Mostrando postagens com marcador Asteroides. Mostrar todas as postagens
Mostrando postagens com marcador Asteroides. Mostrar todas as postagens

domingo, 25 de março de 2018

'Oumuamua veio provavelmente de um sistema binário

Uma nova pesquisa sugere que 'Oumuamua, o objeto rochoso identificado como o primeiro asteroide interestelar confirmado, provavelmente veio de um sistema binário.

ilustração do 'Oumuamua

© Joy Pollard/Gemini Observatory (ilustração do 'Oumuamua)

Um sistema binário, ao contrário do nosso Sol, tem duas estrelas em órbita de um centro comum.

Para o novo estudo, os pesquisadores decidiram testar quão eficientes são os sistemas binários no que se refere a expulsar objetos. Também analisaram quão comuns são estes sistemas estelares na Galáxia.

Descobriram que objetos rochosos como 'Oumuamua são, muito provavelmente, originários de estrelas duplas, em vez de sistemas com uma única estrela. Também foram capazes de determinar que os objetos rochosos são ejetados de sistemas binários em números comparáveis ao dos objetos gelados.

"É realmente estranho que o primeiro objeto que vemos, oriundo do exterior do nosso Sistema Solar, seja um asteroide, porque um cometa é muito mais fácil de avistar e o Sistema Solar expulsa muitos mais cometas do que asteroides," afirma Alan Jackson, pós-doutorado do Centro de Ciências Planetárias da Universidade de Toronto Scarborough em Ontario, Canadá.

Assim que determinaram que os sistemas binários são muito eficientes em expulsar objetos rochosos, e que existe um número suficiente deles, ficaram convencidos que 'Oumuamua muito provavelmente veio de um sistema com duas estrelas. Também concluíram que provavelmente veio de um sistema com uma estrela relativamente quente e massiva, dado que tal sistema teria um maior número de objetos rochosos mais próximos.

A equipe sugeriu que o asteroide muito provavelmente foi ejetado do seu sistema binário durante algum momento da formação dos planetas.

'Oumuamua, palavra havaiana para "batedor", foi detectado pela primeira vez pelo Observatório Haleakala no Havaí no dia 19 de outubro de 2017. Com um raio de 200 metros e viajando a uma incrível velocidade de 30 km/s, passou a cerca de 33 milhões de quilômetros da Terra.

Quando foi descoberto, os cientistas inicialmente assumiram que o objeto era um cometa, um dos inúmeros objetos gelados que liberam gás quando aquecem ao se aproximarem do Sol. Mas não mostrava nenhuma atividade cometária à medida que o fazia, pelo que foi rapidamente reclassificado como um asteroide, o que significa que é rochoso.

Os pesquisadores também estavam bastante seguros de que vinha de fora do nosso Sistema Solar, com base na sua trajetória e velocidade. Uma excentricidade de 1,2 caracterizando o seu percurso como uma órbita hiperbólica aberta e uma velocidade tão alta significavam que não estava vinculado à gravidade do Sol. A órbita de 'Oumuamua tem a maior excentricidade já observada para um objeto que passa pelo nosso Sistema Solar.

Permanecem grandes questões acerca de 'Oumuamua. Para os cientistas planetários, a capacidade de observar objetos como este pode fornecer pistas importantes sobre como a formação planetária funciona em outros sistemas estelares.

"Da mesma forma que usamos os cometas para melhor entender a formação dos planetas do nosso Sistema Solar, talvez este objeto curioso nos possa contar mais sobre como os planetas se formam em outros sistemas."

Um artigo foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

terça-feira, 19 de dezembro de 2017

Novas informações sobre o objeto 'Oumuamua

O objeto misterioso 1I/2017 U1 'Oumuamua passou perto da Terra depois de chegar do espaço interestelar profundo.

ilustração do objeto 'Oumuamua

© ESO/M. Kornmesser (ilustração do objeto 'Oumuamua)

Durante a formação e evolução do Sistema Solar, números significativos de cometa e asteroides foram ejetados para o espaço interestelar. É razoável esperar que acontecesse o mesmo para os sistemas planetários que não os nossos. A detecção de tais objetos interestelares nos permitiria testar os processos de formação planetesimal em torno de outras estrelas, possivelmente junto com os efeitos da exposição a longo prazo ao meio interestelar.  O 'Oumuamua é o primeiro objeto interestelar conhecido, descoberto pelo telescópio Pan-STARRS1 em outubro de 2017.

Desde que o objeto foi avistado em outubro, o professor Alan Fitzsimmons e a Dra. Michele Bannister da Queen's University lideraram uma equipe internacional de astrônomos para reunir um perfil do estranho visitante.

A equipe mediu o modo como 'Oumuamua reflete luz solar e descobriu que é parecido com objetos gelados cobertos com uma crosta seca. Isto porque 'Oumuamua está exposto aos raios cósmicos há milhões de anos, talvez bilhões, tendo formado à superfície uma camada isolante rica em materiais orgânicos.

A fotometria na época da descoberta do 'Oumuamua implica um corpo altamente alongado com dimensões de aproximadamente 200 x 20 m quando é assumido um albedo de 0,04. Espera-se que a população de objetos interestelares observáveis seja dominada por corpos semelhantes a cometas de acordo com os espectros coletados, mas a inatividade relatada do 'Oumuamua indica uma falta de gelo superficial.

A pesquisa sugere que a crosta seca de 'Oumuamua poderá ter protegido o seu interior gelado de ser vaporizado, mesmo quando o objeto estava a apenas 37 milhões de quilômetros do Sol em setembro, a sua aproximação máxima à nossa estrela.

Fitzsimmons comenta: "Descobrimos que a superfície de 'Oumuamua é parecida com a dos pequenos corpos do Sistema Solar ricos em carbono, cuja estrutura é alterada pela exposição aos raios cósmicos. Também descobrimos que um revestimento de meio metro de espessura, rico em materiais orgânicos, poderá ter protegido o interior rico em água gelada, interior este como o de um cometa, de vaporizar quando o objeto foi aquecido pelo Sol, apesar de ter alcançado uma temperatura superior a 300º C."

Bannister e sua equipe observaram 'Oumuamua enquanto ainda estava ao alcance dos maiores telescópios do mundo e os seus achados foram publicados na semana passada na revista Astrophysical Journal Letters. Descobriram que o objeto tem a mesma cor que alguns dos gelados planetas menores que estudam nos limites do nosso Sistema Solar. Isto significa que diferentes sistemas planetários na nossa Galáxia contêm planetas menores como o nosso.

Bannister explica: "Descobrimos que este é um planetesimal com uma crosta bem 'cozida' que se parece muito com os mundos menores nas regiões externas do nosso Sistema Solar, tem uma superfície acinzentada/vermelha e é altamente alongado. É fascinante que o primeiro objeto interestelar descoberto se pareça muito com um mundo minúsculo do nosso Sistema Solar. Isto sugere que o modo como os nossos planetas e asteroides se formaram pode ter semelhanças com a formação de sistemas em torno de outras estrelas."

Fonte: Nature Astronomy

segunda-feira, 4 de dezembro de 2017

O SPHERE do VLT observa mundos rochosos

Estas imagens foram obtidas pelo instrumento SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) do ESO, instalado no Very Large Telescope (VLT), no Observatório do Paranal, no Chile.

asteroides 49 Amphitrite, 324 Bamberga, 2 Pallas e 89 Julia

© ESO/VLT/SPHERE (asteroides 49 Amphitrite, 324 Bamberga, 2 Pallas e 89 Julia)

Estas imagens extremamente detalhadas revelam 4 dos milhões de corpos rochosos que compõem o cinturão principal de asteroides, um anel de asteroides entre Marte e Júpiter que separa os planetas interiores rochosos do Sistema Solar dos planetas exteriores gasosos e gelados.

Inicialmente, em cima à esquerda e no sentido dos ponteiros do relógio, temos os asteroides 49 Amphitrite, 324 Bamberga, 2 Pallas e 89 Julia. Com o nome da deusa grega Pallas Atena, 2 Pallas tem uma dimensão de cerca de 510 km, tratando-se do terceiro maior asteroide do cinturão principal e um dos maiores asteroides de todo o Sistema Solar, com 7% da massa de todo o cintuãoa de asteroides, tão pesado que foi anteriormente classificado como um planeta. Com um terço do tamanho de 2 Pallas, 89 Julia retira o seu nome de Santa Júlia da Córsega. A sua composição rochosa levou a classificá-lo como sendo um asteroide do tipo S. Outro asteroide do tipo S é 29 Amphitrite, descoberto apenas em 1854. O 324 Bamberga, um dos maiores asteroides do tipo S no cinturão de asteroides, foi descoberto ainda mais tarde, em 1892 por Johann Palisa.

Atualmente, pensa-se que os asteroides do tipo C são na realidade corpos pertencentes ao Sistema Solar exterior que seguiram a migração dos planetas gigantes. Consequentemente, podem conter gelo no seu interior.

Apesar de, na ficção científica, o cinturão de asteroides ser frequentemente apresentado como um local de colisões violentas, repleta de enormes rochas demasiado perigosas até para o mais ágil dos pilotos espaciais, na realidade esta região é bastante esparsa. No total, o cinturão de asteroides contém apenas 4% da massa da Lua, com cerca de metade desta massa confinada nos 4 maiores residentes: Ceres, 4 Vesta, 2 Pallas e 10 Hygiea.

Fonte: ESO

terça-feira, 21 de novembro de 2017

O primeiro asteroide interestelar é diferente dos vistos no Sistema Solar

Astrônomos estudaram pela primeira vez um asteroide que entrou no Sistema Solar vindo do espaço interestelar.

ilustração do asteroide interestelar ‘Oumuamua

© ESO/M. Kornmesser (ilustração do asteroide interestelar ‘Oumuamua)

Observações feitas com o Very Large Telescope (VLT) do ESO no Chile e em outros observatórios do mundo mostram que este objeto único viajava no espaço há milhões de anos antes do seu encontro casual com o nosso Sistema Solar. O objeto parece ser vermelho escuro e extremamente alongado, metálico ou rochoso, nada parecido com o que encontramos normalmente no Sistema Solar.

