Mostrando postagens com marcador Cosmologia. Mostrar todas as postagens
Mostrando postagens com marcador Cosmologia. Mostrar todas as postagens

domingo, 7 de maio de 2017

Ondulações na teia cósmica é medida usando quasares duplos raros

Astrônomos acreditam que a matéria no espaço intergaláctico é distribuída em uma vasta rede de estruturas filamentares interligadas conhecidas como a teia cósmica. Quase todos os átomos do Universo residem nesta teia, material vestigial deixado do Big Bang.

modelos do Universo gerados por pares de quasar

© MPIA/J. Onorbe (modelos do Universo gerados por pares de quasar)

A imagem acima é uma representação do volume de saída de uma simulação de supercomputador mostrando parte da teia cósmica, há 11,5 bilhões de anos. Este e outros modelos do Universo foram gerados e comparados diretamente com dados de pares de quasar para medir as ondulações em pequena escala na teia cósmica. O cubo tem 24 milhões de anos-luz de lado.

Uma equipe liderada por pesquisadores do Max Planck Institute for Astronomy (MPIA) fizeram as primeiras medidas de flutuações de pequena escala na teia cósmica apenas 2 bilhões de anos após o Big Bang. Estas medições foram permitidas por uma técnica nova que usa pares de quasares para sondar a teia cósmica ao longo das linhas adjacentes, estreitamente separadas da visão. Isto possibilitará reconstruir um capítulo inicial da história cósmica conhecido como a época da reionização.

As regiões mais estéreis do Universo são os cantos distantes do espaço intergaláctico. Nestas vastas extensões entre as galáxias, há apenas alguns átomos por metro cúbico, uma névoa difusa de gás de hidrogênio residual do Big Bang. Visto em maiores escalas, este material difuso, no entanto, explica a maioria dos átomos no Universo, e preenche a teia cósmica, seus fios emaranhados que medem bilhões de anos-luz.

Agora, uma equipe liderada por astrônomos do MPIA fizeram as primeiras medições de ondas em pequena escala neste gás de hidrogênio primitivo. Embora as regiões da teia cósmica que estudaram estão tão distantes que sua luz leva quase 11 bilhões de anos para chegar até nós, elas forneceram mediads das variações em sua estrutura em escalas cem mil vezes menores, comparáveis ​​ao tamanho de uma única galáxia.

O gás intergaláctico é tão tênue que não emite luz própria. Em vez disso, os astrônomos estudam-no indiretamente observando como ele absorve seletivamente a luz proveniente de fontes distantes conhecidas como quasares. Os quasares constituem uma breve fase hiperluminosa do ciclo de vida galáctico, alimentados pelo acúmulo de matéria no buraco negro supermasivo central de uma galáxia.

Quasares agem como faróis cósmicos; faróis brilhantes e distantes que permitem aos astrônomos estudar os átomos intergalácticos que residem entre a localização dos quasares e a Terra. Mas, como estes episódios hiperluminosos duram apenas uma pequena fração da vida de uma galáxia, os quasares são correspondentemente raros no céu e são tipicamente separados por centenas de milhões de anos-luz uns dos outros.

A fim de sondar a teia cósmica em escalas muito menores, os astrônomos exploraram uma coincidência cósmica fortuita: identificaram pares de quasares extremamente raros um ao lado do outro no céu e mediram diferenças sutis na absorção de átomos intergalácticos ao longo de duas linhas de visão.

"Um dos maiores desafios foi desenvolver as ferramentas matemáticas e estatísticas para quantificar as pequenas diferenças que medimos neste novo tipo de dados," diz Alberto Rorai, pesquisador pós-doutorado da Universidade de Cambridge. Rorai desenvolveu estas ferramentas como parte da pesquisa para seu doutorado no MPIA e aplicou suas ferramentas de espectros de quasares obtidos com os maiores telescópios do mundo, incluindo os telescópios Keck de 10m de diâmetro no cume do Mauna Kea no Havaí, como também o Very Large Telescope (VLT) do ESO de 8m de diâmetro no Cerro Paranal e o telescópio Magellan de 6,5m de diâmetro no Observatório Las Campanas, ambos localizados no deserto chileno do Atacama.

Os astrônomos compararam suas medidas com modelos de supercomputadores que simulam a formação de estruturas cósmicas desde o Big Bang até o presente. "A entrada para nossas simulações são as leis da Física e a saída é um Universo artificial que pode ser diretamente comparado aos dados astronômicos. Estas novas medidas concordam com o paradigma bem estabelecido de como as estruturas cósmicas se formam," diz José Oñorbe, pesquisador pós-doutorado do MPIA, que liderou o trabalho de simulação do supercomputador. Em um único laptop, estes cálculos complexos teriam exigido quase mil anos para ser concluído, mas os supercomputadores modernos permitiram que os pesquisadores os realizassem em apenas algumas semanas.

"Uma das razões pelas quais estas flutuações de pequena escala são tão interessantes é que elas codificam informações sobre a temperatura do gás na teia cósmica apenas alguns bilhões de anos após o Big Bang," explica Joseph Hennawi, que lidera o grupo de pesquisa do MPIA responsável pela medição.

Os astrônomos acreditam que a matéria no Universo passou por transições de fase há bilhões de anos atrás, o que mudou dramaticamente sua temperatura. Estas transições de fase, conhecidas como reionização cósmica, ocorreram quando o brilho ultravioleta coletivo de todas as estrelas e quasares no Universo se tornou suficientemente intenso para retirar elétrons dos átomos no espaço intergaláctico.

Como e quando a reionização ocorreu é uma das maiores questões abertas no campo da cosmologia, e estas novas medições fornecem pistas importantes que ajudarão a narrar este capítulo da história cósmica.

Os resultados foram publicados na revista Science.

Fonte: Max Planck Institute for Astronomy

segunda-feira, 24 de abril de 2017

Como explicar a expansão acelerada do Universo sem a energia escura?

A enigmática energia escura, que se acredita responder por 68% da composição do Universo, pode não existir, de acordo com uma equipe húngaro-americana.

imagem de um dos quadros da simulação feita durante o estudo

© István Csabai (imagem de um dos quadros da simulação feita durante o estudo)

Na imagem acima, um quadro da animação mostra a expansão do Universo: no painel superior esquerdo, em vermelho, na cosmologia padrão ‘Lambda Cold Dark Matter’, que inclui a energia escura; no painel superior do meio, em azul, o novo Modelo AvERA, que considera a estrutura do Universo e elimina a necessidade de energia escura; no painel superior direito, verde, na cosmologia Einstein-de-Sitter, o modelo original sem energia escura. O painel na parte inferior mostra o aumento do “fator de escala” (uma indicação do tamanho) em função do tempo, onde 1Gya representa bilhões de anos. O crescimento da estrutura também pode ser visto nos painéis superiores. Um ponto representa aproximadamente um aglomerado de galáxias. As unidades de escala estão em Megaparsecs (Mpc). Um parsec é equivalente a 3,26156 anos-luz ou 3,08568×1016 metros.

Os pesquisadores acreditam que os modelos matemáticos do Universo não levam em conta sua estrutura mutável, mas que, uma vez que isso é feito, a necessidade de energia escura desaparece.

Nosso Universo foi formado no Big Bang, há 13,8 bilhões de anos, e tem se expandido desde então. A prova chave desta expansão é a lei de Hubble, baseada em observações das galáxias, onde a velocidade com que a galáxia se afasta de nós é proporcional à sua distância.

Astrônomos medem esta velocidade de recessão observando linhas no espectro eletromagnético de uma galáxia, que se deslocam mais para o vermelho quanto mais rápido a galáxia está se afastando. A partir da década de 1920, o mapeamento das velocidades das galáxias levou os cientistas a concluírem que o Universo está se expandindo, e que ele se iniciou como um minúsculo ponto.
Na segunda metade do século 20, astrônomos encontraram evidências de uma matéria “escura” invisível ao observar que algo a mais era necessário para explicar o movimento das estrelas dentro das galáxias. Hoje, acredita-se que a matéria escura equivale a 27% do conteúdo do Universo, sendo que apenas 5% representa a matéria ordinária.

Observações de explosões de estrelas anãs brancas em sistemas binários, chamadas de supernova do tipo Ia, nos anos 1990 levaram os cientistas à conclusão de que um terceiro componente, a energia escura, constituía 68% do cosmos e seria responsável por conduzir uma aceleração na expansão do Universo.

No novo trabalho, os pesquisadores, liderados pelo doutorando Gábor Rácz, da Universidade Eötvös Loránd, na Hungria, questionam a existência da energia escura e sugerem uma explicação alternativa. Eles argumentam que os modelos convencionais de cosmologia, que estuda a origem e evolução do Universo, dependem de aproximações que ignoram sua estrutura e nas quais se assume que a matéria possui densidade uniforme.

“As equações da relatividade geral de Einstein, que descrevem a expansão do Universo, são tão complexas matematicamente que, durante cem anos, não foram encontradas soluções que levassem em conta o efeito das estruturas cósmicas. Sabemos através de observações bastante precisas de supernovas que a expansão do Universo está se acelerando, mas, ao mesmo tempo, dependemos de aproximações grosseiras das equações de Einstein, as quais podem introduzir sérios efeitos colaterais, como a necessidade de energia escura nos modelos desenhados para se ajustarem aos dados observacionais,” explica László Dobos, também da Universidade Eötvös Loránd.

Na prática, matéria normal e matéria escura parecem preencher o Universo com uma estrutura parecida com espuma, onde galáxias estão localizadas nas finas paredes entre bolhas, e estão agrupadas em superaglomerados. Em contrapartida, o interior das bolhas está quase vazio de ambos os tipos de matéria.

