Mostrando postagens com marcador Estrelas. Mostrar todas as postagens
Mostrando postagens com marcador Estrelas. Mostrar todas as postagens

segunda-feira, 15 de janeiro de 2024

Uma galáxia sem estrelas visíveis

Os astrônomos encontraram algo bizarro: uma galáxia que parece ser feita apenas de gás.

© STScI (ilustração de galáxia vista no rádio)

 A galáxia, J0613+52, apareceu em uma pesquisa com o gás de hidrogênio neutro em cerca de 350 galáxias difusas chamadas galáxias de brilho de baixa superfície. Estes são sistemas pelo menos uma magnitude mais fraca do que o brilho ambiente do céu noturno. Elas têm muito poucas estrelas, tornando-as desafiadoras para serem identificadas por telescópios de luz visível, e é por isso que são procuradas nos comprimentos de onda do rádio. Mas, graças a um erro de coordenada fortuita, Karen O'Neil, do Green Bank Observatory (GBT), e seus colegas encontraram algo ainda mais estranho: um disco de gás sem estrelas. 

A galáxia escura fica a 270 milhões de anos-luz de distância, logo acima do laço da constelação de Auriga. Sendo observada na região do rádio, ela contém mais de 1 bilhão de sóis com hidrogênio girando rapidamente de maneira organizada, marcas do que deve ser uma galáxia espiral bastante normal e massiva. Porém, não são detectadas nenhuma estrela.

Isto é a descoberta de uma galáxia primordial, uma galáxia que tão difusa, ela não foi capaz de formar estrelas prontamente. Notavelmente, a galáxia escura é uma solitária: nenhuma outra galáxia se amontoou nas proximidades. Sem vizinhas para assedia-lá gravitacionalmente, não haveria nada para mexer e comprimir a formação de gás. 

A galáxia pode de fato ter algumas estrelas, mas são tão poucas que até agora não foram observadas. A equipe espera no futuro que amplie algumas magnitudes mais profundamente para procurar alguma luz estelar. Galáxias como essas são importantes porque testam as teorias sobre a formação de estrelas e a evolução das galáxias. 

Objetos como J0613+52 devem ser raros, porque grandes pesquisas de rádio anteriores não identificaram. Para encontrar mais, os astrônomos provavelmente precisarão de uma análise profunda e de céu completo, talvez com a câmera avançada de matriz de banda L avançada do GBT com o instrumento astronômico Advanced Cryogenic L-Band Phased Array Camera for Arecibo (ALPACA). Mesmo assim, estudar galáxias escuras e difusas é um desafio, porque leva tanto tempo de observação; a detecção de apenas uma galáxia de brilho superficial baixo pode exigir mais de 100 horas na sua maior configuração.

Fonte: Sky & Telescope

quinta-feira, 11 de janeiro de 2024

Encontrado elo perdido: Supernovas dão origem a buracos negros

Os astrônomos descobriram uma ligação direta entre as mortes explosivas de estrelas de grande massa e a formação dos objetos mais compactos e enigmáticos do Universo: buracos negros e estrelas de nêutrons.

© ESO / L. Calçada (ilustração de uma explosão de supernova)

Com o auxílio do Very Large Telescope (VLT) e do New Technology Telescope (NTT), ambos do Observatório Europeu do Sul (ESO), duas equipes de pesquisadores conseguiram observar o resultado de uma explosão de supernova numa galáxia próxima, encontrando assim evidências de um misterioso objeto compacto deixado para trás. 

Quando chegam ao final das suas vidas, as estrelas de grande massa colapsam sob a sua própria gravidade tão rapidamente que o resultado é uma violenta explosão conhecida por supernova. Acredita-se que, depois da toda a excitação da explosão, o que resta é um núcleo extremamente denso ou um resto compacto da estrela. Dependendo da massa da estrela que explode, o resto compacto tanto pode ser uma estrela de nêutrons, um objeto tão denso que uma colher de chá do seu material pesaria cerca de um trilhão de quilogramas na Terra; ou um buraco negro. 

Os astrônomos encontraram no passado muitos indícios que apontam para esta cadeia de eventos, tais como a descoberta de uma estrela de nêutrons no seio da Nebulosa do Caranguejo, a nuvem de gás que resultou da explosão de uma estrela que ocorreu há quase mil anos atrás. No entanto, nunca este processo foi observado em tempo real, o que significa que evidências diretas de uma supernova deixando para trás um resto compacto têm permanecido elusivas.

Em Maio de 2022, o astrônomo amador da África do Sul, Berto Monard, descobriu a supernova SN 2022jli no braço em espiral da galáxia próxima NGC 157, situada a cerca de 75 milhões de anos-luz de distância da Terra. Duas equipes separadas estudaram o resultado da explosão, descobrindo que esta apresentava um comportamento peculiar. Depois da explosão, o brilho da maioria das supernovas simplesmente desvanece com o tempo; foi observado um declínio suave e gradual na “curva de luz” da explosão. 

Contudo, o comportamento da SN 2022jli era deveras particular: apesar do brilho total se ir desvanecendo, isso não acontecia de forma suave, apresentando antes oscilações para cima e para baixo, mais ou menos a cada 12 dias.

Especula-se que a presença de mais de uma estrela no sistema SN 2022jli pode explicar este comportamento. Realmente, não é incomum que as estrelas de grande massa partilhem a sua órbita com uma estrela companheira, no que é chamado um sistema binário, e a estrela que deu origem à SN 2022jli não é exceção. No entanto, o que é notável neste sistema é que a estrela companheira parece ter sobrevivido à morte violenta da sua parceira e os dois objetos, o resto compacto e a estrela companheira, muito provavelmente continuaram em órbita um do outro. 

Foi descoberto também movimentos periódicos de hidrogênio gasoso e explosões de raios gama no sistema. As observações foram realizadas com um complemento de instrumentos no solo e no espaço, incluindo o instrumento X-shooter montado no VLT do ESO, no Chile. Juntando todas as informações, há concordância de que quando a estrela companheira interagiu com o material lançado durante a explosão de supernova, a sua atmosfera rica em hidrogênio tornou-se mais inchada do que o habitual. Depois, quando o objeto compacto deixado pela explosão passa, ao descrever a sua órbita, pela atmosfera da companheira, vai retirando hidrogênio gasoso e formando um disco quente de matéria ao seu redor. Esta subtração periódica de matéria, ou acreção, produz imensa energia que foi vista nas observações como variações regulares de brilho.

Apesar de não ter sido observada luz vinda do objeto compacto propriamente dito, foi concluído que este roubo energético só pode ser devido a uma estrela de nêutrons invisível, ou possivelmente a um buraco negro, que retira matéria à atmosfera acrescentada da estrela companheira. 

O estudo foi apresentado no 243º Encontro da Sociedade Astronômica Americana em New Orleans, EUA. Um artigo foi publicado no ano passado no periódico The Astrophysical Journal e outro ontem na revista Nature.