Em 19 de outubro de 2017, o telescópio Pan-STARRS no Havaí captou um fraco ponto de luz deslocando-se no céu. Inicialmente parecia ser um pequeno asteroide rápido comum, no entanto observações adicionais nos dias seguintes permitiram calcular a sua órbita de modo bastante preciso, o que revelou, sem sombra de dúvidas, que se tratava de um objeto que não vinha do interior do Sistema Solar, como todos os outros asteroides ou cometas observados até hoje, mas sim do espaço interestelar. Embora classificado originalmente como cometa, observações obtidas pelo ESO e por outros observatórios não revelaram sinais de atividade cometária após a sua passagem próxima ao Sol em Setembro de 2017. O objeto foi por isso reclassificado como sendo um asteroide interestelar e chamado 1I/2017 U1 (‘Oumuamua).

O VLT foi utilizado para medir a órbita do objeto, sua cor e seu brilho com mais precisão do que a obtida por telescópios menores. A rapidez nesta ação era crucial, uma vez que o ‘Oumuamua desaparecia rapidamente no céu, afastando-se do Sol e da Terra, no seu percurso para fora do Sistema Solar. Mas o objeto ainda reservava algumas surpresas.

Combinando as imagens do instrumento FORS montado no VLT com as imagens obtidas por outros grandes telescópios, a equipe de astrônomos liderada por Karen Meech (Institute for Astronomy, Havaí, EUA) descobriu que o ‘Oumuamua varia em brilho de um fator 10, à medida que gira em torno do seu eixo a cada 7,3 horas.

“Esta variação em brilho estranhamente elevada revela que o objeto é extremamente alongado: cerca de 10 vezes mais comprido do que largo, com uma forma complexa. Foi descoberto também que apresenta uma cor vermelha escura, semelhante aos objetos no Sistema Solar externo, e é completamente inerte, sem o menor traço de poeira ao seu redor,” disse Karen Meech.

Estas propriedades sugerem que o ‘Oumuamua é denso, possivelmente rochoso ou com um conteúdo metálico elevado, sem quantidades significativas de água ou gelo, e que a sua superfície é escura e vermelha devido aos efeitos de irradiação por parte de raios cósmicos ao longo de muitos milhões de anos. Estima-se que tenha pelo menos 400 metros de comprimento.

Cálculos preliminares da sua órbita sugerem que o objeto tenha vindo da direção aproximada da estrela brilhante Vega, na constelação boreal da Lira. No entanto, mesmo viajando à tremenda velocidade de cerca de 95.000 km/hora, demorou tanto tempo a chegar ao nosso Sistema Solar, que Vega não se encontra já na posição que ocupava quando o asteroide partiu de lá, há cerca de 300 mil anos atrás. O ‘Oumuamua deve ter vagado pela Via Láctea, sem ligação a nenhum sistema estelar, durante centenas de milhões de anos até seu encontro casual com o Sistema Solar.

Os astrônomos estimam que, por ano, um asteroide interestelar semelhante ao ‘Oumuamua passe através do Sistema Solar interior, no entanto como estes objetos são fracos e difíceis de detectar nunca foram observados até agora. Apenas recentemente é que os telescópios de rastreio, como o Pan-STARRS, se tornaram suficientemente poderosos para conseguirem detectar tais objetos.

Estes novos resultados foram publicados na revista Nature.

Fonte: ESO

domingo, 5 de novembro de 2017

A visita de pequeno asteroide ou cometa ao Sistema Solar

Um pequeno asteroide recentemente descoberto, ou talvez um cometa, parece ter origens extrassolares. Se assim for, seria o primeiro "objeto interestelar" observado e confirmado.

animação mostra o percurso do asteroide A72017 U1

© NASA/JPL-Caltech (animação mostra o percurso do asteroide A72017 U1)

Este objeto incomum, designado A/2017 U1, tem menos de 400 metros em diâmetro e move-se incrivelmente depressa. Os astrônomos estão trabalhando urgentemente para apontar telescópios de todo o mundo e no espaço. Assim que estes dados sejam obtidos e combinados será possível saber mais sobre a origem e possivelmente sobre a composição do objeto.

O A/2017 U1 foi descoberto no dia 19 de outubro pelo telescópio Pan-STARRS 1 da Universidade do Havaí, em Haleakala, durante o curso da sua observação noturna por objetos próximos da Terra para a NASA. Rob Weryk, pesquisador de pós-doutorado do Instituto de Astronomia da Universidade do Havaí, foi o primeiro a identificar o objeto em movimento e a submetê-lo ao Minor Planet Center. Weryk subsequentemente vasculhou o arquivo de imagens Pan-STARRS e descobriu que também estava em imagens obtidas na noite anterior, mas não tinha sido inicialmente identificado pelo processamento de objeto em movimento.

O movimento do A/2017 U1 não podia ser explicado usando uma órbita de asteroide ou cometa normal do Sistema Solar. Este objeto veio de fora do nosso Sistema Solar.

A equipe do CNEOS traçou a atual trajetória do objeto e até analisou o seu futuro. O A/2017 U1 surgiu da direção da constelação de Lira, viajando através do espaço interestelar com velocidade de 25,5 km/s.

O objeto aproximou-se do nosso Sistema Solar quase diretamente "acima" da eclíptica, o plano aproximado no espaço onde os planetas e a maioria dos asteroides orbitam o Sol, de modo que não teve encontros próximos com os oito planetas principais durante o seu mergulho em direção ao Sol. No dia 2 de setembro, o pequeno corpo cruzou o plano da eclíptica apenas dentro da órbita de Mercúrio e fez a sua aproximação máxima ao Sol no dia 9 do mesmo mês. Puxado pela gravidade do Sol, o objeto fez uma curva apertada no Sistema Solar, passando por baixo da órbita da Terra no dia 14 de outubro a uma distância de aproximadamente 24 milhões de quilômetros, cerca de 60 vezes a distância à Lua. Atualmente, já passou novamente para cima do plano dos planetas e, viajando a 44 km/s em relação ao Sol, o objeto está acelerando na direção da constelação de Pégaso.

"Percebemos há muito que estes objetos deviam existir, porque durante o processo de formação planetária muitos materiais devem ser expelidos dos sistemas planetários. O que é mais surpreendente é que nunca tínhamos visto objetos interestelares passando por aqui," comenta Karen Mecch, astrônoma do Instituto de Astronomia da Universidade do Havaí, especialista em corpos pequenos e na sua relação com a formação do Sistema Solar.

"Há muito tempo que teorizamos acerca da existência destes objetos que movem entre as estrelas e ocasionalmente passam pelo nosso Sistema Solar, mas esta é a primeira destas detecções. Até agora, tudo indica que este é provavelmente um objeto interestelar, mas mais dados podem ajudar à sua confirmação," comenta Paul Chodas, gestor do CNEOS.

O pequeno objeto recebeu a designação temporária A/2017 U1 pelo Minor Planet Center em Cambridge, Massachusetts, EUA, onde todas as observações de pequenos corpos no nosso Sistema Solar são recolhidas.

Tendo em conta que este é o primeiro objeto encontrado do seu tipo, as regras de nomenclatura têm ainda que ser estabelecidas pela União Astronômica Internacional.

Fonte: University of Hawaii Institute for Astronomy

domingo, 24 de setembro de 2017

Hubble descobre objeto único no Sistema Solar

Com o auxílio do telescópio espacial Hubble, um grupo de astrônomos observou as características intrigantes de um tipo de objeto incomum no cinturão de asteroides entre Marte e Júpiter: dois asteroides que se orbitam um ao outro e que exibem características semelhantes a cometas, incluindo uma cabeleira brilhante e uma longa cauda.

Image of binary asteroid system 288P

© NASA/ESA/J. Agarwal (movimento aparente da cauda no sistema binário de asteroides)

Este conjunto de imagens obtidas pelo telescópio espacial Hubble revela os dois asteroides. As imagens revelam a atividade no sistema binário. O movimento aparente da cauda é um efeito de projeção devido à mudança do alinhamento relativo entre o Sol, a Terra e 288P entre observações. A orientação da cauda é também afetada por uma alteração no tamanho das partículas. Inicialmente, a cauda apontava na direção onde as comparativamente grandes partículas de poeira (com cerca de 1mm de tamanho) eram emitidas no final de julho. No entanto, a partir de 20 setembro de 2016, a cauda começou a apontar na direção oposta à do Sol onde partículas pequenas (com aproximadamente 10 micrômetros de tamanho) são "sopradas" para longe do núcleo graças à pressão de radiação.

Este é o primeiro asteroide binário, conhecido, também classificado como cometa.

Em setembro de 2016, pouco antes do asteroide 288P fazer a sua maior aproximação ao Sol, estava perto o suficiente da Terra para permitir uma visão detalhada com o telescópio espacial Hubble.

As imagens do 288P, localizado no cinturão de asteroides, revelou que na verdade não era um único objeto, mas dois asteroides quase da mesma massa e mesmo tamanho, orbitando-se um ao outro a uma distância de mais ou menos 100 quilômetros. Considerando que se orbitam um ao outro, as massas dos objetos em tais sistemas conseguem ser medidas.

Mas as observações também revelaram atividade continuada no sistema binário. "Nós detectamos fortes indícios de sublimação de água gelada devido ao aumento do aquecimento solar, semelhante à forma como é criada a cauda de um cometa," explica Jessica Agarwal, do Instituto Max Planck para Pesquisa do Sistema Solar, na Alemanha. Isto torna 288P o primeiro asteroide binário também classificado como um cometa do cinturão principal.

Compreender a origem e evolução dos cometas do cinturão principal, que mostram atividade parecida com a de um cometa, é um elemento crucial na nossa compreensão da formação e evolução do Sistema Solar. Entre as questões que os cometas do cinturão de asteroides podem ajudar a responder, está a forma como a água chegou à Terra. Uma vez que apenas se conhecem alguns objetos deste tipo, o 288P apresenta-se como um sistema extremamente importante para estudos futuros.