Utilizando uma simulação por computador para modelar o efeito da gravidade na distribuição de milhões de partículas de matéria escura, os cientistas reconstruíram a evolução do Universo, incluindo os agrupamentos iniciais de matéria, e a formação de estruturas em larga escala.

Ao contrário das simulações convencionais, com uma expansão suave do Universo, levar em conta a estrutura conduziu a um modelo no qual diferentes regiões do cosmos se expandem em diferentes ritmos. A taxa média de expansão, porém, é consistente com as presentes observações, o que sugere uma aceleração, no geral.

“A teoria da relatividade geral é fundamental para entender a forma como o Universo evolui. Não questionamos a sua validade; questionamos a validade das soluções aproximadas. Nossas descobertas baseiam-se em uma conjectura matemática que permite a expansão diferencial do espaço, consistente com a relatividade geral, e mostram como a formação de estruturas de matéria complexas afetam esta expansão. Anteriormente, estas questões haviam sido descartadas, mas levá-las em conta pode explicar a aceleração sem a necessidade de energia escura,” completa Dobos.

Se esta descoberta se sustentar, pode ter um impacto significante nos modelos do Universo e na direção das pesquisas em física. Nos últimos 20 anos, astrônomos e físicos teóricos têm especulado sobre a natureza da energia escura, mas ela continua um mistério. Com o novo modelo, a equipe espera ao menos dar início a um animado debate.

A equipe publicou seus resultados num artigo na Monthly Notices of the Royal Astronomical Society.

Fonte: Scientific American

terça-feira, 12 de agosto de 2014

Planeta anão pode iluminar o modelo cosmológico

Um candidato a planeta anão, chamado UX25, e sua pequena lua, podem fornecer a primeira evidência experimental de um novo modelo cosmológico que inclui a antigravidade.

ilustração de uma vista do Sol a partir do Cinturão de Kuiper

© JHUAPL/SwRI (ilustração de uma vista do Sol a partir do Cinturão de Kuiper)

O modelo dispensa conceitos como matéria escura, energia escura e inflação cósmica. A proposta de testar essa nova teoria observando o movimento dos dois objetos na borda do Sistema Solar foi anunciada por Alberto Vecchiato e Mario Gai, do Observatório Astrofísico de Turim, na Itália.

Em 1915, a ainda desconhecida Teoria Geral da Relatividade, de Albert Einstein, recebeu um grande impulso de credibilidade quando foi usada para explicar uma discrepância na órbita de Mercúrio que não poderia ser explicada apenas pela física newtoniana.

Agora, quase um século depois, Vecchiato e Gai calculam que o UX25 e seu minúsculo satélite, que orbitam o Sol no cinturão de Kuiper, além de Netuno, podem ser usados como um "laboratório natural" para testar esse modelo do Universo, algo tão novo e ambicioso quanto a relatividade pareceu no início do século passado.

Desenvolvido pelo físico Dragan Hajdukovic, do CERN, o modelo denominado Dipolos Gravitacionais Virtuais é baseado no conceito de que o espaço vazio, também conhecido como vácuo quântico, não é de todo vazio. Em vez disso, o vácuo quântico é formado por "matéria virtual" e partículas de antimatéria que constantemente brotam entre a existência e a inexistência.

A ideia de Hajdukovic é que essas partículas têm cargas gravitacionais opostas, semelhantes a cargas elétricas positivas e negativas. Ele prevê ainda que, na presença de um campo gravitacional, as partículas virtuais do vácuo quântico vão gerar um campo gravitacional secundário que tem um efeito amplificador.

O resultado final é que as galáxias e outros objetos parecerão ter campos gravitacionais mais fortes do que seria previsto apenas pela massa de suas estrelas, uma discrepância que a maioria dos astrônomos explica invocando uma substância hipotética e misteriosa conhecida como matéria escura.

No novo modelo do Universo de Hajdukovic, também não há necessidade da energia escura, a enigmática força que os cientistas acham que está fazendo com que o Universo se expanda em um ritmo acelerado, se as partículas virtuais têm cargas gravitacionais, então o próprio espaço-tempo possui uma pequena carga que faz com que os objetos tenham uma repulsão mútua natural.

Sua teoria pode também dispensar a necessidade da inflação cósmica, um inchaço instantâneo no início do Universo, quando o espaço-tempo teria se expandido mais rápido do que a velocidade da luz.

Hajdukovic já havia sugerido que sua teoria poderia ser testada se fosse encontrado um pequeno planeta com um satélite, ambos com uma órbita elíptica em torno do Sol. O sistema precisa estar localizado longe do Sol e outros corpos maciços que exerçam forte influência gravitacional.

Agora, Vecchiato e Gai sugerem que o modelo de Hajdukovic pode ser testado usando telescópios terrestres e espaciais para observar o sistema UX25, localizado cerca de 43 vezes mais longe do Sol do que a Terra.

"As propriedades dos vácuos quânticos descritos na teoria de Hajdukovic imporiam uma força gravitacional adicional sobre o UX25, perturbando a órbita do sistema," explicou Vecchiato.

O modelo de Hajdukovic prevê que a "taxa de precessão", uma oscilação da pequena lua ao redor do planeta-anão, deve ser maior do que é previsto pela física clássica.

Enquanto a física newtoniana prevê uma taxa de precessão de 0,0064 arco-segundo, pequena demais para ser observada com os métodos atuais, a teoria de Hajdukovic prevê que a taxa de precessão deve ser de 0,23 arco-segundo por período, algo detectável pelo telescópio espacial Hubble e pelo telescópio espacial James Webb, ainda a ser lançado.

De acordo com Vecchiato e Gai, um grande telescópio terrestre, como o VLT (Very Large Telescope), no Chile, também pode ser capaz de fazer as observações necessárias do UX25.

Evidências observacionais para a teoria de Hajdukovic resultariam em uma mudança dramática na forma como os astrônomos e astrofísicos observam e explicam o Universo, disse Gai.

"A maioria dos cientistas hoje acha que a física quântica é restrita ao mundo microscópico... Neste caso, o comportamento microscópico natural do espaço vazio resultaria em um efeito cumulativo de longo alcance atuando até escalas cósmicas," concluiu ele.

Fonte: Physics World

sexta-feira, 9 de maio de 2014

Recriando a evolução do Universo

Uma equipe internacional de pesquisadores criou a mais completa simulação visual de como o Universo evoluiu.

simulação apresenta um Universo surpreendentemente semelhante ao real

© Illustris Collaboration (simulação apresenta um Universo surpreendentemente semelhante ao real)

O modelo de computador mostra como as primeiras galáxias se formaram em torno de aglomerados da substância misteriosa invisível chamada matéria escura.

É a primeira vez que o Universo é modelado de forma tão extensa e em tão grande resolução. A simulação fornecerá uma plataforma de teste para novas teorias sobre do que o Universo é feito e como ele funciona.

“Agora podemos analisar como as estrelas e as galáxias se formam e relacionar isso à matéria escura”, disse o professor Richard Ellis, do Instituto de Tecnologia da Califórnia.

O modelo de computador baseia-se nas teorias do professor Carlos Frenk, da Universidade de Durham, no Reino Unido, indicando que o Universo começou com a matéria escura.

Há mais de 20 anos cosmólogos criam modelos de computador sobre como o Universo evoluiu. O processo consiste em alimentar o modelo com detalhes sobre como o Universo era logo após o Big Bang, desenvolver um programa de computador com base nas principais teorias da cosmologia e, em seguida, deixá-lo rodar.

O Universo simulado pelo programa é geralmente muito aproximado do que os astrônomos realmente observam. A última simulação, porém, apresenta um Universo que é surpreendentemente semelhante ao real.

Um laptop normal levaria quase 2 mil anos para executar a simulação. No entanto, usando supercomputadores de ponta e um software inteligente chamado Arepo, os pesquisadores foram capazes de processar os números em três meses.

No início, a simulação mostra fios do misterioso material que os cosmólogos chamam de matéria escura se alastrando pelo vazio do espaço como os ramos de uma árvore cósmica. Com a passagem de milhões de anos, os aglomerados de matéria escura se concentram para formar as 'sementes' das primeiras galáxias.

Em seguida, surge a matéria não-escura, o material do qual surgirão estrelas, planetas e vida, no decorrer do tempo.

Em diversas explosões cataclísmicas, a matéria é sugada para dentro de buracos negros e, em seguida, expelida: um período caótico de formação de estrelas e galáxias. A simulação, por fim, revela um Universo que é semelhante ao que vemos ao nosso redor.

Segundo Mark Vogelsberger, do Instituto de Tecnologia de Massachusetts (MIT), que liderou a pesquisa, as simulações comprovam muitas das teorias atuais de cosmologia. "Muitas das galáxias simuladas se assemelham bastante às galáxias do Universo real. Isso indica que nosso entendimento básico sobre como o Universo funciona deve estar correto e completo", disse ele.

A nova simulação em particular embasa a teoria de que a matéria escura é o 'andaime' em que o Universo visível está pendurado. "Se você não incluir a matéria escura (na simulação), o resultado não será parecido ao Universo real", disse Vogelsberger.

A simulação é a primeira a mostrar a matéria visível surgindo da matéria escura. Ela também vai ajudar os cosmólogos a aprender mais sobre outra força misteriosa chamada energia escura, que está alimentando a aceleração contínua do Universo.

A Agência Espacial Europeia (ESA) planeja lançar uma aeronave espacial chamada Euclid em 2020 para medir a aceleração do Universo. Simulações precisas vão ajudar nesse processo, afirma Joanna Dunkley, da Universidade de Oxford. "Para utilizar os dados coletados por Euclid, teremos que simular nossas expectativas sobre a energia escura e comparar com o que vemos", disse ela.

