Mostrando postagens com marcador Lente Gravitacional. Mostrar todas as postagens
Mostrando postagens com marcador Lente Gravitacional. Mostrar todas as postagens

domingo, 23 de abril de 2017

Lente cósmica fornece visão única de supernova

Astrônomos descobriram uma supernova tipo Ia através de lente gravitacional, que logo lhes dará uma nova medida da expansão do Universo.

lente gravitacional da supernova tipo Ia

© Hubble/SDSS/Palomar (lente gravitacional da supernova tipo Ia)

Esta imagem composta mostra a supernova iPTF16geu de tipo Ia vista com diferentes telescópios. A imagem de fundo mostra o céu noturno através do observatório Palomar. A imagem mais à esquerda mostra uma observação do Sloan Digital Sky Survey (SDSS). O telescópio espacial Hubble captou a imagem central, que mostra a galáxia de primeiro plano responsável por curvar a luz da supernova (SDSS J210415.89-062024.7). A imagem mais à direita também foi obtida com o Hubble e retrata as quatro imagens da explosão de supernova ao redor da galáxia.

É assim que Mansi Kasliwal, do California Institute of Technology (Caltech), descreve sua primeira impressão quando ela olhou para as imagens iniciais da supernova iPTF 16geu. Era claramente um tipo Ia, o tipo de supernova que se tornou famosa em seu papel como uma vela padrão. Em 2011, uma equipe de astrônomos usou apenas este tipo de supernovas para medir a luminosidade independentemente da distância para descobrir a existência da energia escura. Os cientistas norte-americanos Saul Perlmutter, Adam Riess e Brian Schmidt receberam o Prêmio Nobel de Física por pesquisas que mostraram como a expansão do Universo está acelerando.

Mas esta supernova não parecia seguir a regra que governava o resto do seu tipo."Era muito mais brilhante do que deveria ter sido dada sua distância de nós," diz Kasliwal.

Observações efetuadas com o telescópio espacial Hubble, o telescópio Keck no Havaí e o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO) no Chile revelaram mais três supernovas perto da primeira. Elas eram exatamente idênticas. Acontece que a gravidade de uma galáxia de primeiro plano tinha curvado a luz da supernova iPTF 16geu durante sua viagem de 4,3 bilhões de anos em direção à Terra, evidenciando seu brilho por um fator de 52 e dividindo sua luz em quatro imagens apenas 0,3 segundos de arco. O resultado é uma clássica Cruz de Einstein, a primeira relativa a uma supernova do Tipo Ia.

Os astrônomos descobriram dezenas de lentes gravitacionais pela dúzia. As galáxias massivas em primeiro plano ou os aglomerados de galáxias magnificam e distorcem a luz das galáxias de fundo, propicinado uma visão do Universo primordial que estaria de outra maneira fora de alcance.

Mas as supernovas raramente são captadas em tais lentes. Seu brilho de luz é muito breve, da ordem de meses ou anos, dependendo do tipo de supernova e sua distância. Apenas uma supernova com múltiplas imagens foi captada antes: a Supernova Refsdal, uma supernova de colapso de núcleo.

Esta descoberta foi realizada pelo Intermediate Palomar Transient Factory (iPTF), um telescópio totalmente automatizado de 1,2 metros que varre o céu com uma câmera de campo largo. Ele foi projetado para captar eventos celestes em rápida mudança, como supernovas, em tempo quase real. Os pesquisadores do Global Relay of Observatories Watching Transients Happen (GROWTH) lideraram as observações que acompanharam a descoberta da supernova.

Como a luz da Supernova iPTF 16geu foi dividida em quatro imagens, cada uma destas imagens tomou um caminho ligeiramente diferente para a Terra. Agora, a equipe internacional de astrônomos está calculando o comprimento de cada um destes caminhos. Logo, os astronômos terão uma medida da constante de Hubble, que nos diz quão rapidamente o Universo está se acelerando. Esta é uma peça valiosa de dados, já que os astrônomos têm discutido sobre a constante do Hubble há décadas e o debate apenas se intensificou nos últimos anos.

"Quando a taxa de expansão do Universo é medida localmente, usando supernovas ou estrelas Cefeidas, é obtido um número diferente daquele procurado nas primeiras observações do Universo e da radiação de fundo de microondas cósmico," diz Ariel Goobar, da Universidade de Estocolmo, Suécia.

