segunda-feira, 18 de janeiro de 2016

Explosão estelar mais brilhante já registrada

Um equipe de astrônomos do Kavli Institute for Astronomy and Astrophysics relatou o registro da mais brilhante supernova conhecida até hoje.

ilustração da explosão da supernova brilhante

© Wayne Rosing (ilustração da explosão da supernova brilhante)

A ilustração acima mostra como seria a explosão da supernova descoberta vista de um planeta a 10 mil anos luz de distância.

A supernova ASASSN-15lh, também denominada SN 2015L, está localizada a 3,8 bilhões de anos-luz de distância. Esta é 570 bilhões de vezes mais luminosa do que o Sol e com luminosidade aproximadamente 20 vezes maior que da Via Láctea! A supernova ASASSN-15lh possui uma luminosidade bolométrica de 2,2 ± 0,2 × 1045 ergs/s.

A supernova foi descoberta no dia 14 de Junho de 2015 pela equipe do All Sky Automated Survey for SuperNovae (ASASSN), em Cerro Tololo, no Chile, uma colaboração internacional que utiliza uma rede de pequenos telescópios automatizados em vários pontos do mundo para descobrir supernovas. A infraestrutura fotografa todo o céu em 2 ou 3 noites, essencial para detectar estes eventos numa fase tão precoce quanto possível, e consegue detectar supernovas normais em galáxias até 350 milhões de anos-luz.

Na última década, foram descobertos alguns exemplos raros do que parece ser uma nova classe de supernovas deficientes em hidrogênio e extremamente luminosas, as Super Luminous Supernovae (SLSNe). A energia liberada por estes objetos é desconcertante e forçou os astrofísicos a encontrar formas de explodir estrelas com diferentes características capazes de explicar as observações. Se uma estrela anã branca começar a roubar massa de uma vizinha vermelha gigante, por exemplo, sua gravidade fica tão alta que ela acaba implodindo, gerando então a supernova. Esse tipo de explosão, porém, conhecida como de tipo I, tem características de frequência de luz diferente de ASASSN-15lh, além de serem menos energéticas.

A teoria diz-nos que a luminosidade de uma supernova depende quase exclusivamente da quantidade de um isótopo radioativo de Níquel, o 56Ni, que é formado durante a fase inicial da explosão.

Nas semanas e meses seguintes a supernova brilha com a energia liberada pelos raios gama produzidos pelo decaimento do 56Ni num isótopo de Cobalto, o 56Co, e deste último num isótopo estável do Ferro, o 56Fe. Uma supernova normal produz aproximadamente uma massa solar de 56Ni.

A luminosidade deste novo grupo de supernovas implica, no entanto, a formação de algumas dezenas de massas solares de 56Ni durante a explosão.

Só estrelas muito massivas, com massas superiores a aproximadamente 150 vezes a massa do Sol, e com baixo teor em metais, elementos mais pesados do que o hidrogênio e hélio, conseguem produzir uma tal quantidade de 56Ni quando explodem como supernovas.

Estrelas como estas são muito raras no Universo atual pois a maior parte do material interestelar, a partir do qual se formam as estrelas, está contaminado com metais produzidos por gerações sucessivas de estrelas.

galáxia antes e durante a explosão da supernova ASASSN-15lh

© DES/ASAS-SN (galáxia antes e durante a explosão da supernova ASASSN-15lh)

Esta imagem acima é uma comparação de uma imagem pré-explosão de cores falsas do Dark Energy Survey (DES) e de imagem de acompanhamento a partir do LCOGT 1, cortesia de Benjamin Shappee.

A teoria sugere que estrelas tão massivas não explodem pelo mecanismo de colapso gravitacional do núcleo, que desencadeia uma supernova normal, mas por outro processo designado por pair instability. O interior destas estrelas é extremamente quente devido à enorme massa e à compressão resultante. Num determinado momento da sua evolução, a energia dos fótons de raios gama no interior da estrela, proveniente das reações nucleares e que sustentam o peso das camadas exteriores, pode tornar-se tão elevada que os fótons se transformam espontaneamente em pares de elétron-pósitron. Esta reação absorve uma fração importante da energia disponível para manter a estrela em equilíbrio, e a zona nuclear começa a contrair-se rapidamente. Ao contrário do que acontece num colapso gravitacional clássico, esta contração aumenta as temperaturas no interior até um nível que gera uma cadeia de reações de fusão nuclear de forma descontrolada, as quais libertam energia suficiente para vencer a gravidade e destruir por completo a estrela.

Esta primeira proposta para explicar a luminosidade extrema das SLSNe foi posta em causa anos mais tarde por Matt Nicholl, do Astrophysics Research Centre, Queen’s School of Mathematics and Physics, e colaboradores. Segundo esta equipe, as SLSNe podem ser mais normais, resultantes do colapso gravitacional de estrelas progenitoras com massas menos extremas do que as postuladas pelo cenário anterior; a energia extra provém não da formação de uma grande quantidade de 56Ni, mas é fornecida por uma magnetar, uma estrela de nêutrons com um campo magnético extraordinariamente intenso.

As magnetars são extremamente raras; são conhecidas apenas 20 destas estrelas de nûetrons em toda a Via Láctea. Estima-se que, no instante em que são criadas, girem em torno do seu eixo de rotação 300 vezes por segundo e tenham um campo magnético mil vezes mais intenso do que o de uma estrela de nêutrons normal, quatrilhões de vezes mais intenso do que o campo magnético terrestre. No cenário apresentado pela equipe de Nicholl, uma magnetar formada numa supernova, perde energia rotacional através do seu campo magnético que, por sua vez, transfere essa energia para o plasma que forma o remanescente da supernova.

Os cálculos realizados mostram que a quantidade de energia transferida por este processo da magnetar permite explicar de forma quase perfeita as observações existentes das SLSNe. Este cenário pode também explicar uma outra característica das magnetars: o fato de terem períodos de rotação anormalmente longos (entre 1 e 10 segundos) quando comparadas com outras estrelas de nêutrons, como se algum mecanismo tivesse sugado esta energia rotacional precocemente.

Neste contexto, a descoberta da ASASSN-15lh mostra que a quantidade de energia liberada nesta explosão é difícil de explicar com a hipótese da magnetar.

"A quantidade absurda de energia liberada por essa supernova pressiona a teoria de formação de magnetares", afirma Benjamin Shappee, astrônomo da Instituição Carnegie, de Washington, um dos líderes do estudo. "Mais trabalhos serão necessários para entender a fonte de energia desse objeto extraordinário e se há outras supernovas similares a essa Universo afora."

Fonte: Science

Nenhum comentário:

Postar um comentário