Fonte: ESO

terça-feira, 9 de janeiro de 2024

Revendo a Nebulosa Capacete de Thor

Thor não só tem seu próprio dia (quinta-feira), mas também um capacete nos céus.

© Ritesh Biswas (Nebulosa Capacete de Thor)

Popularmente chamado de Capacete de Thor, NGC 2359 é uma nuvem cósmica em forma de chapéu com apêndices semelhantes a asas. Com tamanho heróico até mesmo para um deus nórdico, a Nebulosa Capacete de Thor tem cerca de 30 anos-luz de diâmetro. 

Realmente, a cobertura cósmica da cabeça é mais parecida com uma bolha interestelar, soprada por um vento rápido de uma estrela massiva e brilhante perto do centro da bolha. Conhecida como estrela Wolf-Rayet, a estrela central é uma gigante extremamente quente que se acredita estar em um breve estágio de evolução pré-supernova. 

A NGC 2359 está localizada a cerca de 15.000 anos-luz de distância, em direção à constelação do Grande Overdog. Esta imagem notavelmente nítida é uma mistura de dados provenientes de filtros de banda estreita, captando não apenas estrelas de aspecto natural, mas também detalhes das estruturas filamentares da nebulosa. Espera-se que a estrela no centro do Capacete de Thor exploda em uma supernova espetacular em algum momento nos próximos milhares de anos. 

Fonte: NASA

terça-feira, 26 de dezembro de 2023

A mina de ouro que é uma colisão de estrelas de nêutrons

As estrelas de nêutrons são o produto final de estrelas massivas e reúnem uma grande parte da massa estelar original numa estrela superdensa com um diâmetro de apenas cerca de dez quilômetros.

© I. Markin (simulação da fusão de duas estrelas de nêutrons)

A imagem mostra a simulação numérica do material ejetado resultante de duas estrelas de nêutrons em fusão. As cores vermelhas referem-se ao material ejetado com uma alta fração de nêutrons, que parecerá tipicamente mais vermelho do que o material azul que contém uma fração maior de prótons.

No dia 17 de agosto de 2017, os pesquisadores observaram pela primeira vez as várias assinaturas de uma fusão explosiva de duas estrelas de nêutrons que se orbitavam uma à outra: ondas gravitacionais e enormes surtos de radiação, incluindo uma explosão de raios gama. Astrônomos desenvolveram um método para modelar simultaneamente estes sinais observáveis de uma quilonova. Isto permite-lhes descrever com precisão o que acontece exatamente durante uma fusão, como a matéria nuclear se comporta em condições extremas e porque é que o ouro na Terra deve ter sido criado em tais eventos. 

Utilizando uma nova ferramenta de software, uma equipe do Instituto Max Planck de Física Gravitacional e da Universidade de Potsdam conseguiu interpretar simultaneamente os vários tipos de dados astrofísicos de uma quilonova. Além disso, podem ser utilizados dados de observações de rádio e raios X de outras estrelas de nêutrons, cálculos de física nuclear e até dados de experiências de colisão de íons pesados em aceleradores terrestres. Até agora, as várias fontes de dados têm sido analisadas separadamente e, em alguns casos, os dados têm sido interpretados utilizando modelos físicos diferentes.

Uma estrela de nêutrons é um objeto astrofísico superdenso formado no final da vida de uma estrela massiva numa explosão de supernova. Tal como outros objetos compactos, algumas estrelas de nêutrons orbitam-se umas às outras em sistemas binários. Perdem energia através da emissão constante de ondas gravitacionais, ou seja, pequenas ondulações no tecido do espaço-tempo, e acabam por colidir. 

Estas fusões permitem estudar princípios físicos sob as condições mais extremas do Universo. Por exemplo, as condições destas colisões altamente energéticas levam à formação de elementos pesados como o ouro. Realmente, as estrelas de nêutrons em fusão são objetos únicos para estudar as propriedades da matéria a densidades muito superiores às encontradas nos núcleos atômicos. 

O novo método foi aplicado à primeira e até agora única observação de fusões de estrelas de neutrões binárias. Neste evento os últimos milhares de órbitas das estrelas em torno uma da outra tinham deformado o espaço-tempo o suficiente para criar ondas gravitacionais, que foram detectadas pelos observatórios terrestres de ondas gravitacionais Advanced LIGO e Advanced Virgo. 

Quando as duas estrelas se fundiram, foram ejetados elementos pesados recém-formados. Alguns destes elementos decaíram radioativamente, provocando o aumento da temperatura. Desencadeado por esta radiação térmica, foi detectado um sinal eletromagnético no visível, no infravermelho e no ultravioleta até duas semanas após a colisão. Uma explosão de raios gama, também causada pela fusão da estrela de nêutrons, ejetou material adicional. A reação da matéria da estrela de nêutrons com o meio circundante produziu raios X e emissões de rádio que puderam ser monitoradas em escalas de tempo que vão de dias a anos. 

Os detectores de ondas gravitacionais estão atualmente na sua quarta série de observações. A próxima detecção de uma fusão de estrelas de nêutrons pode surgir a qualquer momento propiciando novas informações de sua evolução.

Um artigo foi publicado na revista Nature Communications

Fonte: Max Planck Institute

quinta-feira, 21 de dezembro de 2023

Descoberta de dois sistemas planetários em estrelas parecidas com o Sol

Um estudo revela a descoberta de dois novos sistemas planetários orbitando estrelas semelhantes ao nosso Sol, também conhecidas como análogas solares.

© L. Almeida (ilustração do sistema planetário TOI-1736)

O estudo foi liderado pelo Dr. Eder Martioli, pesquisador titular do Laboratório Nacional de Astrofísica (LNA/MCTI, Brasil) e pesquisador associado do IAP (Institut d'astrophysique de Paris), e pelo Dr. Guillaume Hébrard, pesquisador do IAP. 

As observações responsáveis pela detecção destes dois sistemas, denominados TOI-1736 e TOI-2141, foram realizadas com o telescópio espacial TESS da NASA e com o espectrógrafo SOPHIE instalado no telescópio de 1,93 metros do OHP (Observatoire de Haute-Provence) no sul da França. 

Sistemas planetários como estes não apenas ampliam o nosso conhecimento sobre a formação e evolução de planetas em torno de estrelas semelhantes ao Sol, mas também possibilitam medições mais precisas das propriedades físicas dos planetas, aproveitando a semelhança entre a estrela hospedeira e o nosso Sol. 

A descoberta do primeiro exoplaneta, 51 Pegasi b, em 1995, realizada com o mesmo telescópio de 1,93 m no OHP e que resultou no Prêmio Nobel da Física para os astrônomos Michel Mayor e Didier Queloz, marcou o início de uma revolução na nossa compreensão sobre a existência de sistemas planetários no Universo. 