Fonte: Sky & Telescope

domingo, 19 de fevereiro de 2017

Hubble espia galáxias fracas no Universo primordial

Astrônomos utilizaram o telescópio espacial Hubble captaram as galáxias mais fracas no Universo distante.

aglomerado de galáxia MACS 0416

© STScI/Hubble (aglomerado de galáxia MACS 0416)

Na imagem, a cor ciano marca a distribuição de massa no aglomerado, principalmente na forma de matéria escura; a cor magenta destaca o grau em que as galáxias de fundo são ampliadas, o que está relacionado com a distribuição de massa.

O resultado fornece novas informações sobre uma época mal compreendida na história primitiva de nosso cosmos.

De acordo com Rachael Livermore (Universidade do Texas, Austin), estas galáxias emitem menos de um centésimo da luminosidade da Via Láctea. A galáxia mais sombria é 2.000 vezes mais fraca do que nossa galáxia. "Elas são as precursoras de sistemas anões como a vizinha galáxia Fornax," diz Livermore.

Livermore e seus colegas encontraram 167 galáxias fracas entre redshifts de 5,3 e 8,8, ou seja, sua luz viajou entre 12,6 e 13,1 bilhões de anos para a Terra. Normalmente, mesmo o Hubble nunca seria capaz de detectá-las; o Hubble pode detectar objetos até a 31ª magnitude, mas a combinação da fraqueza intrínseca destes objetos além de sua incrível distância os coloca fora do alcance do Hubble. Eles foram detectados apenas porque a lente gravitacional aumentou seu brilho.

Ao longo dos últimos anos, o Hubble analisou longamente seis enormes aglomerados de galáxias no chamado programa Frontier Fields. Os astrônomos estão à procura de galáxias fracas nos fundos destes aglomerados, utilizando a gravidade do aglomerado no primeiro plano que magnifica as imagens de galáxias remotas. Quanto mais forte a ampliação, mais fraca as galáxias que o Hubble pode detectar.

Há um problema, porém: A ampliação produzida pela lente gravitacional é mais forte nas regiões centrais do aglomerado no primeiro plano. Mas isso também é por causa das galáxias do aglomerado que são mais brilhantes e unidas. Todas as galáxias ampliadas do fundo são inundadas por esta luz do primeiro plano.

Juntamente com seu colega Steven Finkelstein (também na Universidade do Texas, Austin) e Jennifer Lotz (Space Telescope Science Institute), Livermore conseguiu filtrar a luz de galáxias em primeiro plano em dois aglomerados do Frontier Fields: Abell 2744, Na constelação Sculptor, também conhecido como Aglomerado Pandora, e MACS 0416.1-2403 em Eridanus.

"Usamos uma técnica conhecida como decomposição de ondas," explica Livermore. "Você basicamente analisa uma imagem em muitas escalas físicas possíveis para isolar as maiores estruturas. É um pouco comparável à forma como a compressão de imagens funciona, ou à técnica por trás de fones de ouvido com cancelamento de ruído. "A decomposição de ondas tem sido usada em astronomia antes, mas não para este propósito específico," acrescenta ela.

Algumas das galáxias fracas de fundo que esta análise revelou são ampliadas por um fator de 50 ou 60. "Elas são até cem vezes menos luminosas do que as mais fracas galáxias observadas noHubble Ultra Deep Field," diz Livermore.

O Hubble está finalmente vendo as galáxias mais comuns deste período de tempo. Graças à combinação de lente gravitacional, a sensibilidade sem precedentes do Hubble e a técnica de decomposição de ondas, os astrônomos agora têm uma melhor imagem da quantidade de luz que estas galáxias emitem como população.

Em particular, há agora forte evidência de que estas pequenas e fracas galáxias agiram como uma importante fonte de luz no Universo jovem, mesmo que as galáxias menos massivas emitiam menos luz, elas compensaram pelos seus números.

É uma boa notícia para os cosmólogos que tentam entender a assim chamada Época da Reionização: Algumas centenas de milhões de anos após o Big Bang, átomos de hidrogênio neutro no espaço intergaláctico se ionizaram, perdendo seu único elétron devido à radiação ultravioleta energética. É chamado de reionização porque o hidrogênio também estava em estado ionizado logo após o Big Bang, antes que o Universo esfriasse e escurecesse.

