sub-anã quente, de modo que à medida que as duas se orbitam uma à outra e se aproximam, a matéria começará a escapar da sub-anã quente e a cair sobre a anã branca. Outra forma é que, por estarem perdendo energia para as emissões de ondas gravitacionais, aproximam-se até se fundirem. Assim que a anã branca ganhar massa suficiente com qualquer um dos métodos, tornar-se-á uma supernova.

Usando dados do TESS (Transiting Exoplanet Survey Satellite) da NASA, a equipe foi capaz de observar a sub-anã quente, mas não a anã branca já que a primeira é muito mais brilhante. No entanto, este brilho varia ao longo do tempo, o que sugere que a estrela estava sendo distorcida em forma de lágrima por um objeto massivo próximo.

Usando medições de velocidade radial e de velocidade de rotação pelo Observatório Palomar e pelo Observatório W. M. Keck, e modelando o efeito do objeto massivo sobre a sub-anã quente, foi possível confirmar que a anã branca oculta é tão massiva quanto o Sol, mas apenas ligeiramente menor que o raio da Terra. Combinada com a massa da sub-anã quente, que tem pouco mais de 0,6 vezes a massa do nosso Sol, ambas as estrelas têm a massa necessária para desencadear uma supernova do Tipo Ia. Dado que as duas estrelas já estão próximas o suficiente para começarem a espiralar uma em direção à outra, inevitavelmente a anã branca tornar-se-á supernova daqui a cerca de 70 milhões de anos.

Os modelos teóricos produzidos especificamente para este estudo também preveem que a sub-anã quente vai contrair-se para se tornar numa anã branca antes de se fundir com a sua companheira. As supernovas do Tipo Ia são importantes para a cosmologia como "velas padrão". O seu brilho é constante e de um tipo específico de luz, o que significa que os astrônomos podem comparar a luminosidade que deveriam ter com o que observamos na Terra, e a partir daí calcular a que distância estão com um bom grau de precisão. Ao observar supernovas em galáxias distantes, os astrônomos combinam o quão depressa esta galáxia se move com a distância da supernova e calculam a expansão do Universo. 

Há uma discrepância entre a taxa estimada e observada de supernovas galácticas e o número de progenitoras que são vistas. É possível estimar quantas supernovas existirão na nossa Galáxia através da observação de muitas galáxias, ou através do conhecimento da evolução estelar, e este número é consistente. 

Um artigo sobre a observação foi publicado na revista Nature Astronomy.

Fonte: University of Warwick

sexta-feira, 16 de julho de 2021

Novas imagens revelam estruturas impressionantes em galáxias próximas

Uma equipe de astrônomos divulgou novas observações de galáxias próximas que parecem fogos de artifício cósmicos coloridos.

© ESO/VLT (NGC 4303)

As imagens, obtidas com o auxílio do Very Large Telescope (VLT) do ESO, mostram diferentes componentes das galáxias em cores distintas, permitindo que os astrônomos identifiquem a localização de estrelas jovens e o gás que elas aquecem ao seu redor.

Os astrônomos sabem que as estrelas nascem em nuvens de gás, mas o que dá origem à formação estelar, e como é que as galáxias como um todo participam neste processo, permanece um mistério. Para compreender este fenômeno, pesquisadores observaram várias galáxias próximas com poderosos telescópios, tanto a partir do solo como do espaço, mapeando as diferentes regiões galácticas envolvidas no nascimento das estrelas.

Os pesquisadores utilizaram o Multi-Unit Spectroscopic Explorer (MUSE), montado no Very Large Telescope (VLT) do ESO, no deserto chileno do Atacama,  para observar estrelas recém-nascidas e o gás quente que as rodeia, o qual é iluminado e aquecido pelas próprias estrelas, tornando-se assim numa prova concreta da ocorrência de formação estelar. As novas imagens MUSE estão agora sendo combinadas com observações das mesmas galáxias obtidas com o Atacama Large Millimeter/submillimeter Array (ALMA), que é especialmente adequado para mapear nuvens de gás frio, as partes das galáxias que fornecem material para a formação de estrelas.

Ao combinar imagens MUSE e ALMA, os astrônomos podem examinar as regiões galácticas onde a formação de estrelas está acontecendo e compará-las aos locais onde se espera que este fenômeno ocorra, para entender melhor o que desencadeia, aumenta ou impede o nascimento de novas estrelas. As imagens resultantes são deslumbrantes, oferecendo uma visão espetacularmente colorida dos berçários estelares em nossas galáxias vizinhas.

