A NASA, agência espacial norte-americana, lançou com êxito, no dia 18 de janeiro, um balão estratosférico que transporta dois equipamentos científicos voltados a estudar o Sol. O lançamento foi feito em McMurdo, base dos Estados Unidos na Antártica.
© NASA/SDO (explosão solar)
Um dos equipamentos é o Solar-T: um telescópio fotométrico duplo, projetado e construído no Brasil por pesquisadores do Centro de Radioastronomia e Astrofísica Mackenzie (CRAAM), da Universidade Presbiteriana Mackenzie, em colaboração com colegas do Centro de Componentes Semicondutores da Universidade Estadual de Campinas (Unicamp).
O outro equipamento é o experimento de raios X e gama GRIPS (sigla em inglês de Gamma-ray Imager / Polarimeter for Solar Flares), da University of California em Berkeley, nos Estados Unidos, no qual o Solar-T foi acoplado.
Desenvolvido com apoio da FAPESP, por meio de um Projeto Temático e de um Auxílio à Pesquisa-Regular, o Solar-T é o primeiro instrumento científico do gênero construído no país, após 15 anos de pesquisa e desenvolvimento.
Além da FAPESP, o projeto contou com recursos do Fundo Mackenzie de Pesquisa (MackPesquisa), do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), da NASA, do AFOSR (sigla em inglês de Air Force Office of Scientific Research), dos Estados Unidos, e do Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), da Argentina.
“O desenvolvimento do Solar-T representa uma oportunidade de qualificação brasileira em tecnologia espacial avançada que pode dar origem a novos projetos em satélites, por exemplo, e contribuições para a Estação Espacial Internacional”, disse Pierre Kaufmann, pesquisador do CRAAM e coordenador do projeto.
“Estamos desenvolvendo um projeto em colaboração com o Instituto Lebedev de Moscou para instalar telescópios de detecção de frequências em terahertz na Estação Espacial Internacional, e o sucesso da missão do Solar-T é uma condição necessária para qualificarmos a tecnologia que desenvolvemos”, afirmou.
O balão estratosférico transportando o Solar-T e o GRIPS – que juntos pesam mais de 3 toneladas – está voando a uma altitude de 40 mil metros e circum-navegará a Antártica por um período entre 20 e 30 dias.
Enquanto sobrevoar o continente gelado, o Solar-T deverá captar a energia que emana das explosões solares em duas frequências inéditas, de 3 e 7 terahertz (THz), que correspondem a uma fração da radiação infravermelha distante.
Situada no espectro eletromagnético entre a luz visível e as ondas de rádio, essa faixa de radiação permite observar mais facilmente a ocorrência de explosões associadas aos campos magnéticos das regiões ativas do Sol, que muitas vezes lançam em direção à Terra jatos de partículas de carga negativa (elétrons) aceleradas a grandes velocidades.
Nas proximidades do planeta, essas partículas atrapalham o funcionamento de satélites de telecomunicações e de GPS e produzem as auroras austrais e boreais.
A radiação das explosões nessa faixa do infravermelho distante também torna possível uma nova abordagem para investigar fenômenos que produzem energia em regiões ativas que ficam entre a superfície do Sol, a fotosfera, onde a temperatura não passa dos 5,7 mil graus, e as camadas superiores e mais quentes: a cromosfera, onde as temperaturas alcançam 20 mil graus, e a coroa, que está a mais de 1 milhão de graus.
“Essas frequências de 3 e 7 terahertz são impossíveis de serem medidas a partir do nível do solo porque são bloqueadas pela atmosfera. É necessário ir para o espaço para medi-las”, disse Kaufmann.
Para fazer as medições, o Solar-T conta com um aparato composto por dois fotômetros (medidores de intensidade de fótons), coletores e filtros para bloquear radiações de frequências indesejáveis (infravermelho próximo e luz visível), que poderiam mascarar o fenômeno, e selecionar as frequências de 3 e 7 terahertz.
Os dados coletados pelo telescópio fotométrico são armazenados em dois computadores a bordo do equipamento e transmitidos compactados à Terra, por meio de um sistema de telemetria, valendo-se da rede de satélites Iridium. Os dados transmitidos à Terra são gravados em dois computadores no CRAMM.
“A transmissão dos dados obtidos pelo Solar-T para a Terra garante a obtenção das informações coletadas caso não seja possível recuperar os computadores a bordo do equipamento, porque as chances são muito baixas”, afirmou Kaufmann. “A Antártica é maior do que o Brasil, tem pouquíssimos lugares de acesso e não há como controlar o lugar onde o balão deve cair.”
De acordo com o pesquisador, os dois fotômetros THz, os computadores de dados e o sistema de telemetria do Solar-T estão funcionando normalmente, alimentados por duas baterias carregadas com energia capturada por painéis solares.
Logo após o rastreador de explosões solares ter sido acionado, no dia seguinte ao do lançamento do balão estratosférico, o equipamento já começou a enviar dados para a Terra.
Os dados terão que ter precisão de apontamento e rastreio do Sol de mais ou menos meio grau. Esse nível de precisão deverá ser assegurado por um sistema automático de apontamento e rastreio do GRIPS, com o qual o Solar-T está alinhado.
“Por enquanto, ainda não houve nenhuma grande explosão solar captada pelo Solar-T. Mas, caso ocorra, o equipamento poderá detectá-la e enviar os dados para analisarmos”, disse Kaufmann.
Fonte: FAPESP (Agência)
Nenhum comentário:
Postar um comentário