As várias características do 288P, grande separação entre os dois componentes, tamanho quase igual, alta excentricidade e atividade semelhante a um cometa, também o tornam único entre os poucos asteroides binários no Sistema Solar. Igualmente, a atividade observada no 288P revela informações sobre o seu passado, realça Agarwal: "o gelo à superfície não consegue sobreviver no cinturão de asteroides durante toda a vida do Sistema Solar, mas pode ser protegido durante bilhões de anos por um manto de poeira refratária, com apenas alguns metros de espessura."

A equipe concluiu que o 288P existe como sistema binário há cerca de 5.000 anos. "O cenário de formação mais provável para o 288P é uma fragmentação devido à rápida rotação. Depois disso, os dois fragmentos podem ter-se afastado graças às forças de sublimação," observa Agarwal.

O fato de que 288P é tão diferente de todos os outros asteroides binários conhecidos levanta algumas questões sobre se algumas das suas propriedades únicas não são apenas coincidências. Dado que a descoberta do 288P envolveu muita sorte, é provável que permaneça como o único exemplo do seu gênero durante muito tempo. "Precisamos de mais trabalho teórico e observacional, bem como mais objetos semelhantes a 288P, para encontrar uma resposta a esta questão," conclui Agarwal.

A pesquisa foi divulgada num artigo publicado na revista Nature.

Fonte: Max Planck Institute for Solar System Research

sexta-feira, 11 de agosto de 2017

Um encontro muito próximo

Em outubro de 2012, o asteroide 2012 TC4 aproximou-se muito da Terra; passou pelo nosso planeta a apenas um quarto da distância que separa a Terra da Lua.

observação do asteroide 2012 TC4

© ESO/VLT (observação do asteroide 2012 TC4)

Em outubro de 2017, este pequeno asteroide, com um tamanho de apenas 15 a 30 metros, voltará para mais um encontro próximo, o que fará dele o objeto perfeito para testar a rede de detecção e acompanhamento de asteroides.

Como o 2012 TC4 não pôde ser observado durante vários anos, a sua órbita não era bem conhecida. Em particular, os astrônomos não tinham ainda previsto com precisão a sua distância de aproximação à Terra em 2017. Por isso, encontrá-lo de novo e observá-lo em detalhe tornava-se crucial para sabermos quanto se aproximaria da Terra, refinando o nosso conhecimento do percurso que seguiria.

Uma vez que o asteroide é bastante pequeno e se encontra ainda muito distante, a sua luminosidade é muito fraca e consequentemente torna-se difícil de encontrar. Apesar disso, com o Very Large Telescope (VLT) do ESO, os astrônomos conseguiram obter esta imagem do nosso futuro visitante, pela primeira vez em muitos anos, e calcular a sua trajetória. Esta nova observação aponta para uma distância máxima de aproximação à superfície da Terra de 43.000 km, o que corresponde a 6,7 raios terrestres, no dia 12 de outubro de 2017.

O VLT não é o único telescópio observando o 2012 TC4. Está em curso uma campanha internacional de observação para identificar e estudar este objeto durante sua aproximação. Agora que o VLT encontrou de novo o 2012 TC4, temos disponível uma nova órbita melhorada. Vários telescópios em todo o mundo poderão agora localizar o asteroide e começarão brevemente a observá-lo, aproveitando esta oportunidade rara de estudar um asteroide com tanto detalhe.

Fonte: ESO

domingo, 30 de julho de 2017

Marte pode ser a própria fonte dos asteroides troianos

É um dos principais mistérios do Sistema Solar interno: como Marte, um mundo minúsculo apenas um décimo da massa da Terra, captura seu os asteroides troianos que compartilham a órbita?

ilustração da origem dos troianos de Marte

© Weizmann Institute of Science (ilustração da origem dos troianos de Marte)

Os troianos são asteroides que co-orbitam antes de Marte, no ponto Lagrangiano L4 ou atrás dele no ponto L5. Estas regiões são estáveis ​​porque a atração gravitacional do planeta equilibra a do Sol. Os asteroides troianos foram descobertos em torno de Júpiter, Urano, Netuno, Vênus e Marte. (Somente um troiano (2010 TK7) foi descoberto relacionado à Terra, embora a missão Osiris-REX para 101955 Bennu esteja atualmente à procura de mais.

Muitos estudos sugeriram que o cinturão de asteroides, que fica apenas fora da órbita de Marte, pode ter sido a fonte dos troianos de Marte. Agora, um estudo aponta para uma nova fonte possível: o próprio planeta Marte.

O estudo usou as observações do Infrared Telescope Facility da NASA, com base no Observatório Mauna Kea no Havaí, para analisar os espectros de dois troianos de Marte: o 311999 (inicialmente designado 2007 NS2) e o 385250 (2001 DH47). A luz refletida destes asteroides mostra uma banda de absorção ampla em torno de 1 mícron, consistente com a presença de olivina, um mineral raro em asteroides, mas comum na crosta de Marte.

"Os asteroides como este são muito raros no cinturão principal de asteroides (0,4%)," diz David Polishook, do Weizmann Institute of Science, Israel. "Portanto, as chances de que os poucos asteroides capturados por Marte sejam asteroides ricos em olivinas é extremamente baixa". Mas os rovers marcianos e orbitadores e até os meteoritos marcianos recuperados na Terra mostraram que o próprio planeta Marte oferece um amplo suprimento de olivina.

O 5261 Eureka é o prototípico asteroide troiano de Marte, e também é conhecido por ter uma composição rica em olivinas. Dos nove troianos de Marte atualmente conhecidos, sete pertencem a um único agrupamento, do qual Eureka é o maior membro, que trilha Marte no ponto L5.

O 5261 Eureka foi descoberto por David Levy e Henry Holt em 1990. Estudos anteriores datam o asteroide com cerca de 1 bilhão de anos. Os asteroides associados no agrupamento provavelmente foram expulsos do corpo principal através do efeito Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP): ao longo de milhões de anos, o aquecimento solar girou Eureka, que agora gira em seu eixo, uma vez a cada 2,7 horas.

A olivina é o nome de um grupo de minerais de silicato de ferro-magnésio, que são comuns no manto, mas desmambram rapidamente na superfície. Até agora, a olivina foi detectada na Terra, na Lua, em Marte e na região de Rheasilvia do asteroide Vesta.

Uma região tentadora de Marte que os pesquisadores gostariam de ver melhor é Nili Fossae. O rover Spirit da NASA também detectou quantidades consideráveis ​​de olivina quando examinou a grande rocha Adirondack em 2004.

Uma janela para observações favoráveis ​​dos troianos de Marte se abre no período de março a abril de 2018. Existem alguns troianos menores adicionais do agrupamento Eureka que ainda não foram observados com um espectrômetro. Análises espectrais podem ser capazes de estabelecer uma ligação entre estes troianos e uma área específica em Marte.

O estudo foi publicado na revista Nature Astronomy.

Fonte: Weizmann Institute of Science

quarta-feira, 21 de junho de 2017

O asteroide 6 Hebe não é o único progenitor de meteoritos terrestres

A região entre Marte e Júpiter encontra-se repleta de corpos rochosos chamados asteroides. Estima-se que este cinturão de asteroides contenha milhões de pequenos corpos rochosos, sendo que cerca de 1,1 a 1,9 milhões destes objetos têm dimensões superiores a um quilômetro.

asteroide 6 Hebe

© ESO/VLT (asteroide 6 Hebe)

Pequenos fragmentos destes corpos caem frequentemente na Terra sob a forma de meteoritos. Curiosamente, 34% de todos os meteoritos encontrados na Terra são de um tipo particular: condritos-H. Pensa-se que estes meteoritos têm origem no mesmo corpo progenitor, e um potencial suspeito é o asteroide 6 Hebe, o qual pode ser visto na imagem acima.

Com aproximadamente 186 km de diâmetro e com o nome da deusa grega da juventude, 6 Hebe foi o sexto asteroide a ser descoberto, em meados do século XIX. Estas imagens foram obtidas durante um estudo deste pequeno mundo feito com o auxílio do instrumento SPHERE montado no Very Large Telescope (VLT) do ESO, estudo este que pretendia testar a ideia de que os condritos-H teriam origem em 6 Hebe.

Os astrônomos modelaram a rotação e o formato 3D do 6 Hebe, ambos reconstruídos a partir das observações e usaram o modelo tridimensional para determinar o volume da maior depressão em 6 Hebe; muito provavelmente uma cratera de impacto de uma colisão que poderia ter criado vários meteoritos. No entanto, o volume da depressão é 5 vezes menor do que o volume total das famílias de asteroides próximas com composição de condritos-H, o que sugere que 6 Hebe não é afinal a única origem provável dos condritos-H.

Fonte: ESO

quinta-feira, 15 de junho de 2017

Descobertas 23 novas chuvas de meteoros

No último dia 5 de junho, a IAU (International Astronomical Union) publicou em seu site oficial, uma atualização da lista de chuva de meteoros. A boa notícia é que mais 23 novos radiantes de chuvas de meteoros, enviados pela BRAMON (Brazilian Meteor Observation Network), compuseram esta atualização.

o brilho de uma aurora e o clarão de um meteoro

© Bjørnar G. Hansen (o brilho de uma aurora e o clarão de um meteoro)

Agora, os radiantes descobertos da BRAMON, já somam 25. Veja descoberta anterior em: Descobertos dois novos radiantes nos céus austrais.

Estes 23 novos radiantes foram descobertos utilizando-se um novo processo de busca. Para os dois primeiros radiantes, Epsilon Gruids e August Caelids, todas as etapas de busca, testes e validação, foram realizados de forma manual; isto é, alguns cálculos eram efetuados à mão e uma ou outra parte era feita em planilhas eletrônicas. Era um método totalmente válido e seguro. Infelizmente, consumia muito tempo para os testes e exigia que a base de dados fosse fracionada a fim de facilitar o processo.

A condução das primeiras descobertas havia ficado dividida entre Carlos Di Pietro (SP), Lauriston Trindade (CE) e Marcelo Zurita (PB). E foi nítida a percepção que tiveram de que, o processo manual de cálculos era pouco produtivo. Neste momento começa a surgir a participação de Leonardo Amaral (SP), que a partir do início do entendimento dos aspectos físicos que compunham as órbitas dos meteoros, começa a desenvolver uma aplicação para automatizar os cálculos.