No passado, os cientistas não foram capazes de concordar sobre a principal fonte de radiação energética. A luz poderia ter vindo da primeira geração de estrelas em uma enorme população de pequenas galáxias apenas formadas, ou quasares raros, mas muito luminosos, alimentados por buracos negros supermassivos, poderiam ter fornecido a radiação. O primeiro cenário agora parece ser o mais promissor; pois, há um grande número de galáxias fracas necessárias para reionizar o Universo.

Um artigo sobre a observação foi publicado no periódico Astrophysical Journal.

Fonte: Sky & Telescope

sexta-feira, 27 de janeiro de 2017

Lentes cósmicas suportam a expansão mais rápida do Universo

Usando galáxias como lentes gravitacionais gigantes, um grupo internacional de astrônomos, com o auxílio do Telescópio Espacial Hubble da NASA/ESA, fez uma medição independente de quão rápido o Universo está se expandindo.

quasar ampliado por lente gravitacional

© Hubble (quasar ampliado por lente gravitacional)

HE0435-1223, localizado no centro desta imagem de campo largo, está entre os cinco melhores quasares ampliados por lentes gravitacionais descobertos até à data. A galáxia no plano da frente cria quatro imagens distribuídas quase uniformemente do quasar distante em seu redor.

A medida recente da velocidade de expansão, para o Universo local, é consistente com achados anteriores. Estes estão, no entanto, em discordância intrigante com medições do Universo primitivo. Isto sugere um problema fundamental no cerne da nossa compreensão do cosmos.

A constante de Hubble, a velocidade a que o Universo está se expandindo, é um dos parâmetros fundamentais que descrevem o nosso Universo. Um grupo de astrônomos da colaboração H0LiCOW (H0 [abreviação para a constante de Hubble] Lenses in COSMOGRAIL's Wellspring), liderado por Sherry Suyu (associada ao Instituto Max Planck de Astrofísica na Alemanha, ao ASIAA em Taiwan e à Universidade Técnica de Munique), usou o Telescópio Espacial Hubble e outros telescópios espaciais e terrestres para observar cinco galáxias a fim de chegar a uma medição independente da constante de Hubble.

A nova medição é completamente independente, mas está em excelente concordância, de outras medições da constante de Hubble no Universo local que usaram variáveis Cefeidas e supernovas como pontos de referência.

No entanto, o valor medido por Suyu e sua equipe, bem como aqueles medidos usando Cefeidas e supernovas, são diferentes da medição obtida pelo satélite Planck da ESA. Mas há uma distinção importante, o Planck mediu a constante de Hubble para o Universo jovem, observando o fundo de micro-ondas cósmico.

Embora este valor para a constante de Hubble, determinado pelo Planck, encaixe com a nossa compreensão atual do cosmos, os valores obtidos pelos diferentes grupos de astrônomos para o Universo local estão em desacordo com o nosso modelo teórico aceito do Universo. "A velocidade de expansão do Universo começa agora a ser medida de maneiras diferentes e com tanta precisão que as discrepâncias reais podem apontar para uma nova física para além do nosso conhecimento atual do Universo," analisa Suyu.

Os alvos do estudo foram galáxias massivas posicionadas entre a Terra e quasares muito distantes, que são núcleos de galáxias incrivelmente luminosas. A luz dos quasares mais distantes é dobrada pelas grandes massas das galáxias como resultado de lentes gravitacionais fortes. Isto cria várias imagens do quasar de fundo, algumas manchadas em arcos estendidos.

Dado que as galáxias não criam distorções perfeitamente esféricas no tecido do espaço e que as galáxias "lente" e os quasares não estão perfeitamente alinhados, a luz das diferentes imagens do quasar de fundo segue caminhos com comprimentos ligeiramente diferentes. Uma vez que o brilho dos quasares muda ao longo do tempo, é possível notar as diferentes imagens cintilarem em momentos diferentes, os atrasos entre elas dependendo das distâncias que a luz tem que percorrer. Estes atrasos estão diretamente relacionados com o valor da constante de Hubble. "O nosso método é a maneira mais simples e direta de medir a constante de Hubble, pois só usa geometria e a Relatividade Geral, sem outras suposições," explica Frédéric Courbin da EFPL, Suíça.