Hoje, mais de 5.500 exoplanetas são conhecidos, e esta contagem cresce diariamente. A descoberta destes objetos oferece uma oportunidade para estudar a presença de planetas em torno das estrelas e a variedade de características físicas que podem ser encontradas em diferentes sistemas. Uma das lições aprendidas desde a descoberta do primeiro exoplaneta é que o Sistema Solar não é único e não abarca todos os tipos de planetas possíveis. Por exemplo, o planeta 51 Pegasi b é do tamanho de Júpiter, mas orbita bem mais próximo da sua estrela do que qualquer outro planeta no Sistema Solar, por isso é chamado de "Júpiter quente". Outros tipos de planetas comuns em sistemas exoplanetários são as super-Terras e os mini-Netunos, ambos sem equivalentes no nosso Sistema Solar. 

Outra descoberta importante é que a diversidade de tipos estelares, seja grande ou pequena, quente ou fria, não impede a formação de planetas. No entanto, o tipo de estrela pode influenciar na frequência de certos tipos de planetas. O trabalho desenvolvido pela equipe do Dr. Eder Martioli teve como objetivo principal estudar duas estrelas muito semelhantes ao Sol, nas quais foram detectados planetas do tipo mini-Netuno e super-Júpiter, ambos sem similares no Sistema Solar. Isto permitiu uma compreensão mais aprofundada da presença de planetas com diferentes características e de como estes corpos evoluem num ambiente semelhante ao do nosso Sol.

O primeiro sistema desta descoberta, TOI-2141, consiste de uma estrela situada a 250 anos-luz de distância, com um tamanho praticamente idêntico e uma idade ligeiramente mais avançada que a do nosso Sol. A sua composição química também revela uma escassez de elementos mais pesados em comparação com o Sol. A quantidade de elementos mais pesados é um importante fator para o processo de formação planetária.

O planeta TOI-2141 b foi detectado através do método de trânsito, no qual o planeta passa em frente à estrela, gerando pequenos eclipses periódicos que permitem a sua detecção pelo monitoramento das variações no brilho estelar. Este planeta possui um diâmetro três vezes maior que o da Terra e uma massa cerca de 24 vezes maior que a da Terra, sendo classificado como um mini-Netuno. Completa uma órbita em torno da estrela a cada 18,26 dias, mantendo-se a uma distância de apenas 13% da distância entre a Terra e o Sol. Devido à sua proximidade à estrela, estima-se que o planeta possua uma temperatura de cerca de 450 graus Celsius. A sua densidade sugere a presença de um núcleo rochoso e uma atmosfera com uma grande quantidade de vapor de água, porém, apenas na forma gasosa devido às altas temperaturas. 

Não foram identificados outros planetas neste sistema, mas a possibilidade de encontrar outros planetas menores ainda não pode ser descartada devido às limitações dos métodos de observação. 

O segundo sistema desta descoberta, TOI-1736, revelou-se um tanto exótico. A estrela principal está a uma distância de 290 anos-luz e é muito similar ao Sol, principalmente em termos de temperatura e idade, sendo apenas cerca de 15% maior que o Sol e com uma concentração ligeiramente maior de elementos químicos mais pesados. Observou-se que o sistema TOI-1736 possui uma estrela companheira, menor e mais fria, caracterizando-se, portanto, como um sistema estelar binário. No entanto, a estrela mais fria está distante o suficiente para não interferir no sistema planetário, que orbita apenas em torno da estrela principal. 

Foram detectados pelo menos dois planetas neste sistema.  O primeiro, TOI-1736 b, também é um mini-Netuno, com um diâmetro 2,5 vezes maior que o da Terra e uma massa 13 vezes superior à da Terra. Apresenta trânsitos e orbita a uma distância da estrela correspondente a apenas 7% da distância entre a Terra e o Sol, completando uma órbita a cada 7,1 dias. Devido a esta proximidade, o planeta recebe significativamente mais radiação da estrela, resultando numa temperatura estimada de 800 graus Celsius. O segundo planeta, TOI-1736 c, não apresenta trânsitos, porém possui uma massa 2.800 vezes maior que a da Terra, quase 9 vezes maior que Júpiter, o maior planeta do Sistema Solar. Com este tamanho, TOI-1736 c é classificado como um super-Júpiter e por pouco não se tornou uma estrela. Ele completa uma órbita a cada 570 dias. Localizado a apenas 30% a mais de distância do que a Terra está do Sol, este planeta encontra-se na chamada zona habitável da estrela TOI-1736.

Esta zona é definida como a região ao redor da estrela com temperatura adequada para permitir a existência de água líquida na superfície do planeta. TOI-1736 c é provavelmente um gigante gasoso, similar a Júpiter, portanto, não se espera que tenha uma superfície sólida como a da Terra. No entanto, se por acaso o planeta TOI-1736 c abrigar uma lua, este corpo sólido poderia ter uma atmosfera, potencialmente permitindo a presença de água líquida e, quem sabe, ser um mundo habitável. As observações de TOI-1736 revelaram indícios de um possível terceiro planeta em órbita mais distante, necessitando de monitoramento por um período prolongado para a sua confirmação. Assim, a equipe continua observando TOI-1736 com o espectrógrafo SOPHIE no OHP, na esperança de, em breve, obter mais informações sobre esta estrela tão semelhante ao Sol, mas com um sistema planetário tão diverso.

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Laboratório Nacional de Astrofísica

quinta-feira, 14 de dezembro de 2023

Nova observação de alta definição de uma explosão estelar

Como um ornamento redondo e brilhante, pronto a ser colocado numa árvore de Natal, o remanescente de supernova Cassiopeia A (Cas A) brilha numa nova imagem do telescópio espacial James Webb. No entanto, esta cena não é a proverbial noite feliz e nem tudo está calmo.

© Webb / MIRI (Cassiopeia A no infravermelho próximo)

A imagem de Cas A obtida pelo instrumento NIRCam (Near-Infrared Camera) do Webb mostra uma explosão muito violenta com uma resolução anteriormente inalcançável nestes comprimentos de onda. Esta imagem de alta resolução revela pormenores intrincados da concha de material em expansão que embate no gás liberado pela estrela antes desta explodir. 

O Cas A está localizado a 11.000 anos-luz de distância, na direção da constelação de Cassiopeia. Estima-se que tenha explodido há cerca de 340 anos, do nosso ponto de vista.

A supernova Cas A é um dos remanescentes de supernova mais bem estudados em todo o cosmos. Ao longo dos anos, os observatórios terrestres e espaciais, incluindo o telescópio espacial Hubble, reuniram coletivamente uma imagem de vários comprimentos de onda dos restos esfarrapados do objeto. 

No entanto, os astrônomos entraram agora numa nova era no estudo de Cas A. Em abril de 2023, o MIRI (Mid-Infrared Instrument) do Webb deu início a esta história, revelando características novas e inesperadas no interior da concha interna do remanescente de supernova.

© Webb / MIRI (Cassiopeia A no infravermelho médio)

Mas muitas dessas características são invisíveis na nova imagem do NIRCam. A luz infravermelha é invisível aos nossos olhos, pelo que os processadores de imagem representam estes comprimentos de onda de luz com cores visíveis. Nesta imagem mais recente de Cas A, foram atribuídas cores aos diferentes filtros do NIRCam, e cada uma dessas cores indica uma atividade diferente que ocorre no interior do objeto. À primeira vista, a imagem do NIRCam pode parecer menos colorida do que a imagem MIRI. No entanto, isso não significa que haja menos informação: simplesmente, trata-se dos comprimentos de onda em que o material do objeto está emitindo a sua luz. As cores mais visíveis na imagem são os aglomerados de cor de laranja brilhante e rosa claro que constituem o invólucro interior do remanescente de supernova. 