Todas as as buscas estão amparadas pela metodologia de similaridade orbital. Então, foi criada uma aplicação que pudesse agrupar os meteoros dentro de margens de similaridade. Surgia o Encontreitor.

Com a implementação de novas funcionalidades, o Encontreitor passou de um simples buscador de agrupamentos para uma suíte completa. Assim, todo o fluxo da busca, identificação, testes de similaridade, comparação com chuvas já existentes e busca por corpos parentais poderiam ser integrados, agilizando o processamento.

A BRAMON figura como uma importante rede de monitoramento de meteoros mantendo sua base de dados aberta e em parceria com outras grandes redes de monitoramento pelo mundo. Artigos já publicados pela EDMOND (European viDeo MeteOr Network Database) citam  a BRAMON como parceira e com meteoros de sua base integrando pesquisas.

Para se ter uma ideia, a base da BRAMON para a busca inicial de novos radiantes possuía algo em torno de 4.200 órbitas de meteoros. Hoje, a BRAMON consegue processar centenas de milhares de órbitas, com extrema rapidez, eficiência e qualidade. Devolvendo alta produtividade e segurança.

A chuva de meteoros de maior destaque acontece todos os anos próximo do dia 16 de novembro, e tem seu radiante, ou seja, o ponto no céu de onde parecem emanar os meteoros, na constelação austral da Baleia, cujo radiante foi denominado Cetídeos de Novembro. Para descobrir o radiante, a BRAMON contou com o registro de 55 meteoros, distribuídos em quatro anos de observações. No caso dos Cetídeos de Novembro, as partículas que formam a chuva são dos asteroides 2016 BE1 e 2014 DS22, evidenciadas através dos testes de similaridade orbital.

Confira a lista completa dos 23 novos radiantes e seus dias de pico pode ser vista a seguir.

Nome do radiante Data máxima
Canun Venaticídeos de Janeiro 25 de janeiro
Leonídeos de Fevereiro 18 de fevereiro
Canun Venaticídeos de Fevereiro 21 de fevereiro
phi Ofiucídeos 11 de maio
Sagitarídeos de Junho 3 de junho
lambda Sagitarídeos 4 de junho
gamma Escultorídeos 17 de junho
Cetídeos de Junho 19 de junho
delta2 Gruídeos 22 de junho
Aquarídeos de Junho 23 de junho
Cetídeos de Julho 12 de julho
42 Piscídeos 8 de agosto
Ursae Majorídeos de Agosto 28 de agosto
sigma Perseidas 25 de setembro
Cetídeos de Outubro 30 de setembro
Taurídeos de Outubro 5 de outrubro
lambda Capricornídeos 15 de outrubro
Aurigídeos de Outubro 18 de outrubro
Camelopardalídeos Noturnos 26 de outrubro
phi Capricornídeos 9 de novembro
alpha Aurigídeos de Novembro 13 de novembro
Cetídeos de Novembro 15 de novembro
rho Pupídeos de Dezembro 3 de dezembro

Fonte: BRAMON

segunda-feira, 1 de maio de 2017

Asteroide Bee-Zed tem órbita na contramão

No Sistema Solar, há um asteroide que gira ao redor do Sol na contramão dos planetas.

órbita do asteroide 2015 BZ509

© Paul Wiegert (órbita do asteroide 2015 BZ509)

Em amarelo a órbita de Júpiter, em branco os milhares de asteroides troianos, e em verde a órbita do asteroide 2015 BZ509.

É o 2015 BZ509, também conhecido como Bee-Zed. Ele dá uma volta completa no Sol a cada 12 anos, mesmo período de Júpiter, com o qual compartilha a órbita, mas movendo-se em sentido oposto.

A identificação do asteroide na contramão foi a comprovação do que Helena Morais, professora no Instituto de Geociências e Ciências Exatas (IGCE) da Unesp, previu há dois anos. Tanto que o estudo sobre a observação do asteroide foi comentado por Morais em um artigo na seção News & Views na edição da revista Nature.

A pesquisadora tinha a certeza de que as órbitas contrárias co-orbitais existiam. Em parceria com Fathi Namouni, do Observatório de Côte d'Azur, na França, Morais desenvolveu uma teoria sobre co-orbitais retrógrados (movimento no sentido oposto ao dos planetas) e ressonâncias orbitais retrógradas em geral, em série de artigos publicados na Monthly Notices of the Royal Astronomical Society e Celestial Mechanics and Dynamical Astronomy.

No estudo agora publicado na Nature, por Paul Wiegert, da University of Western Ontario, no Canadá, o objeto 2015 BZ509, detectado em janeiro de 2015 a partir do Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) no Havaí, foi seguido com o Large Binocular Telescope, no Arizona. A confirmação do movimento contrário e co-orbital à Júpiter veio destas observações adicionais.

Órbitas contrárias são raras. Estima-se que dos mais de 726 mil asteroides conhecidos até hoje, apenas 82 sejam retrógrados. Por outro lado, co-orbitais movendo-se no mesmo sentido não são novidade; só na órbita de Júpiter existem cerca de 6 mil asteroides troianos, que compartilham a mesma órbita do planeta gigante.

o co-orbital retrógrado está representado no painel d 

© Helena Morais/IGCE/Unesp (o co-orbital retrógrado está representado no painel d)

Bee-Zed é incomum por compartilhar a mesma órbita de um planeta, estar na contramão e, principalmente, por ser estável há milhões de anos. Em vez de ser expulso da órbita por Júpiter, como seria de se esperar, o asteroide está em uma configuração que lhe garante estabilidade, uma vez que seu movimento está sincronizado com o do planeta, evitando colisões com este.

O asteroide cruza o caminho com Júpiter a cada seis anos, mas, devido à ressonância co-orbital, os dois nunca se aproximam mais do que 176 milhões de quilômetros. A distância é suficiente para evitar grandes perturbações da órbita, embora a gravidade de Júpiter seja essencial para manter o movimento orbital Bee-Zed em sincronismo.

Planetas e a maioria dos asteroides do Sistema Solar giram no mesmo sentido em torno do Sol. Isso se dá porque o Sistema Solar foi formado a partir de uma nuvem em rotação. Por esta razão, os planetas e a maior parte dos asteroides giram em torno do Sol, todos no mesmo sentido.

A maior parte destes objetos que se deslocam ao contrário são cometas. Eles têm órbitas tipicamente inclinadas, muitas delas retrógradas. É o caso do Halley, o mais famoso de todos, que gira ao contrário no Sistema Solar, com inclinação de 162º, praticamente idêntica à do 2015 BZ509.

Quando o Sistema Solar estava em formação, pequenos corpos foram ejetados para distâncias muito grandes do Sol, formando um repositório de cometas conhecido como Nuvem de Oort.

A estas distâncias, o efeito gravitacional da Via Láctea perturba as órbitas dos pequenos corpos. Inicialmente, estes rodavam próximo do plano da eclíptica no mesmo sentido dos planetas, mas suas órbitas foram sendo deformadas pela perturbação da força de maré da galáxia e interação com estrelas próximas, ficando gradualmente mais inclinadas e formando um reservatório mais ou menos esférico.

Caso as órbitas destes corpos sofram uma perturbação, por exemplo, por uma estrela que passa, eles retornam para perto dos planetas do Sistema Solar, e podem tornar-se cometas ativos. Os pequenos corpos gelados que se aproximam do Sol se aquecem, o que causa a sublimação do gelo que os constitui, formando uma coma, uma nuvem de poeira e gás que circunda o núcleo de um cometa, e por vezes uma cauda, tornando-se cometas observáveis.

No caso do 2015 BZ509, o que mais surpreende é o longo período de estabilidade. “O tempo de vida particularmente longo de 2015 BZ509 em sua órbita retrógrada faz com que seja o mais intrigante objeto na vizinhança de Júpiter. São necessários mais estudos para confirmar como este misterioso objeto chegou à sua configuração atual,” comentam Morais e Namouni.

Wiegert especula que é provável que Bee-Zed tenha tido origem na Nuvem de Oort, semelhante aos cometas da família do Halley. De qualquer forma, serão necessários mais estudos para recuperar a saga de Bee-Zed pelo Sistema Solar.

Sabe-se que asteroides em ressonâncias retrógrados não são exclusividade de Bee-Zed. Há registro de outros casos: em 2013, Morais e Namouni descreverem a identificação de um conjunto de asteroides, denominados Centauros e Damocloides, em órbita contrária no Sistema Solar e que entram em ressonância com Júpiter e Saturno. É o caso de asteroides como 2006 BZ8 e 2008 SO218, em ressonância retrógrada com Júpiter, e 2009 QY6, com Saturno.

“De fato, 2006 BZ8 poderia até mesmo entrar na ressonância co-orbital retrógrada com Saturno no futuro. As nossas simulações mostraram que a captura em ressonância é mais provável para objetos que têm órbitas retrógradas do que para aqueles que têm órbitas no mesmo sentido dos planetas,” explicam Morais e Namouni.

A expectativa é que Bee-Zed possa permanecer por mais um milhão de anos em seu estado atual. Com a descoberta, pesquisadores acreditam que asteroides do tipo co-orbitais retrógrados com Júpiter e outros planetas possam ser mais comuns do que se pensava anteriormente, reforçando ainda mais a teoria deste estudo.

Fonte: Istituto Nazionale di Astrofisica

sexta-feira, 7 de abril de 2017

Descrito novo modelo para formação do cinturão de asteroides

Em 1801, quando procurava um planeta que acreditava existir entre as órbitas de Marte e Júpiter, o padre e astrônomo italiano Giuseppe Piazzi (1746 – 1826) acabou descobrindo Ceres, um planeta-anão de quase mil quilômetros de diâmetro.

ilustração de asteroides entre as órbitas de Marte e Júpiter

© NASA (ilustração de asteroides entre as órbitas de Marte e Júpiter)

Ceres é o maior objeto do chamado cinturão de asteroides, mas está longe de ser o único. Estima-se que o cinturão seja formado por mais de 1 milhão deles. Há mais de 200 anos os astrônomos quebram a cabeça para descobrir como foi que o cinturão de asteroides se formou e por que não existe nenhum planeta entre Marte e Júpiter.