Usando as medições precisas dos atrasos de tempo entre as várias imagens, bem como modelos de computador, a equipe conseguiu determinar a constante de Hubble com uma precisão incrivelmente alta: 3,8%. A equipe H0LiCOW determinou o valor, para a constante de Hubble, de 71,9±2,7 quilômetros por segundo por megaparsec. Em 2016, cientistas usaram o Hubble para determinar um valor de 73,24±1,74 km/s/Mpc. Em 2015, o satélite Planck da ESA mediu a constante com a mais alta precisão até agora e obteve um valor de 66,93±0,62 km/s/Mpc. "A medição precisa da constante de Hubble é um dos 'prémios' mais cobiçados da pesquisa astrofísica atual," destaca o membro da equipe Vivien Bonvin, da EPFL, Suíça. E Suyu acrescenta: "A constante de Hubble é crucial para a astronomia moderna, pois pode ajudar a confirmar ou a refutar se a nossa imagem do Universo, composta por energia escura, matéria escura e matéria normal, está realmente correta ou se nos falta algo fundamental."

Esta pesquisa foi apresentada em uma série de artigos a serem publicados no periódico Monthly Notices da Royal Astronomical Society.

Fonte: ESA

terça-feira, 24 de janeiro de 2017

Descoberta distante galáxia mais brilhante até agora conhecida

Uma equipe internacional liderada por pesquisadores do Instituto de Astrofísica das Canárias (IAC) e da Universidade de La Laguna (ULL) descobriu uma das galáxias "não-ativas" mais brilhantes no início do Universo.

ilustração da lente gravitacional BG1429 1202

© Yiping Shu/Gabi Perez (ilustração da lente gravitacional BG1429+1202)

A descoberta da galáxia BG1429+1202 foi possível graças ao auxílio de uma enorme galáxia elíptica ao longo da linha de visão do objeto, que agiu como uma espécie de lente gravitacional, amplificando o brilho e distorcendo a imagem observada. Os resultados fazem parte do projeto BELLS GALLERY, com base na análise de 1,5 milhões de espectros de galáxias do SDSS (Sloan Digital Sky Survey).

O fenômeno de lente gravitacional, previsto pela Teoria Geral da Relatividade de Einstein, é produzido quando a luz é desviada à medida que passa por um objeto muito massivo. Para um observador distante, a massa da galáxia elíptica atua sobre a luz como se fosse uma lente enorme, produzindo uma imagem mais brilhante da fonte, BG1429+1202, permitindo-nos ver detalhes que de outra forma seriam demasiado fracos de detectar.

"Este é um dos poucos casos conhecidos de galáxias com um brilho aparente muito alto e também uma luminosidade intrinsecamente elevada. As observações permitiram-nos determinar as suas propriedades principais num espaço de tempo muito curto," diz Rui Marques Chaves, doutorando do IAC-ULL e autor principal do artigo. Para estudar este sistema, foram usados dois telescópios no Observatorio del Roque de los Muchachos (Garafía, La Palma): o GTC (Gran Telescopio CANARIAS) e o WHT (William Herschel Telescope), do ING (Isaac Newton Group of Telescopes). O sistema é formado por uma galáxia elíptica a uma distância de 5,4 bilhões de anos e por trás encontra-se a BG1429+1202, que emite radiação Lyman-alfa, a 11,4 bilhões de anos-luz de nós (vemos esta galáxia como era cerca de 2,3 bilhões de anos após o Big Bang). A galáxia que age como lente produz quatro imagens distintas da galáxia distante, com um fluxo que é nove vezes maior do que seria sem esta lente natural ao longo da nossa linha de visão.

Uma característica excepcional da BG1429+1202 é a sua muito alta luminosidade na linha de emissão Lyman-alfa, uma das mais brilhantes no espectro ultravioleta, porque outros casos semelhantes de galáxias ampliadas não mostram uma emissão tão forte nesta linha. Embora o efeito de lente gravitacional já tenha sido usado em muitos projetos de pesquisa, o método de selecionar galáxias que emitem radiação Lyman-alfa foi usado pela primeira vez no projeto BELLS GALLERY. "Nós analisamos cerca de milhão e meio de espectros de galáxias," acrescenta Yiping Shu, astrônomo do NAOC (National Astronomical Observatories) em Pequim (China). "Foram obtidos com o Telescópio Sloan do Observatório Apache Point no Novo México (EUA), e detectamos emissão Lyman-alfa em galáxias muito mais distantes do que as suas lentes em 187 casos, 21 dos quais passamos a observar com o Telescópio Espacial Hubble. Essas observações confirmam que a maioria destes objetos são distorcidos por lentes gravitacionais."