A visão nítida do Webb consegue detectar os menores nós de gás, compostos por enxofre, oxigênio, argônio e neônio da própria estrela. Neste gás contém uma mistura de poeira e moléculas, que acabarão por ser incorporadas em novas estrelas e sistemas planetários. Alguns filamentos de detritos são demasiado pequenos para serem resolvidos, mesmo pelo Webb, o que significa que são comparáveis ou inferiores a 16 bilhões de quilômetros de diâmetro (cerca de 100 UA). Em comparação, a totalidade de Cassiopeia A estende-se por 10 anos-luz, ou cerca de 9,5x10^13 quilômetros. 

Quando se compara a nova imagem no infravermelho próximo de Cas A pelo Webb com a imagem no infravermelho médio, a sua cavidade interior e a camada mais exterior estão curiosamente desprovidas de cor. Os arredores da camada interior principal, que apareciam como um laranja e vermelho profundos na imagem MIRI, parecem agora a fumaça de uma fogueira. Isto marca o local onde a onda de explosão da supernova está embatendo no material circundante. A poeira no material circunstelar é demasiado fria para ser detectada diretamente nos comprimentos de onda do infravermelho próximo, mas ilumina-se no infravermelho médio. 

Os pesquisadores concluíram que a cor branca é a luz da radiação síncroton, que é emitida em todo o espetro eletromagnético, incluindo no infravermelho próximo. É gerada por partículas carregadas que se deslocam a velocidades extremamente elevadas e que se movimentam em espiral em torno de linhas de campo magnético. A radiação síncroton é também visível nas conchas em forma de bolha na metade inferior da cavidade interna. Igualmente invisível no infravermelho próximo, o "loop" de luz verde na cavidade central de Cas A que brilhava no infravermelho médio. Esta característica foi descrita como "difícil de compreender" pelos investigadores na altura da sua primeira observação. Embora o "verde"  não seja visível no NIRCam, o que resta no infravermelho próximo nessa região pode dar uma ideia do misterioso fenômeno. Os buracos circulares visíveis na imagem MIRI são ligeiramente delineados por emissões brancas e púrpuras na imagem NIRCam, isto representa gás ionizado. Provavelmente, isto se deve aos detritos da supernova empurrarem e esculpirem o gás deixado pela estrela antes desta explodir. 

Existe também uma caraterística fascinante no canto inferior direito do campo de visão da NIRCam. Essa mancha grande e estriada Cas A Bebê, porque parece ser uma "cria" da supernova principal. Isto é um eco de luz. A luz da explosão da estrela há muito tempo atingiu, e está aquecendo, a poeira distante, que brilha à medida que arrefece. A complexidade do padrão de poeira, e a aparente proximidade de Cas A Bebê com a própria Cas A, são particularmente intrigantes. Na realidade, Cas A Bebê está localizada a cerca de 170 anos-luz atrás do remanescente de supernova. Há também vários outros ecos de luz menores espalhados pelo novo retrato do Webb.

Fonte: Space Telescope Science Institute

Estrelas antigas produziam elementos extraordinariamente pesados

Quão pesado pode ser um elemento?

© LNLA (ilustração de uma estrela de nêutrons)

Pesquisadores descobriram que as estrelas antigas eram capazes de produzir elementos com massas atômicas superiores a 260, mais pesados do que qualquer elemento da tabela periódica que se encontra naturalmente na Terra. A descoberta aprofunda a nossa compreensão da formação de elementos nas estrelas. 

Nós somos, literalmente, feitos de material estelar. As estrelas são fábricas de elementos, onde os elementos estão constantemente se fundindo ou se separando para criar outros elementos mais leves ou mais pesados. Em termos gerais, a massa atômica é baseada no número de prótons e nêutrons no núcleo de um átomo deste elemento. Sabe-se que os elementos mais pesados só são criados em estrelas de nêutrons através do processo de captura rápida de nêutrons, ou processo r. 

Imagine um único núcleo atômico flutuando numa sopa de nêutrons. De repente, um grupo destes nêutrons fica preso ao núcleo num período de tempo muito curto, normalmente em menos de um segundo, e depois sofre algumas alterações internas de nêutron para próton. Forma-se um elemento pesado, como o ouro, a platina ou o urânio. Os elementos mais pesados são instáveis ou radioativos, o que significa que decaem com o tempo. Uma das formas de o fazer é por divisão, um processo chamado fissão.

O processo r é necessário se quisermos produzir elementos mais pesados do que, por exemplo, o chumbo e o bismuto. É preciso adicionar muitos nêutrons muito rapidamente, mas o problema é que é preciso muita energia. E o melhor lugar para encontrar ambos é no nascimento ou na morte de uma estrela de nêutrons, ou quando as estrelas de nêutrons colidem e produzem a matéria-prima do processo. 

Não temos uma boa noção de quantos tipos diferentes de locais no Universo podem gerar o processo r, não sabemos como termina o processo r e não podemos responder a perguntas como: quantos nêutrons se podem adicionar? Ou, quão pesado pode ser um elemento? Por isso, foi decidido olhar para os elementos que poderiam ser produzidos por fissão em algumas estrelas antigas bem estudadas. 

A equipe analisou de novo as quantidades de elementos pesados em 42 estrelas bem estudadas da Via Láctea. As estrelas eram conhecidas por terem elementos pesados formados pelo processo r em gerações anteriores de estrelas. Ao analisar as quantidades de cada elemento pesado coletivamente encontrado nestas estrelas, em vez de individualmente como é mais comum, foram identificados padrões anteriormente não reconhecidos. Estes padrões indicavam que alguns elementos listados perto do meio da tabela periódica, como a prata e o ródio, eram provavelmente os restos da fissão de elementos pesados. Foi determinado que o processo r pode produzir átomos com uma massa atômica de pelo menos 260 antes de se fissionarem. Este valor de 260 é interessante porque não foi detectado anteriormente nada tão pesado no espaço ou naturalmente na Terra, nem mesmo em testes de armas nucleares. Mas vê-los no espaço fornece orientações de como surgiu a rica diversidade de elementos químicos. 

 Um artigo foi publicado na revista Science

Fonte: Los Alamos National Laboratory

sexta-feira, 8 de dezembro de 2023

Estrelas distantes avistadas na vasta corrente de Magalhães

Os astrônomos resolveram um mistério científico de meio século ao identificar estrelas associadas ao fluxo de gás cósmico que emana de um par de galáxias próximas.