Apesar da enorme quantidade de dados reunida em dois séculos de pesquisas sobre o cinturão, inclusive graças a diversas sondas espaciais que foram enviadas até lá, ainda não se chegou a um consenso sobre como ele teria se formado.

Novas hipóteses continuam sendo formuladas, como é o modelo denominado de “Caótico”. Seus autores são os astrônomos brasileiros André Izidoro e Othon Winter, do Grupo de Dinâmica Orbital e Planetologia da Universidade Estadual Paulista (UNESP), campus de Guaratinguetá, em colaboração com colegas da França e dos Estados Unidos. 

Os planetas do Sistema Solar são divididos em duas categorias, os rochosos ou terrestres (Mercúrio, Vênus, Terra e Marte), que ficam no Sistema Solar interno, e os gigantes gasosos (Júpiter, Saturno, Urano e Netuno) do Sistema Solar externo.

Entre os dois grupos está o cinturão principal de asteroides. Suas centenas de milhares de objetos se distribuem por uma ampla faixa orbital que vai de aproximadamente 1,8 a 3,2 unidades astronômicas do Sol (uma unidade astronômica equivale à distância média do Sol à Terra).

“Os gigantes gasosos, como Júpiter e Saturno, foram os primeiros a se formar, quando o Sistema Solar contava com no máximo 10 milhões de anos”, disse Izidoro, cuja pesquisa “Formação e dinâmica planetária: do Sistema Solar a exoplanetas” tem apoio da FAPESP por meio do Programa Jovens Pesquisadores em Centros Emergentes.

Segundo ele, os gigantes gasosos se formaram a partir da acreção, ou seja, do acúmulo do gás da nebulosa solar que envolvia o protossistema solar. Esse mesmo gás é parte daquele que serviu de matéria-prima para a formação e ignição do Sol.

A Terra se formou quando não havia mais gás à disposição, pois toda matéria da nebulosa havia sido tragada pelo Sol ou pelos gigantes gasosos, e o que não fora se dissipou ou então foi expelido para longe pela intensa radiação do Sol recém-nascido. “Estima-se que a Terra tenha se formado quando o Sol tinha entre 30 e 150 milhões de anos. O cinturão de asteroides se formou mais cedo do que a Terra, mas os asteroides só atingiram a distribuição atual ao longo da história do Sistema Solar”, disse Izidoro.

“Para explicar o modelo Caótico é preciso primeiro falar sobre o principal modelo atual de formação do Sistema Solar, o Grand Tack”, disse Izidoro. O nome dessa teoria é inspirado em uma manobra náutica chamada “cambada”, que consiste em mudar a direção de um barco colocando a proa contra o vento.

Pelo modelo Grand Tack, durante a formação de Júpiter, o planeta teria migrado da sua órbita original a 3,5 unidades astronômicas do Sol até cerca de 1,5. No entanto, assim como migrara para perto do Sol, o planeta Júpiter, em seguida, realizou o caminho contrário. Isso ocorreu graças a Saturno, o segundo maior planeta do Sistema Solar.

Conforme Saturno incorporava gás e crescia, ele também migrava em direção ao Sol. Júpiter e Saturno teriam dado uma “cambada” assim que Saturno encontrou Júpiter no caminho de aproximação do Sol.

Esse movimento de ida e volta de Júpiter e Saturno, de acordo com o Grand Tack, teve duas consequências: uma para Marte e a outra para a formação do cinturão de asteroides.

No caso marciano, o “limpador” planetário no qual Júpiter (e Saturno) se convertera removeu a maior parte da matéria-prima disponível desde a órbita de Marte até o cinturão de asteroides. É por isso que Marte, ao se formar mais tarde, acumularia material suficiente para atingir apenas um décimo da massa da Terra.

Já no caso do cinturão de asteroides, a influência gravitacional de Júpiter trouxe consequências mais drásticas. Somente uma pequena fração da matéria original sobreviveu na região do cinturão de asteroides, uma quantia insuficiente para formar um planeta, mas consistente com o que é observado hoje. Além disso, a distribuição dos asteroides nesse modelo é bastante similar àquela dos asteroides reais.

Ao observar as nebulosas de protossistemas solares na Via Láctea, os astrônomos verificam as condições pelas quais planetas gigantes se formam.

“O Grand Tack é muito aceito, é bem sólido e encontra respaldo em observações astronômicas. Mas isso não quer dizer que esteja correto, nem que o cinturão de asteroides se formou da forma por ele prevista”, disse Izidoro.

Winter concorda. “O Grand Tack não é o único modelo que explica a formação do cinturão de asteroides. O nosso modelo Caótico também é viável”, disse o professor titular do Departamento de Matemática da Faculdade de Engenharia da Unesp, coordenador do Projeto Temático "Dinâmica Orbital de Pequenos Corpos".

A diferença dos dois modelos parte de uma variável básica: a quantidade de matéria-prima disponível na região de Marte e do cinturão de asteroides. O Grand Tack parte da premissa de que havia muita matéria nessas regiões e que essa matéria foi removida por Júpiter e Saturno durante uma dramática fase de migração.

Já o modelo Caótico desenvolvido por Izidoro e Winter parte da premissa de que quase não havia matéria naquelas regiões. Tal hipótese prescinde de uma migração tão intensa de Júpiter em direção ao Sol, pois assume já de início que quase não havia matéria ali.

Estudos astronômicos são conduzidos tanto a partir de observações astronômicas como de simulações computacionais. Essas últimas são feitas ao compilar e rodar programas que simulam o comportamento dos corpos celestes que se quer estudar de acordo com as leis físicas e as variáveis que se quer testar.

“Nos estudos astronômicos, são realizadas dezenas ou até centenas de simulações diferentes. “No entanto, todas elas forneceram resultados insatisfatórios, que não reproduziam um Sistema Solar tal qual o observamos. Todas, menos uma.”

O único resultado positivo do modelo Caótico, aquele que condiz com o Sistema Solar que observamos, foi obtido por acaso. Isso aconteceu quando, nas variáveis da simulação, as órbitas de Júpiter e Saturno foram levemente alteradas, mas mantidas em uma mesma ressonância.

Dois planetas estão em ressonância quando suas órbitas estão sincronizadas à razão de números inteiros, como 1, 2, 3, 4 etc. Nesse caso específico, a configuração era tal que, para cada órbita de Saturno, Júpiter descrevia praticamente, mas não exatamente, duas voltas completas em torno do Sol. A simulação previa uma pequena vibração nas órbitas de Júpiter e Saturno.

“A vibração era mínima, incapaz de retirar os planetas do estado de ressonância, porém suficiente para alterar o equilíbrio do sistema. Foi aí que emergiu o caos que dá nome ao modelo”, disse Winter.

Em vez de a simulação calcular as órbitas de Júpiter e de Saturno como elipses perfeitas, os planetas descreveriam órbitas minimamente diferentes umas das outras, tanto na forma da elipse quanto na sua oscilação em relação ao plano do Sistema Solar. Essa condição mínima foi suficiente para alterar todo o comportamento dos asteroides no cinturão principal.

“A diferença entre o resultado dessa simulação onde Júpiter e Saturno tinham órbitas caóticas e daquelas onde não tinham foi realmente impressionante”, disse Izidoro.

“A simulação resultou em um Sistema Solar interior com Marte pequeno, com massa equivalente àquela que ele de fato tem, e um cinturão de asteroides com distribuição de corpos muito semelhante àquela observada. No nosso modelo, a distribuição dos asteroides atingiu o seu status atual em algum momento durante a infância do Sistema Solar, ou seja, durante os seus primeiros 700 milhões de anos”, disse Izidoro.

“No modelo Caótico, Júpiter e Saturno provavelmente migraram um pouco em direção ao Sol, mas em uma intensidade muito menor do que aquela do modelo Grand Tack. Na nossa concepção, Júpiter e Saturno nunca adentraram 5,2 unidades astronômicas”, disse.

O novo modelo desenvolvido pelos brasileiros e que descreve a formação do cinturão de asteroides é plausível e reproduz um Sistema Solar como o conhecemos. Mas seria essa hipótese a resposta definitiva para a questão?

“Ainda não podemos afirmar isso. Os dois modelos são a priori válidos, tanto o Grand Tack como o Caótico. Mas qualquer um deles pode ser descartado a qualquer momento, se algum deles falhar em reproduzir resultados condizentes com a realidade que observamos.

“Nosso modelo tem certas vantagens em relação ao Grand Tack, que é um modelo muito bonito, porém muito complexo. Para funcionar, ele exige que o disco do Sistema Solar satisfaça algumas condições peculiares. Já o nosso modelo Caótico é pautado em situações mais comuns, que foram observadas, como o fato de os planetas entrarem em ressonância”, disse Winter.

“O modelo Caótico é mais simples. E, na ciência, geralmente as respostas mais simples são aquelas que mais frequentemente conduzem à solução de um problema”, disse.

O artigo intitulado The asteroid belt as a relic from a chaotic early Solar System foi publicado no periódico The Astrophysical Journal.

Fonte: FAPESP (Agência)

quarta-feira, 5 de abril de 2017

Órbita de Marte abriga restos de antigos mini-planetas

O planeta Marte partilha a sua órbita com um punhado de asteroides pequenos, os chamados troianos.

pontos de Lagrange ao redor de Marte

© Apostolos Christou (pontos de Lagrange ao redor de Marte)

Agora, uma equipe internacional de astrônomos, usando o VLT (Very Large Telescope) no Chile, descobriu que a maioria destes objetos partilha uma composição comum; são provavelmente restos de um mini-planeta que foi destruído por uma colisão há muito tempo atrás.

Os asteroides troianos movem-se em órbitas com a mesma distância média ao Sol do que um planeta, presos dentro de "refúgios seguros" e gravitacionais 60º à frente e atrás do planeta. O significado especial destes locais foi desvendado pelo matemático francês do século XVIII, Joseph-Louis Lagrange. Em sua honra, são agora conhecidos como "pontos de Lagrange"; o ponto que antecede o planeta é L4; o que sucede o planeta é L5.