O aumento do brilho aparente (o brilho observado da Terra) de galáxias distantes que é produzido por lentes gravitacionais permite-nos obter dados de qualidade melhorada. "Com telescópios como o GTC e o WHT podemos realizar estudos que seriam impossíveis sem a presença das lentes. Na prática, é como estivéssemos a observar já com um dos telescópios gigantes do futuro, como o E-ELT (European Extremely Large Telescope) de 39 metros ou o TMT (Thirty Meter Telescope)," explica Ismael Pérez Fournon, pesquisador do IAC-ULL. "BG1429+1202 é tão brilhante que até pode ser vista em imagens fotográficas do DSS (Digital Sky Survey)," acrescenta Paloma Matínez Navajas, pesquisadora do IAC.

Apesar dos numerosos estudos anteriores de lentes gravitacionais baseados em imagens e espectros do SDSS, BG1429+1202 não tinha sido descoberta até este trabalho. "Descobertas como BG1429+1202 demonstram a maneira pela qual grandes conjuntos de dados astronômicos de grandes levantamentos podem ser extraídos para novas aplicações astrofísicas. No NOAO (National Optical Astronomy Observatory), estamos implementando capacidades de acesso livre para suportar estes projetos de pesquisa de arquivo usando dados públicos de campo largo do DECam (Dark Energy Camera) e outros instrumentos, bem como dados futuros de projetos como o DESI (Dark Energy Spectroscopic Instrument), conclui Adam Bolton, diretor associado do NOAO.

Os resultados foram publicados na revista científica The Astrophysical Journal Letters.

Fonte: Instituto de Astrofísica de Canarias

sexta-feira, 23 de setembro de 2016

Encontrado exoplaneta em sistema binário por microlente gravitacional

Um planeta distante em órbita de duas estrelas, descoberto pela sua distorção do espaço-tempo, foi confirmado usando observações do telescópio espacial Hubble da NASA/ESA.

ilustração de um gigante gasoso em órbita de um par de anãs vermelhas

© STScI/G. Bacon (ilustração de um gigante gasoso em órbita de um par de anãs vermelhas)

A massa do planeta provocou o que é conhecido como evento de microlente gravitacional, onde a luz é "dobrada" pelo campo gravitacional de um objeto. O evento foi observado em 2007, fazendo deste evento o primeiro planeta circumbinário confirmado após a detecção deste fenômeno.

A maioria dos exoplanetas detectados até agora orbitam estrelas individuais. Até à data só foram descobertos alguns planetas circumbinários, planetas em órbita de duas estrelas. A maioria destes foram detectados pela missão Kepler da NASA, que usa o método de trânsito para a detecção.

Este recém-descoberto planeta, no entanto, é muito invulgar. "O exoplaneta foi observado como um evento de microlente em 2007. Uma análise detalhada revelou um terceiro corpo de lente para além da estrela e do planeta, bastante óbvios nos dados," afirma David Bennett do NASA Goddard Space Flight Center da NASA, EUA, autor principal do estudo.

O evento, OGLE-2007-BLG-349, foi detectado usando a experiência OGLE (Optical Gravitational Lensing Experiment), que procura e observa os efeitos de pequenas distorções do espaço-tempo, provocadas por estrelas e exoplanetas, que foram previstas por Einstein na sua teoria da Relatividade Geral. Estas pequenas distorções são conhecidas como microlentes gravitacionais.

O sistema binário está localizado a 8.000 anos-luz de distância na direção do centro da Via Láctea. O planeta orbita a aproximadamente 480 milhões de quilômetros da dupla estelar, mais ou menos a distância do Cinturão de Asteroides ao Sol. Completa uma órbita em torno das estrelas a cada sete anos. As duas anãs vermelhas estão separadas por apenas 11 milhões de quilômetros, ou 14 vezes o diâmetro da órbita da Lua ao redor da Terra.

No entanto, a observação OGLE não podia confirmar os detalhes do evento OGLE-2007-BLG-349 por si só, especialmente a natureza do terceiro corpo desconhecido. Um número de modelos podia ter explicado a curva de luz observada. Os dados adicionais do Hubble foram essenciais para permitir com que os cientistas fixassem um planeta circumbinário como a única explicação possível tanto para a curva de luz OGLE como para as observações do Hubble.