© CfA / M. Weiss (fluxo de gás cósmico emanando de um par de galáxias)

Durante quase cinquenta anos, os astrônomos saíram de mãos vazias na sua busca por estrelas dentro da extensa estrutura conhecida como Corrente de Magalhães. Uma colossal faixa de gás, a Corrente de Magalhães abrange quase 300 diâmetros lunares no céu do Hemisfério Sul, seguindo atrás das galáxias da Nuvem de Magalhães, duas das vizinhas cósmicas mais próximas da Via Láctea. 

Agora a busca pelas estrelas finalmente acabou. Pesquisadores do Centro de Astrofísica do Harvard & Smithsonian (CfA) e colegas identificaram 13 estrelas cujas distâncias, movimento e composição química as colocam diretamente dentro do fluxo enigmático. A localização destas estrelas permitiu agora determinar a verdadeira distância até à Corrente de Magalhães, revelando que esta se estende de 150.000 anos-luz a mais de 400.000 anos-luz de distância. 

As Grandes e Pequenas Nuvens de Magalhães são galáxias anãs satélites da Via Láctea. Visíveis a olho nu como luminâncias transparentes, as Nuvens são conhecidas desde a antiguidade. Com o advento de telescópios cada vez mais poderosos, capazes de perceber fenômenos demasiado tênues para os nossos olhos verem, foi descoberta uma gigantesca pluma de gás hidrogênio aparentemente expelida das Nuvens no início da década de 1970.

Estudos do gás dentro desta Corrente de Magalhães mostraram ainda que a Corrente tem dois filamentos entrelaçados, um originando-se de cada Nuvem. Estas características sugerem que a gravidade da Via Láctea pode ter puxado a Corrente de Magalhães para fora das Nuvens. No entanto, a forma exata como a Corrente se formou continua sendo difícil de determinar, em grande parte devido a sua presumível componente estelar permanecer indiscernível. 

As escassas estrelas que pontilham os arredores da Galáxia foram pouco estudadas porque o Sistema Solar está bem no disco estrelado da própria Via Láctea. Porém, ao longo da última década, catálogos de observação profunda compilados por novos instrumentos, especialmente o telescópio espacial Gaia da ESA, começaram a espionar objetos estelares que poderiam ser apenas estas estrelas fronteiriças indescritíveis. Com acesso concedido ao telescópio Magellan Baade de 6,5 m no Observatório Las Campanas, no Chile, através do CfA e do MIT, um projeto foi empreendido para realizar espectroscopia em 200 estrelas distantes da Via Láctea, que quando concluída será a maior amostra deste tipo. 

A espectroscopia envolve a coleta de luz suficiente de um objeto para detectar certas assinaturas impressas nas faixas coloridas da luz que, como as impressões digitais, identificam exclusivamente elementos químicos individuais. Estas assinaturas revelam, portanto, a composição química de um objeto, evidenciando sobre suas origens. Além disso, as assinaturas mudam com base na distância até um objeto, permitindo aos astrônomos saber para onde um objeto, como uma estrela, está indo e, correspondentemente, de onde veio. 

A abundância química das estrelas identificadas correspondia à das Nuvens de Magalhães, por exemplo, por serem distintamente deficientes nos elementos mais pesados (metais). Ao obter medições sólidas da distância e extensão da Corrente de Magalhães através destas estrelas, os pesquisadores reforçaram a sua história de origem como uma captura gravitacional da Via Láctea. Os pesquisadores também conseguiram calcular a distribuição geral de gás da Corrente de Magalhães com maior confiança em comparação com estimativas anteriores. A distribuição indica que ela é cerca de duas vezes mais massiva do que geralmente se considera. 

Este resultado, por sua vez, pressagia um futuro repleto de novas formações estelares na Via Láctea, porque a Corrente está interagindo ativamente na nossa Galáxia. Desta forma, a Corrente de Magalhães serve como principal fornecedor do gás frio e neutro necessário para produzir novas estrelas da Via Láctea.

Estudos adicionais da Corrente de Magalhães também deverão ajudar saber mais sobre a composição da nossa Galáxia. Modelar a evolução da relativamente massiva Grande Nuvem de Magalhães através da corrente estelar melhorará as medições da distribuição de massa da Via Láctea. Grande parte desta massa está na forma de matéria escura. Medir melhor a massa da nossa Galáxia no seu interior distante ajudará a contabilizar a matéria ordinária e escura, restringindo as possíveis propriedades desta última. 

O novo estudo relatando a descoberta foi publicado no periódico Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics

Descoberto um exoplaneta demasiado grande para a sua estrela

Os pesquisadores da Universidade Estatal da Pensilvânia relatam a descoberta de um planeta demasiado massivo que sua estrela hospedeira.

© U. Pensilvânia (ilustração do exoplaneta LHS-3154 b)

O exoplaneta LHS-3154 b é 13 vezes mais massivo do que a Terra e está em órbita da estrela "ultrafria" LHS-3154, que por sua vez é nove vezes menos massiva do que o Sol. A razão de massa do planeta recém-descoberto com a sua estrela é mais de 100 vezes superior ao da Terra e do Sol. 

A descoberta revela o planeta mais massivo conhecido numa órbita próxima em torno de uma estrela anã ultrafria, as estrelas menos massivas e mais frias do Universo. A descoberta vai contra o que as teorias atuais preveem para a formação de planetas em torno de estrelas pequenas e marca a primeira vez que um planeta com uma massa tão elevada foi observado em órbita de uma estrela de massa tão baixa. 

O disco de formação planetária em torno da estrela de baixa massa LHS-3154 não deverá ter massa sólida suficiente para formar este planeta. Mas ele existe, por isso há necessidade de reexaminar a nossa compreensão de como os planetas e as estrelas se formam.

O planeta foi detectado usando o espectrógrafo HPF (Habitable Zone Planet Finder), que foi concebido para detectar planetas em órbita das estrelas mais frias localizados fora do Sistema Solar. Acoplado ao telescópio Hobby-Eberly do Observatório McDonald, EUA, o HPF fornece algumas das medições de maior precisão até à data de tais sinais infravermelhos de estrelas próximas.

O núcleo planetário pesado deste exoplaneta inferido pelas medições da equipe exigiria uma maior quantidade de material sólido no disco de formação planetária do que os modelos atuais preveem. A descoberta também levanta questões sobre os conhecimentos anteriores da formação de estrelas, uma vez que a massa de poeira e a relação poeira-gás do disco que rodeia estrelas como LHS-3154, quando eram jovens e recém-formadas, teriam de ser 10 vezes superiores ao que foi observado para formar um planeta tão massivo.

Um artigo foi escrito na revista Science.

Fonte: Leiden University

sábado, 2 de dezembro de 2023

Descoberto um disco em torno de uma estrela em outra galáxia

Numa descoberta notável, os astrônomos encontraram um disco em torno de uma estrela jovem na Grande Nuvem de Magalhães, uma galáxia vizinha da Via Láctea.