Na imagem, à esquerda, os percursos traçados pelos troianos de Marte ao redor de L4 e L5 (cruzes) em relação ao planeta (disco vermelho) e ao Sol (disco amarelo). O círculo pontilhado indica a distância média entre Marte e o Sol. À direita, ampliação da inserção (retângulo) que mostra os percursos dos 8 troianos em L5: 1998 VF31 (marcado "VF31" em azul), Eureka (vermelho), e os 6 objetos identificados como membro da família. Os discos indicam os tamanhos relativos dos asteroides. Eureka, o maior membro, tem cerca de 2 km de comprimento.

Conhecem-se cerca de 6.000 troianos na órbita de Júpiter e cerca de 10 na de Netuno. Pensa-se que remontem aos primeiros tempos do Sistema Solar, quando a distribuição de planetas, asteroides e cometas era muito diferente da que observamos hoje.

Marte é, até agora, o único planeta terrestre que se sabe ter companheiros troianos em órbitas estáveis. O primeiro troiano marciano foi descoberto há mais de 25 anos atrás no ponto L5 e denominado "Eureka" em referência à famosa exclamação do antigo matemático grego Arquimedes. A contagem atual é de nove, um fator de menos 600 em relação aos troianos de Júpiter, mas mesmo até esta amostra relativamente insignificante mostra uma estrutura interessante não vista em qualquer outra parte do Sistema Solar.

Para começar, todos os troianos, exceto um, seguem Marte no seu ponto de Lagrange L5. Além do mais, as órbitas de todos menos um dos 8 troianos em L5 estão agrupadas em torno do próprio Eureka. A causa para esta distribuição desigual de objetos ainda não foi determinada, apesar de existirem um par de possibilidades. Num cenário, uma colisão quebrou um asteroide percursor no ponto L5, e os fragmentos constituem o grupo que observamos hoje. Outra possibilidade é que um processo chamado fissão rotacional fez com que Eureka girasse mais depressa, eventualmente libertando pequenos pedaços de si próprio para uma órbita heliocêntrica. Qualquer que seja a razão, o grupo sugere fortemente que os asteroides nesta "família Eureka" fizeram parte de um único objeto ou de um corpo progenitor. Embora as evidências circunstanciais desta hipótese sejam fortes, o teste está em desvendar se os asteroides partilham uma composição comum ou não. Felizmente, isto pode ser feito por telescópio, medindo a cor da luz solar refletida pela superfície dos asteroides, ou seja, obtendo o seu espectro.

Com este objetivo, uma equipe internacional de astrônomos liderados por Apostolos Christou e por Galin Borisov do Observatório e Planetário Armagh, na Irlanda do Norte, Reino Unido, usou o espectrógrafo X-SHOOTER acoplado ao telescópio "Kueyen", a Unidade 2 do VLT do ESO no Chile, no início de 2016, para registar o espectro de dois asteroides que pertencem à família Eureka, 311999 e 385250. Graças à análise dos espectros, descobriram que ambos os objetos são "gêmeos" de Eureka, em termos de composição, confirmando assim a relação entre os asteroides. Também é a primeira vez que se descobre que os asteroides são compostos principalmente por olivina, um mineral que normalmente se forma dentro de objetos muito maiores sob condições de alta pressão de temperatura. A implicação é que estes asteroides são provavelmente relíquias de material do manto de mini-planetas ou "planetesimais" que, como a Terra, desenvolveram uma crosta, um manto e um núcleo através do processo de diferenciação, mas que há muito foram destruídos por colisões.

Christou salienta que "existem muitas outras famílias no cinturão de asteroides entre Marte e Júpiter, e até entre os troianos de Júpiter, mas nenhuma é dominada por asteroides de olivina." Isto está relacionado com o chamado problema do manto em falta: isto é, se acrescentarmos a massa de minerais diferentes no cinturão de asteroides, particularmente aqueles cujos fragmentos se pensa terem pertencido a outros maiores e diferenciados, há falta de material do manto em comparação com material da crosta rochosa e do núcleo.

Embora a descoberta desta família dominada por olivina não forneça uma solução final para o problema do manto em falta, mostra que o material do manto estava presente perto de Marte no início da história do Sistema Solar. Christou explica: “os nossos achados sugerem que este material participou na formação de Marte e, quem sabe, do seu vizinho planetário, a nossa Terra."

As descobertas foram divulgadas num artigo que será publicado neste mês de abril na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Armagh Observatory

sexta-feira, 24 de fevereiro de 2017

Dois asteroides distantes dão pistas sobre possível "Planeta Nove"

As propriedades dinâmicas destes asteroides, observados espectroscopicamente pela primeira vez usando o Gran Telescopio CANARIAS, sugerem uma possível origem comum e dão uma pista para a existência de um planeta localizado além de Plutão, o chamado "Planeta Nove".

esquema das órbitas de seis dos sete objetos transnetunianos extremos

© Wikipedia (esquema das órbitas de seis dos sete objetos transnetunianos extremos)

No ano 2000 foi descoberto o primeiro de uma nova classe de objetos do Sistema Solar distante, orbitando o Sol a uma distância maior do que a de Netuno: os objetos transnetunianos extremos (ETNOs). As suas órbitas estão muito longe do Sol em comparação com a da Terra. Nós orbitamos o Sol a uma distância média de 1 Unidade Astronômica (1 UA corresponde a 150 milhões de quilômetros), mas os ETNOs orbitam a mais de 150 UA. Para termos uma ideia de quão longe estão, a órbita de Plutão é próxima de 40 UA e a sua maior aproximação ao Sol (periélio) situa-se em 30 UA. Esta descoberta foi um marco nos estudos do Sistema Solar e, até agora, foram identificados um total de 21 ETNOs.

Recentemente, vários estudos sugeriram que os parâmetros dinâmicos dos ETNOs podem ser melhor explicados se existisse um ou mais planetas com massas várias vezes a da Terra orbitando o Sol a distância de centenas de UA. Em particular, em 2016 os pesquisadores Brown e Batygin usaram as órbitas de sete ETNOs para prever a existência de uma "superterra" em órbita do Sol a cerca de 700 UA. Esta categoria de massas é denominada subnetuniana. Esta ideia é referida como Hipótese do Planeta Nove e é um dos temas atuais de mais interesse na ciência planetária. No entanto, dado que os objetos estão tão distantes, a luz que recebemos deles é muito fraca e até agora o único dos 21 objetos transnetunianos observados espectroscopicamente era Sedna.

Agora, uma equipe de pesquisadores liderados pelo Instituto de Astrofísica das Canárias (IAC), em colaboração com a Universidade Complutense de Madrid, deu um passo em direção à caracterização física destes corpos e, através do seu estudo, confirmar ou refutar a Hipótese do Planeta Nove. Os cientistas fizeram as primeiras observações espectroscópicas de 2004 VN112 e 2013 RF98, ambos particularmente interessantes dinamicamente porque as suas órbitas são quase idênticas e os polos das órbitas estão separados por um ângulo muito pequeno. Isto sugere uma origem comum e as suas órbitas atuais podem ser o resultado de uma interação passada com o hipotético Planeta Nove. Este estudo sugere que este par de ETNOs foi um asteroide binário que se separou depois de um encontro com um planeta localizado além da órbita de Plutão.

Para chegar a estas conclusões, fizeram as primeiras medições espectroscópicas de 2004 VN112 e 2013 RF98 no visível. Estas foram realizadas em colaboração com os astrônomos Gianluca Lombardi e Ricardo Scarpa, usando o espectrógrafo OSIRIS acoplado ao Gran Telescopio CANARIAS (GTC), situado no Observatório Roque de los Muchachos (Garafía, La Palma). Foi um trabalho árduo identificar estes asteroides porque a sua grande distância significa que o seu movimento aparente no céu é muito lento. Então, mediram as suas magnitudes aparentes (o seu brilho visto a partir da Terra) e também recalcularam a órbita de 2013 RF98, que tinha sido mal determinada. Descobriram este objeto a uma distância de mais de um minuto de arco da posição prevista a partir das efemérides. Estas observações ajudaram a melhorar a órbita computacional e foram publicadas pelo Minor Planet Center (MPEC 2016-U18: 2013 RF98), o organismo responsável pela identificação de cometas e planetas menores (asteroides), bem como pelas medições dos seus parâmetros e posições orbitais.

O espectro visível pode também dar algumas informações sobre a sua composição. Medindo a inclinação do espectro, é possível saber se têm gelo puro às suas superfícies, como é o caso de Plutão, bem como compostos de carbono altamente processados. O espectro também pode indicar a possível presença de silicatos amorfos, como nos asteroides troianos associados com Júpiter. Os valores obtidos para 2014 VN112 e 2013 RF98 são quase idênticos e semelhantes àqueles observados fotometricamente para outros dois ETNOs, 2000 CR105 e 2012 VP113. No entanto, Sedna, o único destes objetos previamente observado espectroscopicamente, mostra valores muitos diferentes dos restantes. Estes cinco objetos fazem parte do grupo de sete usados para testar a Hipótese do Planeta Nove, o que sugere que todos deveriam ter uma origem comum, à exceção de Sedna, que se pensa ter vindo da parte interna da nuvem de Oort.

"Os gradientes espectrais semelhantes observados para o par 2004 VN112 e 2013 RF98 sugerem uma origem física comum," explica Julia de León, a autora principal do artigo, astrofísica do IAC. "Estamos propondo a possibilidade de terem sido anteriormente um asteroide binário que se afastou durante um encontro com um objeto mais massivo." Para validar esta hipótese, a equipe realizou milhares de simulações numéricas para ver como os polos das órbitas se separariam com o passar do tempo. Os resultados destas simulações sugerem que um possível Planeta Nove, com uma massa entre 10 e 20 massas terrestres, orbitando o Sol a uma distância entre 300 e 600 UA, pode ter desviado o par 2004 VN112 e 2013 RF98 há cerca de 5 a 10 milhões de anos atrás. Isto poderia explicar, em princípio, como estes dois asteroides, que começaram como um par em órbita um do outro, se separaram gradualmente nas suas órbitas porque fizeram uma aproximação a um objeto muito mais massivo num momento particular do seu passado.