© ESO/VLT (NGC 1300)

No âmbito do projeto Physics at High Angular resolution in Nearby GalaxieS (PHANGS), o MUSE observou 30.000 nebulosas de gás quente e coletou cerca de 15 milhões de espectros de diferentes regiões galácticas. As observações ALMA, por sua vez, permitiram aos astrônomos mapear cerca de 100.000 regiões de gás frio em 90 galáxias próximas, produzindo um atlas de berçários estelares do Universo próximo com uma nitidez sem precedentes. 

Além de observações do ALMA e do MUSE, o projeto PHANGS conta também com dados do telescópio espacial Hubble. Os vários observatórios foram selecionados de modo a permitirem à equipe observar as nossas galáxias vizinhas em diferentes comprimentos de onda (visível, infravermelho próximo e rádio), com cada faixa de comprimentos de onda revelando partes distintas das galáxias observadas.

O trabalho realizado pelo projeto PHANGS será aprimorado ainda mais pelos próximos telescópios e instrumentos, tais como o telescópio espacial James Webb da NASA. Os dados obtidos com este telescópio irão estabelecer uma base ainda melhor para observações que serão executadas com o futuro Extremely Large Telescope (ELT) do ESO, que começará a operar no final desta década e permitirá uma visão ainda mais detalhada das estruturas de berçários estelares.

Fonte: ESO

terça-feira, 13 de julho de 2021

Resolvido mistério da aurora de raios X de Júpiter

Astrônomos resolveram um mistério de décadas de como Júpiter produz um surto espetacular de raios X a cada poucos minutos.

© Hubble/Chandra (auroras em Júpiter)

Os raios X fazem parte da aurora de Júpiter, surtos de luz visível e invisível que ocorrem quando partículas carregadas interagem com a atmosfera do planeta. Um fenômeno semelhante ocorre na Terra, criando a aurora boreal, mas a de Júpiter é muito mais poderosa, liberando centenas de gigawatts de energia, o suficiente para alimentar brevemente toda a civilização humana.

Num novo estudo, pesquisadores combinaram observações íntimas do ambiente de Júpiter pelo satélite Juno da NASA, que atualmente orbita o planeta, com medições simultâneas de raios X do observatório XMM-Newton da ESA (que está em órbita da Terra). 

A equipe, liderada pela University College London (UCL) e pela Academia Chinesa de Ciências, descobriu que os surtos de raios X foram desencadeados por vibrações periódicas das linhas do campo magnético de Júpiter. Estas vibrações criam ondas de plasma (gás ionizado) que enviam partículas pesadas de íons "surfando" ao longo das linhas do campo magnético até que chocam com a atmosfera do planeta, liberando energia na forma de raios X. 

As auroras de raios X ocorrem nos polos norte e sul de Júpiter, muitas vezes com a regularidade de um relógio; durante esta observação Júpiter produzia surtos de raios X a cada 27 minutos. 

As partículas iônicas carregadas que atingem a atmosfera têm origem no gás vulcânico que é expelido para o espaço através de vulcões gigantes na lua de Júpiter, Io. Este gás torna-se ionizado devido a colisões no ambiente imediato de Júpiter, formando um toroide de plasma que rodeia o planeta. 

Provavelmente ocorrem processos semelhantes em Saturno, Urano, Netuno e em exoplanetas, com diferentes tipos de partículas carregadas. Os raios X são normalmente produzidos por fenômenos extremamente poderosos e violentos, como buracos negros e estrelas de nêutrons, de modo que parece estranho que meros planetas os produzam também. Com a chegada do satélite Juno à órbita de Júpiter, os astrônomos têm agora uma oportunidade fantástica de estudar de perto um ambiente que produz raios X.

© Juno/Chandra (aurora no polo sul de Júpiter)

Os pesquisadores analisaram observações de Júpiter e do seu ambiente circundante realizadas continuamente ao longo de um período de 26 horas pelos satélites Juno e XMM-Newton. Encontraram uma correlação clara entre as ondas no plasma detectado pela Juno e as erupções aurorais de raios X no polo norte de Júpiter registadas pelo XMM-Newton. Então usaram modelagem de computador para confirmar que as ondas iriam conduzir as partículas em direção à atmosfera de Júpiter.

Ainda não está claro porque é que as linhas do campo magnético vibram periodicamente, mas a vibração pode resultar de interações com o vento solar ou de fluxos de plasma de alta velocidade dentro da magnetosfera de Júpiter. O campo magnético de Júpiter é extremamente forte, cerca de 20.000 vezes mais forte do que o da Terra. Portanto, a sua magnetosfera, a área controlada por este campo magnético, é extremamente grande. Se fosse visível no céu noturno, cobriria uma região com várias vezes o tamanho da nossa Lua.

O novo estudo foi publicado na revista Science Advances.

Fonte: Jet Propulsion Laboratory