© ESO (disco e jato do sistema estelar jovem HH 1177)

A imagem á esquerda são observações efetuadas com o instrumento MUSE (Multi Unit Spectroscopic Explorer), montado no VLT do ESO, e que mostram a nuvem progenitora, LHA 120-N 180B, na qual o sistema, denominado HH 1177, foi inicialmente observado. A imagem do centro mostra os jatos que o acompanham. A parte superior do jato desloca-se ligeiramente na nossa direção e por isso apresenta-se com um desvio para o azul; a parte inferior do jato está se afastando de nós e por isso é vista com um desvio para o vermelho. A imagem à direita, as observações executadas com o ALMA revelam o disco em rotação em torno da estrela, do mesmo modo com partes se aproximando e afastando de nós.

Trata-se da primeira vez que um disco deste tipo, idêntico aos que formam planetas na Via Láctea, é encontrado fora da nossa Galáxia. As novas observações revelam uma estrela jovem de grande massa crescendo e acumulando matéria do meio que a envolve, dando assim origem a um disco em rotação. A detecção do disco foi feita com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA) no Chile, do qual o Observatório Europeu do Sul (ESO) é um parceiro. Os discos são vitais para a formação de estrelas e planetas na Via Láctea e, pela primeira vez, temos agora provas diretas da ocorrência do mesmo fenômeno em outra galáxia. 

Para ter a prova irrefutável de que este disco estava de fato presente, a equipe teve que medir o movimento do gás denso em torno da estrela. Quando a matéria é atraída por uma estrela em crescimento, não cai diretamente sobre ela; em vez disso, achata-se num disco que gira em torno da estrela. Mais perto do centro, o disco roda mais depressa, e esta diferença de velocidade é a pista que assinala a existência de um disco de acreção.

A frequência da radiação varia consoante a velocidade a que o gás que emite esta radiação se move em direção a nós ou na direção oposta, caracterizando o efeito Doppler. Trata-se exatamente do mesmo fenômeno que ocorre quando o tom da sirene de uma ambulância muda ao passar por nós e a frequência do som muda de mais alta para mais baixa. As medições de frequência detalhadas de que o ALMA é capaz permitiram distinguir a rotação caraterística de um disco, confirmando a primeira detecção de um disco em torno de uma estrela extragaláctica jovem. 

As estrelas de grande massa, como a que foi aqui observada, formam-se muito mais rapidamente e têm vidas muito mais curtas do que as estrelas de pequena massa, como é o caso do nosso Sol. Na nossa Galáxia, estas estrelas massivas são notoriamente difíceis de observar, estando frequentemente obscurecidas pelo material poeirento a partir do qual se formaram no momento em que um disco está se formando à sua volta. 

No entanto, na Grande Nuvem de Magalhães, uma galáxia situada a 160.000 anos-luz de distância da Terra, o material a partir do qual estão se formando novas estrelas é fundamentalmente diferente do da Via Láctea. Graças à menor quantidade de poeira aí presente, a HH 1177 já não está envolvida no seu casulo natal, oferecendo uma visão desobstruída, ainda que distante, da formação de estrelas e planetas.

O disco foi descoberto numa região da Grande Nuvem de Magalhães denominada LHA 120-N 180B, veja a publicação intitulada: Bolhas de estrelas recém-nascidas

Um artigo foi publicado na revista Nature

Fonte: ESO

sábado, 25 de novembro de 2023

Um "cadáver" estelar dá sinais de vida

Uma equipe liderada pela Universidade de Cornell relata que após a morte explosiva de uma estrela distante, um "cadáver" estelar ativo foi a fonte provável de repetidos surtos energéticos observados ao longo de vários meses, um fenômeno nunca visto antes.

© Caltech (ilustração de buraco negro acretando matéria numa galáxia)

Os relâmpagos brilhantes e breves, tão curtos quanto alguns minutos de duração e tão poderosos quanto a explosão original 100 dias depois, apareceram no rescaldo de um tipo raro de cataclismo estelar que os pesquisadores se propuseram a encontrar, conhecido como LFBOT (Luminous Fast Blue Optical Transient). O LFBOT foi oficialmente rotulado AT2022tsd, apelidado de "diabo da Tasmânia", e os subsequentes pulsos de luz vistos estão a cerca de um bilhão de anos-luz da Terra.

Desde a sua descoberta em 2018, os astrônomos têm especulado sobre o que poderá estar na origem de tais explosões extremas, que são muito mais brilhantes do que os fins violentos pelo qual as estrelas massivas normalmente passam, mas que se desvanecem em dias em vez de semanas. 

Especula-se que a atividade anteriormente desconhecida, que foi estudada por 15 telescópios em todo o mundo, confirma que o "motor" deve ser um "cadáver" estelar: um buraco negro ou uma estrela de nêutrons. Isto resolve anos de debate sobre o que está na origem deste tipo de explosão e revela um método direto de estudar a atividade dos cadáveres estelares.

Para aprofundar a pesquisa sobre o abrupto aumento de brilho, os pesquisadores envolveram parceiros que contribuíram com observações de mais de uma dúzia de outros telescópios, incluindo um equipado com uma câmara de alta velocidade. A análise acabou por confirmar pelo menos 14 impulsos de luz irregulares durante um período de 120 dias, provavelmente apenas uma fração do número total. 

Surpreendentemente, em vez de desvanecer de forma constante, como seria de esperar, a fonte voltou a brilhar por breves instantes. Os processos exatos que estiveram em ação - talvez um buraco negro canalizando jatos de material estelar para o exterior a uma velocidade próxima da da luz - continuam a ser estudados. 

No caso dos LFBOTs, a rotação rápida ou um forte campo magnético são provavelmente componentes chave dos seus mecanismos de lançamento. É também possível que não sejam supernovas convencionais, mas sim desencadeadas pela fusão de uma estrela com um buraco negro. 

As explosões incomuns prometem dar uma nova visão dos ciclos de vida estelares, normalmente só vistos em instantâneos de diferentes fases - estrela, explosão, remanescentes - e não como parte de um único sistema. Os LFBOTs podem representar uma oportunidade para observar uma estrela no ato de transição da vida para a morte, onde o cadáver está ativo. Pensa-se que estas erupções podem estar surgindo de um destes cadáveres recém-formados, o que fornece uma forma de estudar as suas propriedades depois da sua formação. 

Um artigo foi publicado na revista Nature

Fonte: Cornell University

terça-feira, 7 de novembro de 2023

Revelando os “ossos” da Mão Cósmica Fantasmagórica

Em 1895, Wilhelm Röntgen descobriu os raios X e os usou para obter imagens dos ossos da mão de sua esposa, dando início a uma ferramenta revolucionária de diagnóstico para a medicina.

© Chandra / IXPE (pulsar PSR B1509-58)

Agora, dois dos telescópios espaciais de raios X da NASA combinaram os seus poderes de imagem para revelar os "ossos" do campo magnético de uma notável estrutura em forma de mão no espaço. Juntos, estes telescópios revelam o comportamento de uma estrela morta em colapso que sobrevive através de plumas de partículas de matéria energizada e antimatéria. 