"O OGLE já detectou mais de 17.000 eventos de microlente gravitacional, mas esta é a primeira vez que tal evento foi provocado por um sistema planetário circumbinário," explica Andrzej Udalski da Universidade de Varsóvia, na Polônia.

Esta descoberta pioneira sugere algumas possibilidades intrigantes. Enquanto o Kepler tende a detectar planetas com órbitas pequenas, e todos os planetas circumbinários que descobriu estão muito perto do limite inferior de uma órbita estável, as microlentes gravitacionais permitem encontrar planetas a distâncias muito maiores em relação às suas estrelas hospedeiras.

"Esta descoberta sugere que precisamos de repensar a nossa estratégia de observação no que se refere a eventos de lentes binárias estelares," explica Yiannis Tsapras, do Astronomisches Recheninstitut em Heidelberg, Alemanha. "Esta é uma emocionante nova descoberta para o campo das microlentes."

Agora que a equipe mostrou que as microlentes gravitacionais podem detectar com êxito os eventos provocados por planetas circumbinários, o Hubble poderá desempenhar um papel essencial neste novo reino da busca por exoplanetas.

Fonte: ESA

quinta-feira, 28 de julho de 2016

Olho ancião no céu

Em uma descoberta rara, o Observatório Astronômico Nacional do Japão (NAOJ), juntamente com uma equipe internacional de pesquisadores da Universidade de Tóquio e do Instituto Kavli para a Física e Matemática do Universo (Kavli IPMU) obtiveram conhecimentos avançados de como a luz de uma galáxia distante pode ser dobrada pelo efeito gravitacional de uma galáxia em primeiro plano. O efeito é conhecido como lente gravitacional.

Olho de Hórus

© NAOJ (Olho de Hórus)

Normalmente, várias imagens com lentes de um único fundo da galáxia são vistas. Em teoria, o primeiro plano de galáxias podem focar várias galáxias de fundo ao mesmo tempo. Os dados mostraram um efeito de lente gravitacional raro, sugerindo o efeito de lente pela galáxia em primeiro plano de duas galáxias de fundo a distâncias diferentes. Tais sistemas, chamados de lentes "Double Source Plane (DSP)", oferecem oportunidades únicas para examinar a física fundamental de galáxias ao estender o nosso conhecimento da cosmologia.

Com base em dados do Sloan Digital Sky Survey (SDSS), a galáxia lente tem um redshift espectroscópico de z = 0,79 (ou 7,0 bilhões de anos-luz de distância). Outras observações dos objetos focados usando o espectrômetro FIRE sensível ao infravermelho no telescópio Magellan confirmou a existência de duas galáxias atrás da lente e co z = 1,30 e o outro em z = 1,99 (9,0 e 10,5 bilhões de anos-luz de distância, respectivamente ). Esta é a primeira lente de DSP para o qual as distâncias para as três galáxias são conhecidas com precisão, o que permite a compreensão mais precisa da distribuição da massa da galáxia em primeiro plano.

Pesquisadores e estudantes fizeram a descoberta ao inspecionar visualmente imagens na sede do NAOJ em Tóquio, como parte de um convite ao telescópio Subaru para estudantes em setembro de 2015. As imagens foram recolhidas a partir da Hiper Suprime-Cam (HSC) do telescópio Subaru, que está montado no Havaí. O Japão está realizando uma pesquisa difundida com a HSC de grandes áreas do céu a uma profundidade sem precedentes como parte do Programa Estratégico Subaru.

O achado raro foi apelidado de "Olho de Hórus" por causa de sua aparência e olho (incluindo nós brilhantes, um arco, e um anel de Einstein), o que é devido a um alinhamento da galáxia central da lente e ambas as fontes, e assemelha-se ao olho de Hórus, o antigo deus do céu egípcio. A pesquisa espera encontrar mais 10 sistemas do mesmo tipo.

Esta descoberta fornece novas perpectivas na física de galáxias e na expansão do Universo ao longo dos últimos bilhões de anos.

A descoberta foi descrita no periódico The Astrophysical Journal Letters.