Já o cosmólogo Robin Catchpole, do Instituto de Astronomia de Cambridge, é mais cauteloso sobre as novas descobertas. Apesar de ter saudado a simulação como 'espetacular', ele disse que 'é preciso não se deixar levar por sua beleza visual pura'. Segundo ele, é possível produzir imagens 'que se parecem com as galáxias sem que elas tenham muito a ver com a física de como as galáxias surgiram'.

Fonte: BBC e Nature

segunda-feira, 17 de março de 2014

Detectadas evidências de ondas gravitacionais no Universo primordial

Astrônomos estão anunciando hoje que obtiveram a primeira evidência direta de que as ondas gravitacionais percorreram o Universo primordial, durante um período de crescimento explosivo.

telescópio BICEP2

© Steffen Richter/Universidade Harvard (telescópio BICEP2)

Esta é a confirmação mais evidente da teoria de inflação cósmica, onde o Universo se expandiu por 100 trilhões de trilhões de vezes, em menos de um piscar de olhos. A existência destas ondulações de espaço-tempo, primeiro eco do Big Bang, previstas na teoria da relatividade de Albert Einstein, demonstra a expansão extremamente rápida do Universo na primeira fração de segundo de sua existência, uma fase conhecida como inflação cósmica.
As descobertas foram feitas com a ajuda da tecnologia desenvolvida pela NASA em colaboração com a Fundação Nacional de Ciência (NSF), de detectores acoplados ao telescópio BICEP2 (Background Imaging of Cosmic Extragalactic Polarization 2) no Pólo Sul.
"Operar os últimos detectores em experiências transmitidas por balão e terrestres nos permite amadurecer estas tecnologias para missões espaciais e, no processo, fazer descobertas sobre o Universo ", disse Paul Hertz , diretor da Divisão de Astrofísica da NASA, em Washington.
Nosso Universo surgiu através de um evento conhecido como o Big Bang a 13,8 bilhões anos atrás. Momentos depois, o próprio espaço ampliou exponencialmente em um episódio conhecido como a inflação. Os sinais indicadores deste capítulo no início da história do nosso Universo são impressas nos céus, em uma relíquia  brilhante chamada radiação cósmica de fundo. Recentemente, esta teoria básica do Universo foi novamente confirmado pelo satélite Planck, uma missão da ESA.
Mas os pesquisadores há muito tempo procuram evidência mais direta da inflação em forma de ondas gravitacionais, que comprimem e distendem o espaço.
"Pequenas flutuações quânticas foram amplificados para tamanhos enormes pela expansão inflacionária do Universo. Sabemos que isso produz outro tipo de ondas chamadas de ondas de densidade, mas queríamos testar se as ondas gravitacionais são produzidos também", disse o co- líder do projeto Jamie Bock do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia, que desenvolveu a tecnologia do detector BICEP2. Bock tem um compromisso conjunto com o Instituto de Tecnologia da Califórnia, também em Pasadena.
As ondas gravitacionais produzidas têm um padrão característico espiralado em luz polarizada, chamada polarização "modo B". A luz pode tornar-se polarizada por espalhamento de superfícies, tais como um carro ou uma lagoa. Óculos polarizados rejeitam a luz polarizada para reduzir o brilho. No caso da radiação cósmica de fundo, a luz espalhada por elétrons para tornar-se ligeiramente polarizada.
A equipe BICEP2 assumiu o desafio de detectar a polarização de modo B, reunindo os maiores especialistas na área, desenvolvendo tecnologia revolucionária e viajando para o melhor local de observação da Terra no Pólo Sul. A colaboração inclui grandes contribuições da Caltech, JPL, Universidade de Stanford, Universidade de Harvard e da Universidade de Minnesota.
Como resultado das experiências realizadas desde 2006, a equipe foi capaz de produzir provas convincentes para o sinal em modo B, e com ele, o apoio mais forte ainda para a inflação cósmica. A chave para seu sucesso foi o uso de detectores de supercondutores, são materiais que quando refrigerados permitem que a corrente elétrica flua livremente, com resistência zero.
"Nossa tecnologia combina as propriedades de supercondutividade com minúsculas estruturas que só pode ser visto com um microscópio. Estes dispositivos são fabricados com o mesmo processo de micro-usinagem dos sensores em celulares e controles do Wii", disse Anthony Turner do Jet Propulsion Laboratory (JPL). O sinal de modo B é extremamente fraco. Para obter a sensibilidade necessária para detectar o sinal de polarização, Bock e Turner desenvolveram um único conjunto de detectores múltiplos, semelhante aos pixels em câmaras digitais modernos, mas com a capacidade adicional de detectar polarização. O sistema detector inteiro opera com temperatura extremamente baixa de 0,25 Kelvin.

detectores do BICEP2

© NASA/JPL-Caltech (detectores do BICEP2)

O experimento BICEP2 usou 512 detectores, que ampliaram as observações da radiação cósmica de fundo por 10 vezes ao longo de medições anteriores da equipe. Um novo experimento BICEP3 está fazendo observações com 2.560 detectores.

"A detecção destas ondulações é um dos objetivos mais importantes da cosmologia na atualidade e resultado de um enorme trabalho realizado por uma grande quantidade de cientistas", destacou John Kovac, professor de Astronomia e de Física no Harvard-Smithsonian Center for Astrophysics (CfA) e chefe da equipe de investigação BICEP2, que fez a descoberta.

Estes e experimentos futuros, não só ajudaram a confirmar que o Universo inflou dramaticamente, mas fornecerão as primeiras pistas sobre as forças exóticas que levaram a separação do espaço e do tempo.
Os resultados deste estudo foram submetidos à revista Nature.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 2 de novembro de 2013

Por que o Universo está se desintegrando?

Por que o Universo está se desintegrando? Essa é uma pergunta que assombra astrônomos desde a descoberta, nos anos 90, que a expansão do Universo está acelerando.

imagem do céu profundo

© Hubble Ultra Deep Field (imagem do céu profundo)

A complexidade cresce com novas observações de explosões estelares distantes que lançam dúvidas sobre a principal explicação, chamada de constante cosmológica.
O que quer que esteja provocando a aceleração do Universo foi batizado de energia escura, mas suas origens continuam misteriosas. No passado, quando Albert Einstein estava formulando sua teoria geral da relatividade, ele adicionou uma força repulsiva nas suas equações, chamada de constante cosmológica, que devia, na época, fazer com que a teoria previsse um Universo estático. Sem ela, seus cálculos mostravam que a gravidade não resultaria em um Universo estável, mas que ele colapsaria sobre si mesmo. Quando, mais tarde, descobriu-se que o Universo não era estático, mas que estava em expansão, Einstein abandonou a constante, que qualificou como seu maior erro. Décadas depois, porém, quando foi revelado que o Universo não estava simplesmente se expandindo, mas que sua dilatação estava acelerando, cientistas recuperaram a constante descartada e a adicionaram de volta às equações da teoria da relatividade para prever um Universo que está se desintegrando cada vez mais rápido. Atualmente, a constante cosmológica é a principal ideia para explicar a energia escura, mas ela só funciona se o que é conhecido como parâmetro da equação de estado da energia escura (relacionando pressão e densidade), chamado de w, for igual a -1.
Não foi isso, porém, que o Pan-STARRS (Telescópio de Pesquisa Panorâmica e Sistema de Resposta Rápida, literalmente), descobriu.
Com base na combinação de medidas cosmológicas de diversos projetos com registros do Pan-STARRS de um tipo especial de explosão estelar chamada de supernova do tipo Ia usada como régua cósmica para medir distâncias astronômicas, pesquisadores calcularam o valor de w em -1,186. “Esse valor para w significa que o modelo mais simples para explicar a energia escura não é verdadeiro”, declara Armin Rest do Instituto de Ciências do Telescópio Espacial (STScI) em Baltimore, principal autor de um artigo relatando os resultados.
Entretanto, é preciso levar em conta que os resultados são preliminares, não devendo colocar a constante cosmológica seriamente em dúvida. “No momento, não podemos dizer que realmente encontramos uma discrepância. Nós ainda temos que verificar se isso se deve a algum problema com algum desses projetos”.
O cálculo é baseado em observações de aproximadamente 150 supernovas do tipo Ia feitas entre 2009 e 2011 pelo telescópio PS1 do Pan-STARRS, no Havaí. Essa classe de supernova ocorre quando um tipo específico de estrela, chamado de anã branca, atinge seu limite máximo de massa, que é do mesmo tipo para todas as anãs brancas, e explode com um brilho padrão. Ao comparar o brilho aparente de uma supernova com seu brilho intrínseco conhecido, astrônomos podem deduzir sua distância. Observações espectroscópicas da supernova, que dividem a luz em suas cores constituintes, revelam quanto o comprimento de onda da luz foi esticado pela expansão do Universo.
Com esses parâmetros em mãos, os pesquisadores do Pan-STARRS combinaram seus dados com as descobertas de outras sondas de energia escura, como as observações da radiação cósmica de fundo em micro-ondas feitas pelo satélite europeu Planck, para calcular o parâmetro de estado da equação da energia escura.
O quanto se concluir dos cálculos depende de seu nível de incerteza, e de saber se erros sistemáticos associados ao telescópio e à análise alteraram o resultado. “Sabemos que a calibragem de telescópios, a física de supernovas e as propriedades de galáxias são grandes fontes de incertezas, então todo mundo está tentando descobrir isso de maneiras diferentes”, observa Daniel Scolnic da Johns Hopkins University, que publicou um artigo com estimavas de incertezas dos dados.
“Dan fez um excelente trabalho caracterizando as sistemáticas”, elogia Alexander Conley da University of Colorado em Boulder, envolvido em tipo diferente de estudo de supernova chamado de Supernova Legacy Survey que obteve resultados semelhantes. No entanto, outro pesquisador do projeto, Julien Guy da Universidade Pierre e Marie Curie em Paris, aponta que a equipe pode ter subestimado seu erro sistemático ao ignorar uma fonte adicional de incerteza dos modelos de curva luminosa de supernovas. Ele está em contato com os pesquisadores do Pan-STARRS, que estão analisando esse fator. No fim das contas, a maioria dos especialistas declara que os novos resultados são impressionantes, mas que não provam a existência de uma nova física. “O artigo do Pan-STARRS apresenta uma análise muito profunda e cuidadosa, e um resultado sólido, mas não muda qualitativamente nossa visão dos parâmetros cosmológicos”, declara Joshua Frieman, astrofísico do Fermilab em Batavia, no estado de Illinois, não envolvido na pesquisa.
O fato de vários experimentos cosmológicos estarem produzindo valores de w diferentes de -1, porém, está chamando a atenção de muitos. “Essa já é a terceira pesquisa de supernovas distantes que chega a essa conclusão”, observa o astrônomo do STScI Adam Riess, membro da equipe do Pan-STARRS que recebeu o Prêmio Nobel de Física de 2011 pela descoberta da energia escura. “Nós não podemos simplesmente dizer que essa ou aquela pesquisa estão erradas. Isso pode ser algo fundamental de uma dessas medidas. Ou talvez a energia escura seja mais intrigante do que o esperado”. Ainda que a constante cosmológica explique a energia escura matematicamente, ela não elucida os motivos de essa força existir. Um valor alternativo de w pode indicar que a energia escura não é constante no tempo, mas variável, uma ideia chamada de quintessência. De qualquer forma, o Pan-STARRS e de outras pesquisas produzirão novos dados em breve, seja para apoiar ou refutar o valor mais recente de w. “Acredito que dentro de um ou dois anos, isso provavelmente se tornará definitivo, ou desaparecerá”, conclui Riess.