Há cerca de 1.500 anos, uma estrela gigante na nossa Galáxia ficou sem combustível nuclear para queimar. Quando isso aconteceu, a estrela entrou em colapso e formou um objeto extremamente denso chamado estrela de nêutrons. Estrelas de nêutrons em rotação com fortes campos magnéticos, ou pulsares, fornecem laboratórios para física extrema, com condições que não podem ser reproduzidas na Terra. 

Pulsares jovens podem criar jatos de matéria e antimatéria afastando-se dos polos do pulsar, junto com um vento intenso, formando uma “nebulosa de vento pulsar”. Em 2001, o observatório de raios X Chandra da NASA observou pela primeira vez o pulsar PSR B1509-58 e revelou que a sua nebulosa de vento pulsar (referida como MSH 15-52) se assemelha a uma mão humana. O pulsar está localizado na base da “palma” da nebulosa. MSH 15-52 está localizada a 16.000 anos-luz da Terra. 

Agora, o mais novo telescópio de raios X da NASA, o Imaging X-ray Polarimetry Explorer (IXPE), observou MSH 15-52 durante cerca de 17 dias, o período mais longo que já observou qualquer objeto desde que foi lançado em dezembro de 2021. 

O IXPE fornece informações sobre a orientação do campo elétrico dos raios X, determinada pelo campo magnético da fonte de raios X, ou seja, a polarização de raios X. Em grandes regiões do MSH 15-52 a quantidade de polarização é notavelmente alta, atingindo o nível máximo esperado do trabalho teórico. Para atingir esta força, o campo magnético deve ser muito retilíneo e uniforme, o que significa que há pouca turbulência nestas regiões da nebulosa do vento pulsar. 

Uma característica particularmente interessante da MSH 15-52 é um jato brilhante de raios X direcionado do pulsar para o “pulso” na parte inferior da imagem. Os novos dados do IXPE revelam que a polarização no início do jato é baixa, provavelmente porque esta é uma região turbulenta com campos magnéticos complexos e emaranhados associados à geração de partículas de alta energia. No final do jato, as linhas do campo magnético parecem endireitar-se e tornar-se muito mais uniformes, fazendo com que a polarização se torne muito maior.

Estes resultados implicam que as partículas recebem um impulso de energia em regiões turbulentas complexas perto do pulsar na base da "palma da mão" e fluem para áreas onde o campo magnético é uniforme ao longo do "pulso, dedos e polegar". 

Esta façanha possibilitou a descoberta da história de vida da matéria superenergética e das partículas de antimatéria em torno do pulsar. Isto nos ensina como os pulsares podem atuar como aceleradores de partículas. O IXPE também detectou campos magnéticos semelhantes para as nebulosas de vento dos pulsares Vela e Caranguejo, o que implica que podem ser surpreendentemente comuns nestes objetos. 

Fonte: Smithsonian Astrophysical Observatory

terça-feira, 31 de outubro de 2023

Novas pistas para a formação e evolução das estrelas na Via Láctea

Após estudos comparativos de uma amostra de quase 50 aglomerados abertos de diferentes idades na Via Láctea, uma pesquisa mostra que, quando estes aglomerados estelares envelhecem, perdem a maioria dos seus membros menos massivos.

© IAC / D. López (Plêiades)

A pesquisa foi conduzida pelo IAC (Instituto de Astrofísica de Canarias) e pela ULL (Universidad de La Laguna), com a colaboração da Universidade Politécnica de Cartagena, cujo resultado confirma que existem processos dinâmicos internos nos aglomerados abertos, causados pelas suas longas viagens através da Galáxia, que provocam a expulsão destas estrelas de baixa massa. O estudo utilizou dados do satélite Gaia da ESA. 

Um aglomerado aberto é um grupo de estrelas que se formou a partir de uma única nuvem molecular. Os exemplos mais conhecidos são as Plêiades (M45) e as Híades, que podem ser vistas a olho nu no céu de inverno. Os aglomerados abertos são constituídos por várias centenas a vários milhares de estrelas, que estão ligadas entre si pela gravidade, embora menos fortemente do que os aglomerados globulares. 

Dado que todas as estrelas de um aglomerado têm a mesma origem, idade e composição química, as suas propriedades são mais fáceis de determinar do que as de estrelas isoladas, o que torna os aglomerados muito úteis para o estudo da formação e evolução estelar. As estrelas nos aglomerados abertos compartilham também um movimento comum pelo espaço, derivado do movimento da nuvem molecular a partir da qual se formaram. O estudo deste movimento permite distinguir as estrelas de um determinado aglomerado de estrelas que se encontram ao longo da mesma linha de visão, mas que não fazem parte do mesmo, e saber com segurança que nasceram ao mesmo tempo, que estão a uma distância comum da Terra e que estão relacionadas entre si como um grupo. 

Uma equipe de cientistas liderada pela pesquisadora do IAC, Maruska Zerjal, utilizou as últimas medições do satélite Gaia da ESA para estudar os movimentos das estrelas que fazem parte de 50 aglomerados abertos a uma distância moderada do Sol. Ao escolher a amostra, foi estabelecido um limite de distância de 1.500 anos-luz e um limite de idade de 1 bilhão de anos, o que é 4,6 vezes inferior à idade do Sol. Dentro destes limites, foi possível detectar estrelas com pouca massa, menos de metade da massa do Sol, que são muito mais difíceis de detectar do que estrelas mais massivas e brilhantes.

Foi considerado este limite superior para a distância porque as estrelas de baixa massa são demasiado tênues para serem observadas como objetos isolados quando estão longe de nós, e para a idade porque sabe-se que em aglomerados muito antigos este tipo de estrelas é quase indetectável. 

Uma vez identificados os aglomerados, eles foram classificados em três grupos e analisadas a distribuição do brilho das estrelas que os compõem. Depois de analisar cada grupo, a equipe mostrou que nos aglomerados mais antigos estudados, entre 100 milhões e 800 milhões de anos, há uma perda constante das estrelas menos massivas. Os aglomerados mais jovens, por outro lado, apresentam todos uma distribuição estelar semelhante, com as mesmas proporções dos diferentes tipos de estrelas, desde as mais massivas e brilhantes às menos massivas e mais fracas.

Esta descoberta implica duas conclusões importantes. Em primeiro lugar, a distribuição da massa das estrelas em aglomerados jovens parece ser um fenômeno universal. Em segundo lugar, nos aglomerados abertos existem processos dinâmicos internos devido às suas longas viagens através da Galáxia, que os levam a perder estrelas de baixa massa.

O catálogo dos aglomerados analisados está disponível no arquivo astronômico público do CDS (Centre de Données astronomiques de Strasbourg). Além disso, para tornar os resultados ainda mais acessíveis a um público mais vasto, a equipe desenvolveu um website interativo com todos os aglomerados e as estrelas que os compõem, o GAIA Open Clusters.

Um artigo foi publicado no periódico Astronomy & Astrophysics. 

Fonte: Instituto de Astrofísica de Canarias

domingo, 29 de outubro de 2023

Os fantasmas de Cassiopeia

A Gama Cassiopeia brilha alto nos céus noturnos de outono do norte.