Fonte: Kavli Institute & University of Tokyo

sexta-feira, 22 de julho de 2016

Espaço… a fronteira final

Cinquenta anos atrás o Capitão Kirk e a tripulação da nave estelar Enterprise começaram sua jornada para o espaço: a fronteira final. Agora, como o mais novo filme de Star Trek, o telescópio espacial da Hubble está igualmente explorarando novas fronteiras, observando galáxias distantes através do programa Frontier Fields.

aglomerado de galáxias Abell S1063

© Hubble/J. Lotz (aglomerado de galáxias Abell S1063)

O último alvo da missão do Hubble é o distante aglomerado de galáxias Abell S1063, potencialmente o lar de bilhões de novos mundos.

O aglomerado pode ser visto no centro da imagem e mostra como ele era há quatro bilhões de anos. Mas o aglomerado de galáxias Abell S1063 permite-nos explorar um tempo ainda mais cedo do que isso, onde nenhum telescópio tem realmente olhado antes. A enorme massa do aglomerado distorce e amplia a luz de galáxias que estão por trás devido a um efeito chamado efeito de lente gravitacional. Isso permite que o Hubble veja galáxias que de outra forma seriam muito fracas para serem observadas e torna possível procurar e estudar a primeira geração de galáxias no Universo.

Os primeiros resultados a partir dos dados sobre o Abell S1063 prometem algumas notáveis ​​descobertas. Uma galáxia já foi encontrada como era apenas um bilhão de anos após o Big Bang.

Os astrônomos também identificaram dezesseis galáxias de fundo, cuja luz foi distorcida pelo aglomerado, fazendo imagens múltiplas delas aparecendo no céu. Isto irá ajudar os astrônomos a melhorar seus modelos de distribuição da matéria comum e escura no aglomerado de galáxias, como a gravidade destes influenciam nos efeitos de distorção. Estes modelos são a chave para a compreensão da natureza misteriosa da matéria escura.

O Abell S1063 não está sozinho em sua capacidade de curvar a luz de galáxias de fundo, nem é o único destas enormes lentes cósmicas a ser estudado utilizando Hubble. Três outros aglomerados já foram observados como parte do programa Frontier Fields, e mais dois serão observados ao longo dos próximos anos, fornecendo uma imagem notável de como eles funcionam e o que está dentro e fora deles.

Os dados recolhidos dos aglomerados de galáxias anteriores foram estudados por equipes de todo o mundo, permitindo-lhes fazer descobertas importantes, tais como: as galáxias que existiam apenas centenas de milhões de anos após o Big Bang e a primeira aparição prevista de uma supernova através de lente gravitacional.

O roteirista e produtor de televisão norte-americano Eugene Roddenberry, o criador de Star Trek, ficaria orgulhoso com tal extensa colaboração internacional.

Fonte: ESA

sexta-feira, 27 de maio de 2016

Detectada a galáxia mais débil do início do Universo

Uma equipe internacional de cientistas detectou e confirmou a menor galáxia do Universo primordial através do observatório W. M. Keck no cume do Maunakea no Havaí.

espectros da fonte

© W. M. Keck Observatory/M. Bradáč (espectros da fonte)

A imagem colorida acima do aglomerado foi efetuada com o telescópio espacial Hubble através de três filtros diferentes que foram combinados para fazer uma imagem RGB. Na inserção, são vistos três espectros do sistema fotografado. Eles têm picos no mesmo comprimento de onda, mostrando que eles pertencem a uma mesma fonte.

Além de usar o telescópio mais poderoso do mundo, a equipe contou com lentes gravitacionais para ver o objeto incrivelmente fraco nascido logo após o Big Bang, observando uma galáxia como era há 13 bilhões de anos atrás.

A detecção foi feita usando o instrumento DEIMOS montado no telescópio de 10 metros do Keck II, e foi possível graças a um fenômeno previsto por Einstein em que um objeto é ampliado pela gravidade de outro objeto que está entre ele e o observador. Neste caso, a galáxia estava atrás do aglomerado de galáxias MACS2129.4-0741, que é enorme o suficiente para criar três imagens diferentes do objeto.

"Os telescópios do obervatório Keck são simplesmente os melhores do mundo para este trabalho," disse Marusa Bradáč, uma professora da Universidade da Califórnia, que liderou a equipe. "Seu poder, associado à força gravitacional de um conjunto massivo de galáxias, permite-nos ver realmente onde nenhum ser humano tenha visto antes."

"Por causa de serem vistos três deles com características exatamente idênticas, isso significa que a galáxia foi inflluenciada pelo efeito da lente gravitacional, " disse Marc Kassis, astrônomo do observatório Keck.