Fonte: Scientific American

sexta-feira, 30 de agosto de 2013

Projeto inicia exploração da energia escura

Começa hoje à noite no observatório de Cerro Tololo, no Chile, o levantamento astronômico mais abrangente feito até agora para explorar o maior enigma da cosmologia: a energia escura.

DECam montada no telescópio

© Fermilab (DECam montada no telescópio)

O projeto Dark Energy Survey (DES), que levou uma década inteira de planejamento e construção, colocará o telescópio Blanco, de quatro metros de largura, para varrer uma área de um oitavo do céu, cem noites por ano.

telescópio Blanco

© DES (telescópio Blanco)

Um dos principais objetivos é descobrir galáxias distantes onde estejam ocorrendo supernovas, ou seja, explosões estelares, que podem ser usadas para medir distâncias no Cosmo. Sabendo as distâncias das galáxias até nós, astrônomos podem analisar seu espectro luminoso de cores para saber com que velocidade elas se afastam.

Foi com essas duas informações que cientistas descobriram em 1998 que a 13,8 bilhões de anos após o Big Bang, o Universo está se expandindo aceleradamente, e não o contrário, tal qual se esperava em razão da gravidade. Esse fenômeno ganhou o nome de energia escura e ainda não tem explicação, apesar de várias teorias competirem para tal.

"Os dados ainda não são suficientes para discriminar, entre as possíveis candidatas, qual seria a melhor", diz Márcio Maia, astrônomo do Observatório Nacional, do Rio de Janeiro, que participa do DES. "Uma das coisas que o projeto vai fazer é produzir melhores resultados, e isso vai permitir descartar os modelos teóricos que não se encaixam nas observações."

A expectativa é que o projeto consiga captar pelo menos 3.000 supernovas do tipo Ia, as mais úteis nesse tipo de pesquisa, durante cinco anos de monitoramento.

O DES é uma colaboração internacional de US$ 40 milhões capitaneada pelo Fermilab, de Illinois (EUA). O Brasil entra no projeto com apenas US$ 300 mil, mas oferece mão de obra com valor estimado em US$ 1,2 milhão. O país montou para tal um consórcio que reúne Observatório Nacional, CBPF (Centro Brasileiro de Pesquisas Físicas), USP, LNCC (Laboratório Nacional de Computação Científica) e outros centros.

O principal papel do país será o de fornecer infraestrutura computacional e um sistema que monitora a qualidade das imagens do telescópio.

O processamento de dados foi um dos maiores desafios do projeto, que vai gerar um banco de dados de imagens produzido com a câmera digital mais potente do mundo, com 570 megapixels.

O DES também vai observar fenômenos e estruturas no Cosmo capazes de revelar outros aspectos da energia escura. Uma de suas missões importantes será a de mapear aglomerados de galáxias.

Na escala de distância dessas estrutura é que a gravidade começa a contrabalançar com a energia escura. Uma compreensão melhor desse “cabo de guerra” deve trazer uma compreensão melhor do Universo, que é 69% composto de energia escura (27% de tudo o que existe é matéria escura, invisível, e apenas 5% é a matéria comum que vemos).

O DES também investigará a distribuição tridimensional de massa no Cosmo, analisando como a matéria escura torce a trajetória da luz. Um outro tipo de fenômeno a ser observado pelo DES é a "oscilação acústica de bárions", que revela a taxa com que o Universo vem se expandindo ao longo de sua história.

Fonte: Folha de São Paulo e Fermilab

sexta-feira, 19 de julho de 2013

Observações reforçam teoria do Big Bang

Descobertas recentes feitas por cientistas do Brasil e do exterior derrubam algumas discrepâncias a cerca dos primeiros minutos após o Big Bang, a grande explosão que originou o Universo.

modelagem de uma estrela velha pobre em metais

© Karin Lind (modelagem de uma estrela velha pobre em metais)

A partir de dados de alta qualidade obtidos com o telescópio de 10 metros (o maior do mundo) do observatório Keck, localizado em Mauna Kea, no Havaí (EUA), os astrônomos acabam de eliminar uma discrepância que durava décadas. “Observações anteriores de estrelas muito antigas sugeriram que a quantidade de lítio-6 (Li-6) teria sido 200 vezes maior que o produzido nos primeiros minutos após a grande explosão, e que o lítio-7 (Li-7) entre três e cinco vezes menor que o calculado por cosmólogos e físicos teóricos”, conta o professor Jorge Meléndez, do Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da USP.

As observações recentes permitiram constatar, por meio de dados do telescópio Keck e de sofisticados cálculos, que o Li-6 não existe nas estrelas mais antigas de nossa Galáxia, o que está de acordo com os cálculos sobre a nucleossíntese do Big Bang, eliminando assim um dos principais problemas cosmológicos da atualidade.

Uma das provas da teoria do Big Bang é a proporção de elementos químicos mais simples produzidos nos primeiros instantes do Universo. A proporção dos diferentes isótopos mais ligeiros, como o Li-6 e Li-7, pode ser calculada com precisão pelo modelo de nucleossíntese do Big Bang, e essas previsões podem ser verificadas usando observações de objetos muito primitivos quimicamente, tais como estrelas muito pobres em metais. A previsão teórica é que apenas uma quantidade desprezível de Li-6 foi criada, tão pouco que seria impossível detectar Li-6 em estrelas. Portanto, as detecções anteriores de até 200 vezes mais Li-6 em estrelas do que o predito pelo Big Bang eram alarmantes, e muitos cosmólogos e físicos teóricos têm tentado explicar a discrepância usando teorias alternativas que incluem física exótica. “A descoberta da não existência de Li-6 em estrelas pobres em metais é de grande importância pois reconcilia as previsões teóricas do Big Bang com as recentes observações em estrelas”, afirma o Meléndez.

O docente integra a equipe liderada pela doutora Karin Lind, da Universidade de Cambridge, Inglaterra. Na opinião da pesquisadora, a teoria do Big Bang agora repousa sobre bases mais firmes. “Além disso, compreender o nascimento do nosso Universo é fundamental para a compreensão da posterior formação de todos os seus componentes, incluindo nós mesmos”, é o que declara a cientista em texto veiculado no site do Observatório Keck. Um artigo descrevendo os resultados acaba de ser publicado na revista internacional Astronomy & Astrophysics.

As primeiras observações que culminaram com o resultado atual tiveram início em 2005. Já em 2007, foi concluído o trabalho do tratamento dos dados observados no telescópio Keck e uma primeira análise dos dados. “Ao final de 2007 chegamos à surpreendente descoberta de Li-6 em estrelas muito mais primordiais do que se conhecia e preparamos um artigo para a revista Nature”, conta Melendez. No entanto, como a suposta presença de Li-6 poderia ser devida à convecção na atmosfera das estrelas (similar ao fenômeno observado na água fervente), a equipe optou por não submeter o artigo e investir em sofisticados modelos hidrodinâmicos de atmosferas estelares até chegar ao resultado recente.

As estrelas observadas são antigas, com cerca de 12 bilhões de anos, quase tão velhas quanto o Universo, que possui 13,8 bilhões de anos. Ao todo foram quatro as estrelas observadas, sendo uma delas tão primitiva que a quantidade de metais é de mais de mil vezes menor que o Sol. Elas têm em comum o fato de serem muito pobres em metais e, portanto, serem muito antigas, estando entre as primeiras estrelas formadas em nossa Galáxia. “Por serem estrelas muito antigas, elas são importantes para testar a teoria da nucleossíntese primordial do Big Bang. A não detecção de Li-6 está de acordo com as previsões dessa teoria, reforçando assim o nosso conhecimento sobre os primeiros instantes do Universo”, conta Meléndez.