© G. Gruntz / J. Bax (IC 59, IC 63 & Gama Cassiopeia)

É a estrela pontiaguda mais brilhante neste campo de visão telescópico em direção à constelação de Cassiopeia. 

A estrela Gama Cassiopeia compartilha a cena de aparência etérea com nuvens interestelares fantasmagóricas de gás e poeira, com IC 59 (canto superior esquerdo) e IC 63, localizadas a cerca de 600 anos-luz de distância. 

No entanto, elas estão desaparecendo lentamente, erodindo sob a influência da radiação energética da Gama Cassiopeia quente e luminosa. Ela está fisicamente localizada a apenas 3 a 4 anos-luz da nebulosa. 

Um pouco mais próximo da estrela, IC 63 é dominado pela luz vermelha H-alfa emitida quando átomos de hidrogênio ionizados pela radiação ultravioleta da estrela se recombinam com os elétrons. Mais longe da estrela, IC 59 mostra proporcionalmente menos emissão de H-alfa, mas mais da tonalidade azul característica da poeira refletida pela luz estelar.

O vislumbre cósmico se estende por mais de 1 grau ou 10 anos-luz a uma distância estimada de Gama Cassiopeia.

Fonte: NASA

sexta-feira, 13 de outubro de 2023

Estrela supergigante Mu Cephei

Mu Cephei é uma estrela muito grande.

© David Cruz (Mu Cephei)

Mu Cephei é uma supergigante de classe M com cerca de 1.500 vezes o tamanho do Sol, é uma das maiores estrelas visíveis a olho nu e até mesmo uma das maiores de toda a Galáxia. Se substituísse o Sol em nosso Sistema Solar, Mu Cephei englobaria facilmente Marte e até Júpiter. Ela não é a maior supergigante conhecida; é a estrela UY Scuti, hipergigante que tem raio quase 1.700 vezes maior que o do Sol. 

Historicamente conhecida como Estrela Granada (Grená) de Herschel, Mu Cephei é extremamente vermelha. A aproximadamente 2.800 anos-luz de distância, a supergigante é vista perto da borda da nebulosa de emissão avermelhada IC 1396 em direção à constelação Cepheus, nesta imagem telescópica. 

Muito mais fria e, portanto, mais vermelha que o Sol, a luz desta supergigante é ainda mais avermelhada pela absorção e dispersão devido à poeira interveniente na Via Láctea. Uma estrela variável bem estudada e considerada numa fase tardia da evolução estelar, Mu Cephei é também uma estrela massiva, destinada a explodir como uma supernova com colapso do núcleo. 

Fonte: NASA

domingo, 8 de outubro de 2023

Medindo a expansão do Universo através de estrelas de nêutrons

Nos últimos anos, a astronomia tem-se visto numa espécie de crise: embora saibamos que o Universo está se expandindo, e embora saibamos aproximadamente a que velocidade, as duas principais formas de medir essa expansão não estão de acordo.

© NASA (ilustração dos dois métodos utilizados para medir a expansão do Universo)

Na imagem o hemisfério esquerdo mostra o remanescente em expansão da supernova descoberta por Tycho Brahe em 1572, aqui observada em raios X. À direita, um mapa da radiação cósmica de fundo de uma metade do céu, observada em micro-ondas.

Agora, astrofísicos do Instituto Niels Bohr sugerem um novo método que pode ajudar a resolver esta tensão. Sabemos isto desde que Edwin Hubble e outros astrônomos, há cerca de 100 anos, mediram as velocidades de um certo número de galáxias circundantes. As galáxias do Universo são "transportadas" para longe umas das outras por esta expansão e, por conseguinte, afastam-se umas das outras. 

Quanto maior for a distância entre duas galáxias, mais rapidamente se afastam, e o ritmo exato deste movimento é uma das grandezas mais fundamentais da cosmologia moderna. O número que descreve a expansão tem o nome de "constante de Hubble", aparecendo numa multiplicidade de equações e modelos diferentes do Universo e dos seus constituintes. 

Para compreender o Universo, temos, portanto, de conhecer a constante de Hubble com a maior exatidão possível. Existem vários métodos para a medir; métodos que são mutuamente independentes, mas que, felizmente, dão quase o mesmo resultado. O método intuitivamente mais fácil de compreender é, em princípio, o mesmo que Edwin Hubble e os seus colegas utilizaram há um século: localizar um conjunto de galáxias e medir as suas distâncias e velocidades. Na prática, isto é feito através da procura de galáxias com estrelas em explosão, as chamadas supernovas. 

Este método é complementado por outro método que analisa irregularidades na chamada radiação cósmica de fundo, uma forma antiga de luz que remonta a pouco tempo depois do Big Bang. Os dois métodos - o método das supernovas e o método da radiação de fundo - têm dado sempre resultados ligeiramente diferentes. Mas qualquer medição tem incertezas e, há alguns anos atrás, as incertezas eram suficientemente substanciais para que as pudéssemos culpar pela disparidade. 

No entanto, à medida que as técnicas de medição foram melhorando, as incertezas diminuíram e atingindo agora a um ponto em que podemos afirmar com um elevado grau de confiança que ambos não podem estar corretos. A raiz desta "tensão de Hubble", quer se trate de efeitos desconhecidos que enviesam sistematicamente um dos resultados, quer se trate de um indício de uma nova física ainda por descobrir, é atualmente um dos temas mais efervescentes da astronomia. 

Um dos maiores desafios consiste em determinar com exatidão as distâncias das galáxias. Mas um novo estudo propõe um novo método para medir distâncias, ajudando assim a resolver a disputa em curso. Quando duas estrelas de nêutrons ultracompactas, que são remanescentes de supernovas, se orbitam uma em torno da outra e acabam por se fundir, geram uma nova explosão, a chamada quilonova. 

Num outro estudo publicado há poucos dias, os pesquisadores mostram que as quilonovas, apesar da sua complexidade, podem ser descritas por uma única temperatura. E verifica-se que a simetria e a simplicidade das quilonovas permitem aos astrônomos deduzir exatamente a quantidade de luz que emitem. Comparando esta luminosidade com a quantidade de luz que chega à Terra, foi possível calcular a distância a que a quilonova se encontra. Foi obtido assim um método novo e independente para calcular a distância a galáxias que contêm quilonovas. 

As supernovas, que até agora têm sido utilizadas para medir as distâncias das galáxias, nem sempre emitem a mesma quantidade de luz. Além disso, exigem que se calibre primeiro a distância utilizando outro tipo de estrelas, as chamadas Cefeidas, que, por sua vez, também têm de ser calibradas. Com as quilonovas pode-se contornar estas complicações que introduzem incertezas nas medições. 

Para demonstrar o seu potencial, os astrofísicos aplicaram o método a uma quilonova descoberta em 2017. O resultado é uma constante de Hubble mais próxima da do método da radiação de fundo, mas os pesquisadores ainda não se atrevem a afirmar que o método da quilonova pode resolver a tensão de Hubble.

Os artigos foram publicados nos periódicos Astronomy & Astrophysics e The Astrophysical Journal

Fonte: Niels Bohr Institute