Este estudo foi recentemente publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica de Canarias

domingo, 1 de janeiro de 2017

Dois astros são detectados próximos da Terra

A missão NEOWISE descobriu recentemente dois novos objetos com características peculiares em órbitas próximas da Terra.

ilustração do 2016 WF9

© NASA/JPL-Caltech (ilustração do 2016 WF9)

O primeiro recebeu a designação provisória de 2016 WF9 e deverá aproximar-se do nosso planeta no dia 25 de fevereiro de 2017, a uma distância de 51 milhões de quilômetros. O segundo é o cometa C/2016 U1 NEOWISE, um pequeno objeto escuro que viaja numa trajetória hiperbólica, o que sugere que poderá estar numa primeira incursão através do Sistema Solar interior.

O 2016 WF9 foi descoberto a 27 de novembro de 2016 e tem aproximadamente 0,5 a 1,0 km de diâmetro. A sua órbita transporta-o através do Cinturão de Asteroides, desde as proximidades da órbita de Júpiter até ao interior da órbita da Terra. A sua superfície é bastante escura, refletindo apenas uma pequena percentagem da luz solar incidente. Objetos com estas características poderão ter múltiplas origens. A maioria são antigos membros das populações de asteroides ricos em carbono que habitam as regiões mais exteriores do Cinturão de Asteroides. Uma pequena fração são provavelmente antigos cometas que perderam a maioria dos compostos voláteis que originalmente se encontravam depositados junto à superfície.

cometa C2016 U1 NEOWISE

© Michael Jäger (cometa C/2016 U1 NEOWISE)

O C/2016 U1 NEOWISE foi detectado a 21 de outubro de 2016 e, ao contrário do 2016 WF9, exibe uma coma bem definida. Nas próximas duas semanas deverá aumentar consideravelmente o seu brilho, podendo tornar-se visível através de uns bons binóculos. Neste momento é possível observar o C/2016 U1 NEOWISE pouco antes do nascer do Sol, na direção da constelação do Ofiúco. Nos próximos dias, o cometa irá mover-se cada vez mais para sul, até alcançar o periélio da sua órbita no dia 14 de janeiro, momento em que o seu brilho deverá ultrapassar a 6ª magnitude.

As trajetórias dos dois objetos são já suficientemente bem conhecidas para excluir qualquer possibilidade de colisão com a Terra num futuro próximo.

Fonte: Astronomy Now

sábado, 3 de dezembro de 2016

O menor asteroide conhecido

Astrônomos obtiveram observações detalhadas do menor asteroide conhecido.

ilustração de um asteroide próximo à Terra

© NASA/JPL-Caltech (ilustração de um asteroide próximo à Terra)

Com 2 metros em diâmetro, a minúscula rocha espacial é pequena o suficiente para ser montada por uma pessoa numa sequência hipotética e espacial baseada na cena icônica do filme "Dr. Strangelove".

Curiosamente, o asteroide, de nome 2015 TC25, é também um dos mais próximos asteroides da Terra já descobertos. Usando dados de quatro telescópios diferentes, uma equipe de astrônomos liderada por Vishny Reddy, professor assistente do Laboratório Lunar e Planetário da Universidade do Arizona, divulga que TC25 reflete cerca de 60% da luz que incide sobre ele.

Descoberto pelo Catalina Sky Survey da mesma universidade em outubro desse ano, o 2015 TC25 foi estudado extensivamente com telescópios terrestres durante uma passagem rasante em que o microasteroide passou a 128.000 quilômetros da Terra, um-terço da distância à Lua.

Reddy argumenta que as novas observações do IRTF (Infrared Telescope Facility) da NASA e do Radar Planetário de Arecibo mostram que a superfície de 2015 TC25 é semelhante a um tipo raro de meteorito altamente refletivo chamado aubrite. Os aubrites consistem de minerais muito brilhantes, principalmente silicatos, formados num ambiente basáltico e livre de oxigênio a temperaturas muito altas. Apenas um em cada 1.000 meteoritos que caem na Terra pertencem a esta classe.

"Esta é a primeira vez que temos dados ópticos, infravermelhos e de radar sobre um asteroide tão pequeno, que é essencialmente um meteoroide," realça Reddy. "Podemos pensar nele como um meteorito que flutua no espaço e que não atingiu a atmosfera e alcançou o solo ainda."

Os pequenos asteroides próximos à Terra, como 2015 TC25, são da mesma gama de tamanhos que os meteoritos que caem na Terra. Estes objetos são descobertos com frequência, mas não se sabe muito sobre eles pois são difíceis de caracterizar. Através do estudo detalhado destes objetos, espera-se entender melhor os corpos de origem a partir dos quais estes meteoritos são originários.

Os asteroides são fragmentos remanescentes da formação do Sistema Solar que orbitam o Sol, na maior parte, atualmente entre as órbitas de Marte e Júpiter. Os asteroides perto da Terra são um subconjunto que atravessa o caminho do nosso planeta. Até agora, foram descobertos mais de 15.000 asteroides próximos à Terra.

Os cientistas estão interessados nos meteoroides porque são os percursores dos meteoritos que impactam a Terra.

"Se pudermos descobrir e caracterizar asteroides e meteoroides assim tão pequenos, então podemos entender a população de objetos que lhes deram origem: asteroides grandes, que têm uma probabilidade muito menor de colidir com a Terra," salienta Reddy. "No caso do 2015 TC25, a probabilidade de impactar com a Terra é bastante pequena."

A descoberta também é a primeira evidência para um asteroide que não tem o típico cobertor de poeira, chamado regolito, de asteroides maiores. Em vez disso, o 2015 TC25 é essencialmente rocha nua. A equipe também descobriu que é um dos asteroides mais velozes, em termos de rotação, já descobertos perto da Terra, completando uma volta sob si próprio a cada 2 minutos.

Provavelmente, o 2015 TC25 é o que os cientistas planetários chamam de monolítico, o que significa que é mais parecido com um tipo de objeto de "rocha sólida" do que com um tipo de objeto tipo "escombros" como muitos grandes asteroides, que muitas vezes consistem de muitos tipos de rochas unidas pela gravidade e atrito. Pensa-se que Bennu, o alvo da missão OSIRIS-REx, pertence a este último tipo.

No que diz respeito à origem do pequeno asteroide, Reddy pensa que provavelmente foi partido por outra rocha que colidiu com o seu progenitor, 44 Nysa, um asteroide do cinturão principal grande o suficiente para cobrir a maior parte de uma cidade.

Ser capaz de observar asteroides pequenos como este é como olhar para amostras no espaço antes que atinjam a atmosfera e alcancem o sol e também fornece um primeiro olhar de suas superfícies em estado puro antes de caírem pela atmosfera.

Um artigo foi publicado na revista The Astronomical Journal.

Fonte: Univerdade do Arizona

sexta-feira, 1 de julho de 2016

Uma fauna de corpos menores do VISTA

Uma equipe de astrônomos europeus usou dados do telescópio de rastreio VISTA do ESO para catalogar uma população variada de corpos menores, que são pequenos objetos do Sistema Solar, nos comprimentos de onda do infravermelho próximo.

ilustração de núcleos de gelo no Cinturão de Kuiper

© ESO/M. Kornmesser (ilustração de núcleos de gelo no Cinturão de Kuiper)

Após a órbita  de Netuno existe um enorme disco de pequenos objetos chamado Cinturão de Kuiper, e ainda mais além dele está a nuvem de Oort, local onde habitam os cometas. A ilustração acima mostra uma parte do Cinturão de Kuiper, povoada de núcleos gelados pertencentes a potenciais cometas. Esta imagem fará parte da exposição "O Universo Vivo", que estará disponível ao público no Supernova do ESO.

Este estudo deu origem a uma coleção de medições de milhares de objetos, dados estes que poderão ajudar a responder a questões chave sobre o Sistema Solar primordial.
Sabe-se que o Sistema Solar contém cerca de 700 mil objetos pequenos, desde asteroides rochosos a cometas gelados. Ao estudar estes objetos, os astrônomos esperam compreender como é que o Sistema Solar se formou e evoluiu e, ao mesmo tempo, reunir informações importantes sobre possíveis impactos com a Terra.
A equipe examinou um subconjunto de dados do rastreio do VISTA (Visible and Infrared Survey Telescope for Astronomy), o VISTA Hemisphere Survey, que cobriu cerca de 40% do hemisfério sul do céu. Ao examinar de forma cuidada a enorme quantidade de dados deste rastreio, os pesquisadores conseguiram determinar a posição e o brilho de quase 40 mil objetos, obtendo ainda informação de cor para cerca de 35 mil deles. Esta é a primeira vez que dados de um rastreio são analisados para revelar informação sobre um tão grande número de pequenos corpos do Sistema Solar.
Os dados de cor, em particular, podem ser usados para classificar os objetos, ao derivar informação sobre a sua composição à superfície. A diversidade de objetos identificados no catálogo inclui exemplos de todas as categorias conhecidas de corpos deste tipo: asteroides próximos da Terra, objetos que cruzam a órbita de Marte, asteroides Hungaria, asteroides do cinturão principal, asteroides Cybele, asteroides Hilda, Troianos, cometas, objetos do Cinturão de Kuiper, entre outros.
O VISTA é o maior telescópio de rastreio do mundo, com um espelho de 4,1 metros de diâmetro. O seu enorme campo de visão, juntamente com os seus detectores muito sensíveis, dá aos astrônomos uma visão completamente nova do céu austral. Os rastreios do céu são uma ferramenta poderosa nos dias de hoje, em que existem detectores tão grandes e sensíveis, permitindo aos astrônomos catalogar de modo rápido um grande número de objetos celestes e fazer análises estatísticas sobre os mesmos. São ideais para os astrônomos que procuram, como neste caso, objetos próximos em movimento, tais como asteroides e cometas.