Fonte: USP

quarta-feira, 6 de março de 2013

Medindo o Universo com mais precisão

Ao fim de quase uma década de observações cuidadosas, uma equipe internacional de astrônomos mediu a distância à nossa galáxia vizinha, a Grande Nuvem de Magalhães, com mais precisão do que nunca.

ilustração de uma binária eclipsando

© ESO/L. Calçada (ilustração de uma binária eclipsando)

Estas novas medições ajudam-nos a determinar melhor a taxa de expansão do Universo - a constante de Hubble - e são um passo crucial do sentido de compreendermos a misteriosa energia escura, que faz acelerar a expansão. As observações utilizaram telescópios do Observatório de La Silla do ESO, no Chile, assim como outros telescópios do mundo inteiro.

Os astrônomos determinam a escala do Universo medindo primeiro a distância a objetos próximos e usando depois essas distâncias como velas padrão para estimar distâncias cada vez maiores. No entanto, esta cadeia é apenas tão precisa quanto o seu elo mais fraco. Até agora, a medição precisa da distância à Grande Nuvem de Magalhães, uma das galáxias mais próximas da Via Láctea, provou ser algo complicado. Uma vez que as estrelas nesta galáxia são usadas para fixar a escala de distâncias a galáxias mais remotas, esta medição é muitíssimo importante.

As velas padrão são objetos para os quais se conhece o seu brilho absoluto. Ao observar quão brilhante um objeto nos parece - o brilho aparente - os astrônomos podem determinar a distância a que se encontram, objetos mais distantes parecem menos brilhantes. Exemplos de tais velas padrão são as variáveis do tipo Cefeide e as supernovas do tipo Ia. A grande dificuldade é calibrar a escala de distâncias, recorrendo a observações de tais objetos relativamente próximos de nós, e para os quais a distância pode ser calculada por outros métodos.
As variáveis do tipo Cefeide são estrelas instáveis brilhantes, que pulsam e variam em brilho. Existe uma relação muito clara entre a velocidade desta variação e o seu brilho. As Cefeides que pulsam mais rapidamente são mais tênues do que as que pulsam mais devagar. A relação período-luminosidade permite-nos usar estas estrelas como velas padrão para medir as distâncias às galáxias próximas.

Agora, observações cuidadosas de uma classe rara de estrelas duplas permitiu a dedução de um valor muito mais preciso da distância à Grande Nuvem de Magalhães: 163.000 anos-luz.
“Estou muito entusiasmado com este resultado porque há mais de cem anos que os astrônomos tentam medir com precisão a distância à Grande Nuvem de Magalhães, o que tem provado ser extremamente difícil,” diz Wolfgang Gieren (Universidad de Concepción, Chile) e um dos líderes da equipe. “Nós resolvemos este problema ao obter um resultado com uma precisão demonstrada de 2%.”
A melhoria na medição da distância à Grande Nuvem de Magalhães dá também distâncias mais precisas a muitas estrelas variáveis do tipo Cefeide. Estas estrelas brilhantes que pulsam, são usadas como velas padrão para medir distâncias às galáxias mais remotas e determinar a taxa de expansão do Universo, a constante de Hubble, o que, por sua vez, é a base para observar o Universo até às galáxias mais longínquas que podem ser hoje vistas com os telescópios atuais. Portanto, a maior precisão na distância à Grande Nuvem de Magalhães leva a uma redução imediata da imprecisão nas medições atuais de distâncias cosmológicas.
Os astrônomos conseguiram tornar mais precisa a distância à Grande Nuvem de Magalhães ao observar pares raros de estrelas, chamadas binários de eclipse. À medida que estas estrelas orbitam em torno uma da outra, vão passando também à frente uma da outra. Quando isto acontece, visto da Terra, o brilho total do binário diminui de determinado valor quando uma estrela passa em frente da outra e diminui de outro valor quando essa estrela passa por detrás. As variações de brilho dependem dos tamanhos relativos das estrelas, das suas temperaturas e cores e das características das órbitas.
Ao detectar estas variações no brilho e ao medir igualmente a velocidade orbital das estrelas, é possível determinar o tamanho das estrelas, as suas massas e as características das suas órbitas. Combinando estes dados com medições do brilho total e da cor das estrelas, podem ser determinadas distâncias muito precisas. As cores são medidas ao comparar o brilho das estrelas a diferentes comprimentos de onda no infravermelho.
Este método já foi utilizado anteriormente, mas apenas com estrelas quentes. No entanto, para esses casos têm que ser supostas determinadas condições e por isso as distâncias que daí se derivam não são tão precisas como desejaríamos. Agora, pela primeira vez, conseguiu-se identificar oito binários de eclipse muito raros, onde ambas as estrelas são gigantes vermelhas mais frias. Estas estrelas foram estudadas com todo o detalhe, o que originou valores para a distância muitíssimo precisos de até 2%.
“O ESO forneceu-nos o conjunto perfeito de telescópios e instrumentos necessários a este projeto: o HARPS, que mede velocidades radiais extremamente precisas de estrelas relativamente tênues e o SOFI, que faz medições precisas do brilho das estrelas no infravermelho,” acrescenta Grzegorz Pietrzyński (Universidad de Concepción, Chile e Observatório da Universidade de Varsóvia, Polônia), autor principal do novo artigo científico desta semana na Nature.
“Estamos trabalhando no sentido de melhorar ainda mais o nosso método e esperamos conseguir obter nos próximos anos uma distância à Grande Nuvem de Magalhães com um 1% de precisão. Este trabalho tem consequências tremendas, não apenas no campo da cosmologia, mas também em muitas outras áreas da astrofísica,” conclui Dariusz Graczyk, o segundo autor do novo artigo.

Fonte: ESO

sábado, 6 de outubro de 2012

A melhor medição da expansão do Universo

Astrônomos usando o telescópio espacial Spitzer da NASA anunciaram a medida mais precisa até agora da constante de Hubble, ou a velocidade com que o nosso Universo se expande.

ilustração da escala de distância cósmica

© NASA (ilustração da escala de distância cósmica)

A constante de Hubble tem o nome do astrônomo Edwin P. Hubble, que surpreendeu o mundo na década de 1920, confirmando que o nosso Universo tem-se expandido desde o Big Bang há 13,7 bilhões de anos atrás. No final da década de 90, foi descoberto que a expansão está acelerando, ou seja, subindo de velocidade ao longo do tempo. A determinação da taxa de expansão é fundamental para a compreensão da idade e tamanho do Universo.

Ao contrário do telescópio espacial Hubble, que observa o Universo no visível, o Spitzer explora um longo comprimento de onda infravermelho para fazer a sua nova medição. Esta medição melhora por um fator de 3 um estudo semelhante do telescópio Hubble e desce a incerteza até 3%, um salto de gigante na precisão para medições cosmológicas. O novo valor apurado para a constante de Hubble é 74,3 ± 2,1 quilômetros por segundo por megaparsec [(km/s)/Mpc]. Um megaparsec é cerca de 3,26 milhões de anos-luz.

Os resultados obtidos pelo Spitzer foram combinados com dados publicados da sonda WMAP (Wilkinson Microwave Anisotropy Probe) da NASA para obter uma medição independente da energia escura, um dos maiores mistérios do Cosmos. Pensa-se que a energia escura esteja vencendo uma batalha contra a gravidade, puxando o tecido do Universo. Pesquisas com base nesta aceleração foram premiadas com o Nobel da Física em 2011.

A visão infravermelha, que consegue penetrar a poeira para proporcionar melhores vistas de estrelas variáveis chamadas cefeidas, permitiu ao Spitzer melhorar as medições anteriores da constante de Hubble. Estas estrelas pulsantes são de importância vital para o que os astrônomos chamam de escala de distância cósmica: um conjunto de objetos com distâncias conhecidas que, quando combinados com a velocidade a que os objetos se afastam de nós, revelam a velocidade de expansão do Universo.

As cefeidas são cruciais para os cálculos, pois as suas distâncias da Terra podem ser medidas facilmente. Em 1908, Henrietta Leavitt descobriu que estas estrelas pulsam a uma taxa diretamente relacionada com o seu brilho intrínseco.

Para visualizar o porquê de isto ser tão importante, imagine alguém que se afasta com uma vela na mão. Quanto mais distante está, mais fraca será a sua luz. O seu brilho aparente revelaria a sua distância. O mesmo princípio aplica-se às cefeidas, as "velas" padrão do nosso Cosmos. Ao medir quão brilhantes aparecem no nosso céu, e ao comparar este brilho com o seu brilho conhecido se estivessem perto, os astrônomos podem calcular a sua distância à Terra.

relação período de variabilidade-luminosidade das cefeidas

© NASA (relação período de variabilidade-luminosidade das cefeidas)

O Spitzer observou 10 cefeidas na nossa própria Galáxia, a Via Láctea, e 80 noutra galáxia vizinha chamada Grande Nuvem de Magalhães. Sem a poeira cósmica bloqueando a nossa visão, a equipe do Spitzer foi capaz de obter medidas mais precisas do brilho aparente das estrelas, e portanto das suas distâncias. Estes dados abrem o caminho para uma estimativa nova e melhorada da velocidade de expansão do nosso Universo.

O estudo foi publicado na revista Astrophysical Journal.

Fonte: NASA

quinta-feira, 5 de julho de 2012

Matéria escura interliga aglomerados de galáxias

Uma descoberta expressiva no campo da cosmologia, foi realizada por Jörg Dietrich e seus colegas da Universidade de Munique, na Alemanha.

galáxias constituídas de matéria escura

© U. Michigan (galáxias constituídas de matéria escura)

Foram detectados componentes de matéria escura entre dois super-aglomerados de galáxias a 2,7 bilhões de anos-luz de distância da Terra. É a primeira vez que se detecta claramente a estrutura de matéria escura que permeia a teia cósmica de matéria no Universo.

E, o que é mais interessante, essa estrutura aparece justaposta com a distribuição de matéria comum, permitindo uma comparação sem precedentes entre as duas fontes de gravidade.

A matéria comum forma uma teia no espaço, com galáxias e aglomerados de galáxias interligados por filamentos de gases quentes muito tênues, mas formados por átomos de matéria comum.

O Universo é um imenso espaço vazio apesar de aglomerados de galáxias serem estruturas descomunais. Como esses filamentos se espalham por distâncias imensas, os cálculos indicam que eles contêm mais da metade de toda a matéria do Universo.

Assim, um espaço aparentemente vazio ganha uma estrutura graças à presença desses filamentos.

A gravidade produzida por eles, contudo, indica que esses filamentos não podem ser feitos apenas de matéria bariônica, ou seja a matéria comum, que compõe 4% da massa do Universo.

Até hoje não havia sido identificado o componente de matéria escura de um filamento.

Dietrich e seus colegas encontraram-no no filamento que une os aglomerados Abell 222 e Abell 223, que são dois aglomerados de galáxias pertencentes ao catálogo criado pelo astrônomo George Abell em 1958, que contém 2.712 enxames de galáxias.

A forte gravidade do filamento que une os dois aglomerados funciona como uma lente para a luz que vem de galáxias mais distantes em direção à Terra.

Os pesquisadores usaram essa luz para calcular a massa e o formato do filamento.

Os raios X emitidos pelo gás quente de matéria comum mostram que essa matéria está distribuída ao longo de todo o filamento, mas compondo apenas cerca de 9% de sua massa.

Simulações em computador mostraram que outros 10% de massa podem ser atribuídos às estrelas e galáxias visíveis. O resto só pode ser parte de uma rede de matéria escura que conecta aglomerados de galáxias através do Universo.

Astrônomos já haviam usado uma técnica semelhante para traçar um mapa da distribuição da matéria escura no interior de um outro aglomerado de galáxias, o Abell 1689. Mas, esta é a primeira vez que se detecta a matéria escura nas interligações de matéria comum.

filamentos que unem os aglomerados de galáxia

©  Nature (filamentos que unem os aglomerados de galáxia)

A possibilidade de fazer um mapa mostrando matéria comum e matéria escura juntas pode mostrar a relação entre as duas e ajudar a determinar como a matéria escura é formada. Esta observação pode ajudar os astrofísicos a entender a estrutura do Universo e, usando a mesma técnica, tentar descobrir o que compõe essa substância invisível conhecida como matéria escura.

Fonte: Nature

domingo, 5 de fevereiro de 2012

Gravidade repulsiva como alternativa à energia escura

Quando os cientistas descobriram em 1998 que o Universo se expandia a um ritmo acelerado, a possibilidade de que a energia escura poderia explicar a observação foi, no mínimo, um conceito intrigante.

superaglomerado de Virgem

© Wikimedia Commons (superaglomerado de Virgem)

Como tem havido pouco progresso em descobrir exatamente o que é a energia escura, tornou-se então mais um problema do que uma solução para alguns cientistas. Um físico, Massimo Villata, do Instituto Nacional de Astrofísica (INAF), em Pino Torinese, Itália, descreve a energia escura como “embaraçosa”, dizendo que o conceito é um elemento ad hoc para a cosmologia padrão e é destituído de qualquer significado físico. Villata é um dos muitos cientistas que estão à procura de novas explicações da expansão acelerada do Universo que envolvem alguma forma de gravidade repulsiva (anti-gravidade). Neste caso, a gravidade repulsiva poderia decorrer da ocultação da antimatéria nos espaços vazios.

Durante os últimos anos, um físico do CERN, Dragan Hajdukovic, vem investigando o que pensa ser uma parte muito negligenciada do cosmos: o vácuo quântico. Ele sugere que o vácuo quântico tem uma carga gravitacional decorrente da repulsão gravitacional de partículas e anti-partículas virtuais. Anteriormente, este cientista mostrou teoricamente que esta gravidade repulsiva pode explicar várias observações, incluindo efeitos geralmente atribuída a matéria escura. Além disso, esta gravidade adicional sugere que vivemos num Universo cíclico e pode fornecer uma perspectiva sobre a natureza dos buracos negros e uma estimativa da massa do neutrino. Em seu trabalho mais recente, publicado na revista Science Astrophysics and Space, ele mostra que o vácuo quântico poderia explicar mais uma observação: A expansão acelerada do Universo, sem a necessidade de energia escura.

Fonte: PhysOrg e AstroPT

quarta-feira, 11 de janeiro de 2012

O maior mapa de matéria escura no Universo

O lado escondido do Universo está agora um pouco mais iluminado graças ao maior mapa já feito da matéria escura.

enxames de galáxias contendo matéria escura

© CFHTLenS (enxames de galáxias contendo matéria escura)

A matéria escura até agora nunca foi diretamente detectada, mas a sua presença é sentida devido à atração gravitacional que exerce sobre a matéria normal. Os cientistas suspeitam que a matéria escura é constituída por alguma partícula exótica que não interage com os átomos normais.

"Conhecemos muito pouco acerca do Universo escuro", afirma a co-autora do estudo, Catherine Heymans da Escola de Física e Astronomia da Universidade de Edinburgo, durante uma conferência de imprensa onde os achados foram anunciados, na 219ª reunião da Sociedade Astronômica Americana.

O novo mapa revela a distribuição da matéria escura ao longo de uma área muito maior do espaço do que tinha sido previamente alcançado. Cobre mais de bilhões de anos-luz.

Para delinear a invisível matéria escura, foram pesquisados por sinais da sua influência gravitacional sob outra matéria. Mediram um efeito denominado de lentes gravitacionais, que ocorre quando a gravidade de um corpo massivo dobra o espaço-tempo, fazendo com que a luz viaje num percurso curvo através do espaço e apareça distorcida quando chega à Terra.

Os cientistas mediram esta luz a partir de 10 milhões de galáxias distantes em quatro regiões diferentes do céu, curvada quando a luz dessas galáxias passava por grandes quantidades de matéria escura.

"É fascinante conseguirmos notar a matéria escura usando a distorção do espaço-tempo", afirma outro co-autor do estudo, Ludovic Van Waerbeke da Universidade da Colúmbia Britânica. "Dá-nos um acesso privilegiado a esta misteriosa massa no Universo que não conseguimos observar de outro modo. Conhecer a distribuição da matéria escura é o primeiro passo para compreender a sua natureza e como se encaixa com o nosso conhecimento atual da física."

Os novos mapas representam a primeira evidência direta da matéria em tão largas escalas. A teia de matéria escura espalhada pelo Universo e revelada pelo mapa coincide bem com as previsões feitas graças às simulações em computador, com base nas melhores teorias científicas da matéria escura.

Para criar o mapa, os astrônomos usaram dados recolhidos pelo Telescópio do Canadá-França-Havaí no Havaí, durante um projeto de cinco anos denominado CFHTLenS (Canada-France-Hawaii Telescope Lensing Survey).

Num estudo separado, também apresentado na reunião da Sociedade Astronômica Americana em Austin, no estado americano do Texas, Sukanya Chakrabarti da Universidade da Flórida desenvolveu um novo método de mapear a matéria escura em galáxias individuais.

Chakrabarti estudou ondulações nos limites de galáxias espirais para traçar a forma da matéria escura dentro e ao redor das galáxias. Esta pesquisa é direcionada para esta matéria invisível mas numa escala muito menor que a do primeiro estudo.

Estes resultados das galáxias espirais permitem analisar a matéria num regime de galáxias individuais, que não tem sido possível com os efeitos tênues das lentes gravitacionais. Ambos resultados representam dois modos importantes de estudar a matéria escura, mas estão em dois regimes muito diferentes.

O mapeamento com grande detalhe da distribuição da matéria escura propiciará compreender melhor esta substância e a sua relação com as galáxias no Universo.

Fonte: Discovery News

sexta-feira, 9 de dezembro de 2011

Alinhamento universal: o cosmo têm direção?

O Universo não tem centro, nem aresta, nem regiões especiais inseridas entre galáxias e luz.

galáxia Triangulum

© Konstantin Mironov (galáxia Triangulum)

Não importa onde você olhe, é a mesma coisa. Este princípio cosmológico, um dos fundamentos da compreensão moderna do Universo, entrou em questão recentemente, no momento em que astrônomos encontraram evidências sutis de uma direção especial no espaço. O primeiro e mais bem estabelecido dado vem da radiação cósmica de fundo em micro-ondas (CMB), a chamada luminescência do Big Bang. Como esperado, a luminescência não é perfeitamente estável, como manchas quentes e frias localizadas no céu. Recentemente, porém, os cientistas descobriram que essas manchas não são distribuídas tão aleatoriamente como quando apareceram pela primeira vez. Elas alinham-se em um padrão que aponta para uma direção especial no espaço.

Mais sugestões de uma seta cósmica vêm a partir de estudos de supernovas, cataclismas estelares que por um curto tempo ofuscam galáxias inteiras. Cosmólogos têm utilizado supernovas para mapear a expansão acelerada do Universo. Estudos estatísticos detalhados revelam que as supernovas estão se movendo ainda mais rápido em uma linha, apontando levemente para fora desta direção especial. Similarmente, astrônomos mediram aglomerados contínuos de galáxias, através do espaço, acima de um milhão de quilômetros por hora em direção a uma área no hemisfério sul. O que poderia significar tudo isso? Talvez nada. “Pode ser um golpe de sorte", diz Dragan Huterer, um cosmólogo da Michigan University, em Ann Arbor, ou poderia ser um erro sutil que tem ocorrido nos dados. Ou, diz Huterer, talvez nós estejamos vendo os primeiros sinais de “algo surpreendente”. 
O primeiro ímpeto de expansão do Universo poderia ter durado um pouco mais do que pensávamos, introduzindo a isso uma predisposição para o que ainda hoje persistisse. Outra possibilidade é que, em grande escala, o Universo poderia ser enrolado como um tubo, curvado em uma direção e plano em outras, de acordo com Glenn D. Starkman, um cosmólogo da Case Western Reserve University. Alternativamente, a chamada energia escura – algo incompreensível acelerando a expansão do Universo – pode agir de maneira diferente em diferentes lugares. Por enquanto, os dados permanecem preliminares, são sinais sutis de que algo pode estar errado com a nossa compreensão padrão do Universo. Os cientistas estão aguardando os dados do satélite Planck, que atualmente mede a CMB a partir de um local tranquilo, a 1,5 milhão de quilômetros acima. Isso irá confirmar medições anteriores desta direção peculiar ou mostrar que são efêmeras. Até então, o Universo poderia estar nos apontando para qualquer lugar.