Este trabalho foi descrito no artigo científico intitulado “Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS)”, de M. Popescu et al., que foi publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

domingo, 19 de junho de 2016

Descoberto um novo asteroide quase-satélite da Terra

Astrônomos da NASA identificaram um novo objeto orbitando temporariamente a Terra.

ilustração de um asteroide orbitando o Sol

© Mark A. Garlick (ilustração de um asteroide orbitando o Sol)

Designado provisoriamente de 2016 HO3, o pequeno asteroide parece seguir uma trajetória elíptica ao redor do nosso planeta, contudo, como se mantém fora do domínio gravitacional da Terra, não é considerado um verdadeiro satélite terrestre.

“Uma vez que 2016 HO3 dá voltas em torno do nosso planeta sem nunca se aventurar para muito longe à medida que ambos orbitam o Sol, referimo-nos a este objeto como um quase-satélite da Terra”, disse Paul Chodas, responsável do Center for Near-Earth Object (NEO) da NASA. “Outro asteroide, designad] 2003 YN107, seguiu um padrão orbital semelhante durante algum tempo, há aproximadamente 10 anos, mas afastou-se desde então da nossa vizinhança. Este novo asteroide está muito mais ‘agarrado’ a nós. Os nossos cálculos indicam que o 2016 HO3 tem sido um quase-satélite estável da Terra há quase um século, e deverá continuar a seguir este padrão como companheiro da Terra por mais alguns séculos.”

orbita do asteroide 2016 HO3 ao redor da Terra

© NASA/JPL-Caltech (orbita do asteroide 2016 HO3 ao redor da Terra)

Realmente, o asteroide 2016 HO3 é o melhor e mais estável exemplo até hoje conhecido de um quase-satélite da Terra. Com uma órbita com um período de 365,9 dias e uma excentricidade de 0,104, o pequeno asteroide executa uma espécie de dança orbital com o nosso planeta, acelerando ou abrandando a sua velocidade relativamente à Terra consoante se encontra ligeiramente mais próximo ou mais longe do Sol que o nosso planeta. A sua órbita encontra-se também ligeiramente inclinada, pelo que atravessa duas vezes por ano o plano orbital da Terra.

A trajetória do 2016 HO3 tende ainda a oscilar relativamente ao nosso planeta, ao longo de várias décadas. “De ano para ano, as voltas do asteroide ao redor da Terra deslocam-se ligeiramente para a frente ou para trás”, acrescentou Chodas. “No entanto, quando esta oscilação é demasiado intensa, a gravidade da Terra é suficientemente forte para a reverter e segurar o asteroide de forma a que este nunca se afaste mais do que cerca 100 vezes a distância da Lua. O mesmo efeito impede o asteroide de se aproximar mais que cerca de 38 vezes a distância da Lua. Com efeito, este pequeno asteroide encontra-se preso numa pequena dança com a Terra.”

O 2016 HO3 foi descoberto pelo programa PanSTARRS no dia 27 de abril de 2016 e o seu diâmetro deverá situar-se entre 40 e 100 metros.

Fonte: Jet Propulsion Laboratory

sábado, 30 de abril de 2016

Fragmento da Nuvem de Oort traz pistas sobre a origem do Sistema Solar

Astrônomos descobriram um objeto peculiar que parece ser formado de matéria do Sistema Solar interior originária da época da formação da Terra, e que estava preservado na Nuvem de Oort há bilhões de anos.

ilustração do cometa rochoso C2014 S3 PANSTARRS

© ESO/M. Kornmesser (ilustração do cometa rochoso C2014 S3 PANSTARRS)

Observações obtidas com o Very Large Telescope (VLT) do ESO e com o Canada-France-Hawaii Telescope (CFHT) mostram que o C/2014 S3 (PANSTARRS) é o primeiro objeto a ser descoberto numa órbita cometária de longo período, com as características imaculadas de um asteroide do Sistema Solar interior. Seu estudo pode dar pistas importantes sobre a formação do Sistema Solar.

A pesquisadora Karen Meech, do Instituto de Astronomia da Universidade do Havaí, e colegas concluem que o C/2014 S3 (PANSTARRS) se formou no Sistema Solar interior na mesma época que a própria Terra, mas que foi ejetado numa fase muito inicial.
As observações indicam que se trata de um corpo rochoso antigo e não de um asteroide contemporâneo que se afastou. Como tal, é um dos potenciais blocos constituintes dos planetas rochosos (como a Terra), que foi expelido para fora do Sistema Solar interno e preservado em congelamento profundo na Nuvem de Oort durante bilhões de anos. A Nuvem de Oort é uma região enorme que rodeia o Sol como uma espessa bolha gigante. Estima-se que contenha trilhões de pequenos corpos gelados. Ocasionalmente, um destes corpos é empurrado para o Sistema Solar interno, onde o calor do Sol o transforma num cometa. Pensa-se que estes corpos gelados tenham sido ejetados a partir da região dos planetas gigantes, quando estes se estavam se formando, no início do Sistema Solar.

  trajetória do cometa C2014 S3 PANSTARRS na Nuvem de Oort

© ESO/L. Calçada (trajetória do cometa C2014 S3 PANSTARRS na Nuvem de Oort)

Karen Meech explica a observação inesperada: “Conhecemos a existência de muitos asteroides, no entanto todos eles já foram “cozidos” pelos bilhões de anos que passaram perto do Sol. Este é o primeiro asteroide “cru” que observamos, tendo sido preservado no melhor congelador que existe!”
O C/2014 S3 (PANSTARRS) foi originalmente identificado pelo telescópio Pan-STARRS1 como sendo um tênue cometa ativo, quando estava um pouco mais afastado do que duas vezes a distância da Terra ao Sol. O seu atual período orbital longo (cerca de 860 anos) sugere que a sua fonte é a Nuvem de Oort e que teria sido empurrado há relativamente pouco tempo para uma órbita que o traz próximo do Sol.
A equipe reparou imediatamente que C/2014 S3 (PANSTARRS) era diferente, uma vez que não possui a cauda característica que a maioria dos cometas de longo período desenvolvem quando se aproximam muito do Sol. Foi assim que ele ganhou o nome de cometa Manx, em homenagem ao gato sem cauda. Algumas semanas após a sua descoberta, a equipe obteve espectros do fraco objeto com o VLT.
Um estudo cuidadoso da luz refletida por C/2014 S3 (PANSTARRS) indica que se trata de um asteroide típico do tipo S, encontrado geralmente no cinturão principal interno de asteroides. Não é parecido com um cometa típico, objetos que se pensa serem formados no Sistema Solar exterior e que são gelados em vez de rochosos. O material parece ter sido pouco processado, indicando que esteve congelado durante um longo período de tempo. A atividade de tipo cometário extremamente fraca associada ao C/2014 S3 (PANSTARRS) é consistente com a sublimação do gelo d'água, e é cerca de um milhão de vezes menor que nos cometas ativos de longo período que se encontram a distâncias semelhantes do Sol.
Os pesquisadores concluem que este objeto é provavelmente constituído por material do Sistema Solar interno que esteve guardado durante muito tempo na Nuvem de Oort e que agora encontrou o seu caminho de volta ao Sistema Solar interior.
Vários modelos teóricos conseguem reproduzir a maior parte da estrutura que vemos no Sistema Solar. Uma diferença importante entre estes modelos são as previsões relativas aos objetos que constituem a Nuvem de Oort. Os diferentes modelos prevêem razões significativamente diferentes entre objetos gelados e rochosos. Por isso, esta primeira descoberta de um objeto rochoso na Nuvem de Oort é um teste importante das diferentes previsões dos modelos. Os autores estimam que serão necessárias observações de 50 a 100 destes cometas Manx para se distinguir entre os atuais modelos, abrindo assim um caminho importante no estudo das origens do Sistema Solar.
O pesquisador Olivier Hainaut (ESO, Garching, Alemanha) conclui: “Descobrimos o primeiro cometa rochoso e estamos à procura de outros. Dependendo de quantos encontrarmos, saberemos se os planetas gigantes “dançaram” ao longo do Sistema Solar quando eram jovens, ou se cresceram pacatamente sem grandes deslocamentos.”

Este trabalho foi descrito no artigo científico intitulado “Inner Solar System Material Discovered in the Oort Cloud”, de Karen Meech et al., que foi publicado na revista especializada Science Advances.

Fonte: ESO

segunda-feira, 25 de abril de 2016

Elektra: um novo asteroide triplo

Astrônomos descobriram um novo satélite em órbita do asteroide (130) Elektra no cinturão de asteroides.

asteroide Elektra

© ESO (asteroide Elektra)

A equipe, liderada por Bin Yang (ESO, Santiago, Chile), obteve uma imagem deste objeto usando o instrumento de ótica adaptativa extrema, SPHERE, montado no terceiro telescópio principal do Very Large Telescope do ESO, no Cerro Paranal, Chile. Este segundo satélite recém-descoberto de (130) Elektra tem uma dimensão de cerca de 2 km e deu-se-lhe o nome provisório de S/2014 (130) 1, fazendo de (130) Elektra um sistema triplo. Ao explorar ao máximo a sensibilidade e resolução espacial sem precedentes do instrumento SPHERE, a equipe observou também outro sistema triplo de asteroides no cinturão principal, (93) Minerva.
Os asteroides são relíquias dos blocos constituintes que formaram os planetas telúricos, no início da formação do Sistema Solar. O estudo de asteroides com satélites múltiplos é crucial, uma vez que os seus mecanismos de formação podem dar informações sobre a formação e evolução dos planetas, a qual não pode ser revelada por outros métodos.
Utilizando dados do SPHERE, a equipe inferiu que tanto (130) Elektra como (93) Minerva se formaram a partir de um impacto erosivo, o qual ocorre quando dois objetos de tamanhos semelhantes colidem obliquamente. Como resultado da colisão, pedaços substanciais de matéria podem separar-se e ser lançados para o espaço, dando origem a pequenos satélites de um dos corpos originais. Neste caso, a pequena separação dos satélites relativamente aos seus asteroides progenitores, a enorme razão entre as massas e a mesma composição dos satélites e dos corpos primários apoiam esta teoria.

Fonte: ESO