Fonte: Scientific American Brasil

quarta-feira, 12 de outubro de 2011

Galáxias distantes na era da reonização

Uma equipe internacional de astrônomos utilizou o VLT como uma máquina do tempo e observou no Universo primordial várias das galáxias mais distantes já detectadas.

ilustração de galáxias no fim da era da reionização

© ESO (ilustração de galáxias no fim da era da reionização)

A equipe conseguiu medir distâncias de forma precisa e descobriu que estamos vendo estas galáxias tal como eram entre 780 milhões a 1 bilhão de anos depois do Big Bang. A galáxia mais distante de que temos conhecimento, com uma distância calculada por espectroscopia, possui um desvio para o vermelho, z, de 8.6, o que a coloca a 600 milhões de anos depois do Big Bang. Há uma galáxia que se pensa ter um desvio para o vermelho de cerca de 10 (480 milhões de anos depois do Big Bang) identificada pelo Telescópio Espacial Hubble, mas espera-se ainda confirmação deste resultado. A galáxia mais distante do estudo aqui apresentado tem um desvio para o vermelho de 7.1, encontrando-se por isso a 780 milhões de anos depois do Big Bang. O Universo tem hoje 13,7 bilhões de anos de idade.

As novas observações permitiram aos astrônomos estabelecer pela primeira vez uma linha cronológica para o que é conhecido como a Era da Reionização. Quando as primeiras estrelas e galáxias se formaram, o Universo encontrava-se cheio de hidrogênio gasoso eletricamente neutro, elemento que absorve radiação ultravioleta. À medida que a radiação ultravioleta emitida por estas galáxias primordiais excitava o gás, tornando-o eletricamente carregado (ionizado), o Universo ia ficando cada vez mais transparente à radiação ultravioleta. Durante esta fase o nevoeiro de hidrogênio gasoso estava desaparecendo, permitindo que a radiação ultravioleta atravessasse o Universo pela primeira vez sem ser impedida.

Os novos resultados que serão publicados na revista especializada Astrophysical Journal resultaram de uma procura longa e sistemática de galáxias distantes que a equipe executou ao longo dos últimos três anos.

“Os arqueólogos conseguem reconstruir uma linha cronológica do passado a partir dos artefatos que encontram em diferentes camadas no solo. Os astrônomos podem fazer melhor: podem olhar diretamente para o passado distante e observar a radiação tênue de diferentes galáxias em diferentes estados da evolução cósmica,” explica Adriano Fontana, do Observatório Astronômico de Roma, INAF, que liderou este projeto. “As diferenças entre as galáxias informam-nos sobre as condições do Universo em plena transformação durante este importante período de tempo e da rapidez com que estas mudanças ocorriam.”

Os diferentes elementos químicos brilham de modo intenso para determinadas cores. Estes picos de brilho são as chamadas linhas de emissão. Uma das mais intensas linhas de emissão no ultravioleta é a linha de Lyman-alfa, emitida pelo hidrogênio. É brilhante e facilmente reconhecível, de modo que pode ser facilmente detectada mesmo em observações de galáxias muito tênues e distantes.

Ao encontrar a linha de Lyman-alfa em cinco galáxias longínquas a equipe conseguiu descobrir dois aspectos muito importantes: primeiro, ao observar de quanto é que a linha estava deslocada para o vermelho no espectro, a equipe pôde determinar a distância às galáxias e consequentemente quão próximo depois do Big Bang estavam sendo observadas. Este fato levou-os a colocar as galáxias por ordem, criando assim uma linha cronológica que mostra como é que a luz das galáxias evoluiu no tempo. Segundo, conseguiram determinar até que ponto a emissão de Lyman-alfa - vinda do hidrogênio brilhante que se encontra no interior das galáxias - é reabsorvida pelo nevoeiro de hidrogênio neutro no espaço intergalático em diferentes alturas no tempo.

“Observamos uma enorme diferença na quantidade de radiação ultravioleta que é reabsorvida entre as mais antigas e as mais recentes galáxias da nossa amostra,” diz a autora principal do artigo científico Laura Pentericci, do Observatório Astronómico de Roma, INAF. “Quando o Universo tinha apenas 780 milhões de anos o hidrogênio neutro era muito abundante, enchendo cerca de 10 a 50% de todo o volume do Universo. Mas apenas 200 milhões de anos mais tarde a quantidade de hidrogênio neutro tinha já diminuído para um nível muito baixo, semelhante ao que observamos hoje. Pensamos por isso que a reionização deve ter ocorrido muito mais rapidamente do que os astrônomos pensavam.”

Além de sondar a taxa à qual o nevoeiro primordial desapareceu, as observações da equipe sugerem também a fonte provável de radiação ultravioleta, a qual forneceu a energia necessária à ocorrência da reionização. Existem várias teorias que competem entre si sobre a origem desta radiação - duas das principais referem a primeira geração de estrelas no Universo e a intensa radiação emitida pela matéria que cai em buracos negros.

“A análise detalhada da radiação tênue emitida pelas duas galáxias mais distantes que encontramos sugere que a primeira geração de estrelas pode ter contribuído para a energia libertada observada,” diz Eros Vanzella do INAF Observatório de Trieste, um membro da equipe de investigação. “Seriam estrelas muito jovens e de grande massa, cerca de cinco mil vezes mais jovens e com cem vezes mais massa do que o Sol. Estas estrelas teriam sido capazes de dissipar o nevoeiro primordial, tornando-o transparente.”

São necessárias medições muito precisas para confirmar ou excluir esta hipótese e mostrar que as estrelas podem produzir esta energia. Para isso precisamos de observações feitas a partir do espaço, ou então do European Extremely Large Telescope planejado pelo ESO, que será o maior olho no céu do mundo, quando estiver operacional no início da próxima década.

Estudar este período precoce da história cósmica é tecnicamente desafiante porque são necessárias observações muito precisas de galáxias extremamente distantes e pouco luminosas, uma tarefa que apenas pode ser levada a cabo pelos telescópios mais potentes. Para este estudo a equipe utilizou o enorme poder coletor dos espelhos de 8.2 metros do VLT para fazer observações espectroscópicas, tendo como alvo galáxias inicialmente identificadas pelo Telescópio Espacial Hubble da NASA/ESA e observadas em imagens profundas do VLT.

Fonte: ESO

segunda-feira, 15 de agosto de 2011

Paradigma da expansão cósmica

O Universo está se expandindo, mas não necessariamente de forma acelerada como aponta o modelo cosmológico mais aceito pelos especialistas, o Lambda-CDM (Cold Dark Matter).
galáxia Cartwheel
© NASA (galáxia Cartwheel)
A pesquisa realizada no Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP) aponta que atualmente a expansão do Universo está em fase de desaceleração.
Segundo Antônio Cândido de Camargo Guimarães, autor do estudo publicado no periódico Classical and Quantum Gravity, houve uma fase de expansão acelerada, que seria recente. "Mas hoje esse estado não é tão certo. É possível que a aceleração já esteja diminuindo", disse ele.
Guimarães conta que há cerca de dez anos a expansão acelerada do Universo se tornou consenso na comunidade científica a partir de observações de explosões de supernovas Ia, cujo brilho era menor do que se esperava. Para descrever essa rápida expansão, os cientistas adotaram o Lambda-CDM. Esse modelo cosmológico se baseia na existência de uma "energia escura", que corresponderia a 70% da composição do Universo.
A energia escura é uma propriedade física muito especulativa. Há algumas hipóteses e ideias, mas não se sabe qual a natureza dela.
Em sua pesquisa, Guimarães diz que a ideia foi descrever a expansão de forma independente de modelos de energia escura. Para isso, usou a chamada abordagem cosmográfica. Esse método se baseia na descrição da expansão cósmica como uma somatória de termos em função do redshift (medida da velocidade de afastamento) das supernovas, que é usado para traçar o brilho estelar (indicando a distância).
As supernovas foram divididas em três grupos: antigas, recentes e muito recentes. Por meio das análises cosmográficas, o pesquisador observou que, quanto mais recente os eventos das supernovas, maior era a probabilidade da atual desaceleração do Universo.
"O modelo Lambda-CDM diz que a aceleração tende sempre a aumentar. É interessante, pois nosso trabalho questiona esse paradigma, que usa uma forma particular para a energia escura para descrever a expansão cósmica", disse Guimarães.
Fonte: Agência Fapesp

quinta-feira, 4 de agosto de 2011

Teoria dos Multiversos

Uma equipe de cientistas está testando experimentalmente a teoria da existência de outros universos. Cada um desses universos poderá ter físicas distintas, ou seja, diferentes constantes fundamentais e diferentes leis da física.
colisões entre bolhas
© Hiranya V. Peiris (colisões entre bolhas)
A imagem mostra as assinaturas de colisões entre bolhas em vários estágios da análise. Uma colisão (no alto à esquerda) induz uma modulação de temperatura na radiação cósmica de fundo (no alto à direita). A bolha associada com a colisão é identificada por uma forte resposta (embaixo à esquerda) e a presença de uma fronteira é mostrada por uma forte resposta pelo algoritmo de detecção de bordas (embaixo à direita).
Dois artigos publicados nas principais revistas de física do mundo detalharam propostas de como procurar assinaturas de outros universos, diferentes da ainda controversa teoria do fluxo escuro, que é um fluxo de matéria ainda sem causa ou explicação conhecidas, devido ao movimento de aglomerados galácticos em direção à um único ponto no céu, localizado entre as constelações de Sagitário e Vela.
Os pesquisadores estão procurando padrões em formato de disco, que se formariam pelo contato entre duas bolhas.
Para eles, esses padrões deveriam aparecer na radiação cósmica de fundo, uma radiação na faixa de micro-ondas que permeia todo o Universo, e que os cientistas acreditam ser o eco do Big Bang.
"Procurar por marcas de colisão, de todos os raios possíveis, em qualquer lugar do céu, é um problema estatístico e computacional muito difícil," comenta a Dra. Hiranya Peiris, da Universidade College London.
Foi desenvolvido um algoritmo com regras muito estritas, que procura padrões em uma imagem, eliminando aqueles que se devem ao mero acaso.
Os resultados não foram conclusivos, foram encontrados quatro possíveis sinais de colisão com outros universos, quatro formações esféricas no céu que, segundo seus modelos matemáticos, não podem ser atribuídos ao acaso.
Estatisticamente, os resultados não são consistentes o suficiente nem para confirmar a teoria dos multiversos e nem para descartá-la.
Mas, além da sonda WMAP (Wilkinson Microwave Anisotropy Probe) da NASA, o telescópio espacial Planck da ESA já está rastreando o céu, e deverá gerar um mapa muito mais preciso, propiciando informação mais consistente referente à teoria dos outros universos.
Fonte: Physical Review Letters

domingo, 31 de julho de 2011

Nova medida da expansão do Universo

As galáxias não estão distribuídas uniformemente pelo espaço, mas estão agrupadas. Usando uma medida da agregação das galáxias pesquisadas, além de outras informações derivadas a partir de observações do início do Universo, os pesquisadores mediram a constante de Hubble com uma incerteza inferior a 5%.
6DF Galaxy Survey
© ICRAR (6DF Galaxy Survey )
Na imagem da 6DF Galaxy Survey, cada ponto é uma galáxia e a Terra é o centro da esfera.
Um estudante de PhD do International Centre for Radio Astronomy Research (ICRAR) produziu uma das medições mais precisas de todos os tempos da rapidez com que o Universo está se expandindo.
Florian Beutler, com doutorado da Universidade da Austrália Ocidental, calculou o quão rápido o Universo está crescendo através da medição da constante de Hubble.
A constante de Hubble é um número importante na Astronomia, porque é usado para calcular o tamanho e a idade do Universo.
À medida que o Universo expande, as outras galáxias são distanciadas da nossa.
Ao analisar a luz que vem de uma galáxia distante, a velocidade e a direção da galáxia pode ser facilmente obtida. Determinar a distância da galáxia da Terra é muito mais difícil. Até agora, isso tem sido feito, observando o brilho de objetos individuais dentro da galáxia para calcular o quão longe a galáxia deve estar.
Esta abordagem para medir a distância de uma galáxia da Terra se baseia em alguns pressupostos bem estabelecidos, mas está propenso a erros sistemáticos.
Este estudo é baseia-se em dados de uma pesquisa com mais de 125 mil galáxias realizado com o UK Schmidt Telescope, no leste da Austrália. Chamado de 6dF Galaxy Survey, este é o maior levantamento até agora de galáxias relativamente próximas, abrangendo quase metade do céu.
"Esta maneira de determinar a constante de Hubble é tão direta e precisa como outros métodos, e fornece uma verificação independente deles", diz o professor Mateus Colless, diretor do Observatório Astronômico da Austrália.
A nova medição da constante de Hubble é 67,0 ± 3,2 km/s por Mpc (Megaparsec). A medição pode ser mais refinada através de dados com maior quantidade de galáxias.
Fonte: Monthly Notices of the Royal Astronomical Society

sexta-feira, 3 de junho de 2011

Universo pode não estar em expansão acelerada

O Universo pode não estar expandindo em ritmo acelerado.
expansão acelerada do Universo
© Cosmo Novas (expansão acelerada do Universo)
A observação das estrelas supernovas indica várias possibilidades para a aceleração cósmica, e não se pode prever de forma precisa o ritmo ou a continuidade da expansão.
Esta interpretação é dos pesquisadores Antonio Guimarães e José Ademir Sales de Lima, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da Universidade de São Paulo (USP).
A partir da análise dos dados das supernovas, eles demonstraram que o estado atual do Universo abre um grande número de possíveis variáveis sobre sua expansão ou retração.
Há cerca de dez anos a observação das supernovas fez com que surgisse um consenso na comunidade científica de que o Universo está em expansão acelerada.
"No entanto, essa hipótese é muito influenciada pelos modelos usados para analisar os dados, diminuindo a importância da observação direta," ressalta Guimarães.
O modelo mais utilizado é o Lambda-CDM (Cold Dark Matter). "Ele é baseado na chamada 'energia escura', de constituição desconhecida, que corresponderia a cerca de 70% de toda a energia do Universo, e seria responsável pela aceleração," explica.
A pesquisa dos dois brasileiros se baseou apenas nos dados das supernovas, numa abordagem cosmográfica, sem considerar qualquer modelo de energia escura.
"Por meio das medidas de brilho e desvio para o vermelho (redshift), é possível estimar a distância e a velocidade de afastamento das explosões supernovas," conta Guimarães. "A análise descreve de modo matemático o fator de escala do Universo, isto é, seu tamanho conforme o tempo".
As análises mostraram que houve um período de aceleração recente (acontecido há alguns bilhões de anos). Porém, o estado atual de aceleração é mais incerto do que indicado pelos modelos de energia escura.
A situação seria indeterminada, a expansão pode ser acelerada, mas estar em diminuição, já que o estado atual do Universo é melhor representado por uma distribuição de probabilidades.
Durante a análise, as supernovas foram divididas em conjuntos diferentes, separadas entre antigas, recentes e muito recentes. "Conforme se adicionava supernovas mais recentes, a curva de probabilidades tendia para valores mais negativos de aceleração, o que pode indicar que o Universo esteja se expandindo de forma menos acelerada", diz Guimarães.
Com a utilização de dados cosmográficos mais recentes, baseados na observação de 557 eventos de supernovas, verificou-se que, quando se excluem as mais antigas, a curva de probabilidades da aceleração apresenta valores menores. "Ou seja, quanto mais recente e próxima, mais ela parece indicar que a expansão seria menos acelerada", acrescenta o pesquisador.
No modelo Lambda-CDM, o Universo se expandiria indefinidamente e a tendência seria a galáxia onde se encontra a Terra ficar cada vez mais distanciada das demais.
"Outros modelos baseados na energia escura falam, por exemplo, em desaceleração e colapso, o chamado 'Big Crunch', mas como a natureza desse tipo de constituinte é pouco conhecida, há muitas possibilidades em aberto", aponta Guimarães. "No caso da análise das supernovas, é possível formular hipóteses sobre o estado atual do Universo, onde as curvas de valor de aceleração podem abarcar tanto valores positivos quanto negativos, o que multiplica as possibilidades sobre a expansão futura".
Fonte: Classical and Quantum Gravity

quinta-feira, 26 de maio de 2011

Novo objeto mais distante do cosmo

A explosão de raios gama detectada pelo satélite Swift, da NASA, em abril de 2009, foi recentemente revelada como candidata ao objeto mais distante do Universo.
GRB 090429B
© NASA/Swift (GRB 090429B)
Com distância estimada de 13,14 bilhões de anos-luz, a explosão está além de qualquer quasar conhecido e pode ser mais distante do que qualquer galáxia previamente conhecida ou explosão de raios gama. O estudo da distância da explosão, conhecida como GRB 090429B, será publicado no periódico científico Astrophysical Journal.
A gigantesca erupção de raios gama foi formado a partir de uma explosão estelar quando o Universo tinha menos que 4% de sua idade atual – apenas 520 milhões de anos – e menos de 10% do tamanho atual.
"A galáxia que comportava a estrela que originou GRB 090429B era realmente uma das primeiras galáxias do Universo", disse Derek Fox, professor de astronomia e astrofísica da Universidade Penn State, nos Estados Unidos, e um dos autores do estudo.
“Além do recorde de distância, GRB 090429B demonstra como explosões de raios-gama podem ser usadas para revelar a localização de estrelas massivas nos primórdios do Universo e também para acompanhar os processos de galáxias antigas e formação de estrelas que resultaram em um Universo tão rico como o que temos hoje”, disse.
Cerca de duas explosões de raios gama - as mais brilhantes explosões conhecidas – são observadas todos os dias. Por causa de seu brilho, elas podem ser detectadas pelos satélites mesmo que ocorram a distâncias de bilhões de anos-luz. Embora as explosões durem minutos, a dissipação da luz permanece observável durante muito mais tempo, o que permite que astrônomos meçam a distância da explosão.
No caso da GRB 090423, a distância foi calculada em 13,04 bilhões de anos-luz da Terra. “Este recorde foi superado pela descoberta de galáxias em 2010 e 2011 que empurraram a fronteira cósmica para 13,07 bilhões de anos-luz da Terra, e possivelmente ainda mais. Nossa estimativa de distância para a GRB 090423 faz dela uma versão de ‘revanche das explosões’”, disse Antonino Cucchiara, da Universidade da Califórnia, em Berkeley, e um dos autores do estudo. "Uma explosão de raios gama está mais uma vez, disputando o título de objeto mais distante no cosmos - para além de quasares e galáxias previamente considerados os mais distantes”.
Fonte: NASA