A galáxia encontra-se perto do final da época de reionização, um momento no início do Universo onde a maior parte do gás hidrogênio existente estre as galáxias estava passando pela transição de um gás neutro para um mais ionizado, que possibilitou acender as estrelas pela primeira vez.

"Temos agora boas restrições sobre quando o processo de reionização termina, pelo desvio para o vermelho em torno de 6 ou 12,5 bilhões de anos atrás, mas nós ainda não sabemos muitos detalhes sobre como isso aconteceu," disse Kuang-Han Huang da Universidade da Califórnia. "A galáxia detectada em nosso trabalho é provavelmente um membro da população de galáxias tênues que impulsionam o processo de reionização".

Esta galáxia possui uma massa estelar muito baixa, com apenas 1% da Via Láctea. Esta galáxia muito pequena e distante pode ajudar a compreender o processo de reionização, e as lentes gravitacionais são ferramentas essenciais para desvendar como era o Universo no seu início.

Os resultados foram publicados no periódico The Astrophysical Journal Letters.

Fonte: W. M. Keck Observatory

quinta-feira, 21 de abril de 2016

Galáxias formam um Anel de Einstein

Pode uma galáxia se esconder atrás de outra?

SDP.81

© ALMA/Hubble (SDP.81)

Não no caso da SDP.81. Aqui a galáxia em primeiro plano, mostrada em azul numa imagem feita pelo telescópio espacial Hubble, age como uma imensa lente gravitacional, puxando a luz da galáxia que está em segundo plano, mostrada em vermelho em uma imagem feita em ondas de rádio pelo ALMA, e mantendo-a visível. O alinhamento é tão preciso que a galáxia distante está distorcida em parte do anel ao redor da galáxia de primeiro plano, uma formação conhecida como Anel de Einstein. Análises detalhadas das distorções causadas pelas lentes gravitacionais, indicam que uma pequena galáxia satélite escura participa das deflexões, indicando assim que muitas galáxias satélites podem ser muito apagadas e dominadas pela matéria escura. Essa pequena galáxia é mostrada por um pequeno ponto branco à esquerda da imagem. Embora se espalhe por somente poucos arcos de segundo, o Anel de Einstein tem na verdade dezenas de milhares de anos-luz de diâmetro.

Fonte: NASA

quarta-feira, 25 de novembro de 2015

Quando Alice no País das Maravilhas encontra Albert Einstein

Faz hoje um século que Albert Einstein publicou a sua teoria da relatividade geral, uma das conquistas científicas mais importantes do século passado.

Gato de Cheshire

© Hubble/Chandra/J. Irwin (Gato de Cheshire)

Um resultado fundamental da teoria de Einstein é que a matéria distorce o espaço-tempo e, portanto, um objeto massivo pode provocar uma curvatura observável na luz de um objeto de fundo. O primeiro sucesso da teoria foi a observação, durante o eclipse solar total em 29 de maio de 1919, de que a luz de uma estrela distante de fundo era desviada exatamente pelo montante previsto à medida que passava perto do Sol.

Desde então, os astrônomos já encontraram muitos exemplos deste fenômeno, conhecido como efeito de lente gravitacional. Mais do que apenas uma ilusão cósmica, o efeito de lente gravitacional fornece uma maneira de examinar galáxias e grupos de galáxias extremamente distantes que, de outra forma, seriam impossíveis mesmo com os telescópios mais avançados.

Os últimos resultados do grupo de galáxias "Gato de Cheshire" (SDSS J103842.59+484917.7) mostram como as manifestações da teoria de 100 anos de Einstein podem levar a novas descobertas hoje. Algumas das características são, na realidade, galáxias distantes cuja luz foi esticada e dobrada por grandes quantidades de matéria, a maioria da qual sob a forma de matéria escura, detectável apenas por meio do seu efeito gravitacional, encontrado no sistema.

Mais especificamente, a massa que distorce a luz galáctica distante encontra-se em torno de duas galáxias gigantes que formam os "olhos" e uma galáxia que forma o "nariz". Os arcos múltiplos da "face" circular surgem de lentes gravitacionais de quatro galáxias diferentes de fundo, bem atrás das galáxias dos "olhos". As galáxias individuais do sistema, bem como os arcos da lente gravitacional, são vistas no óptico pelo telescópio espacial Hubble.

Cada galáxia "olho" é o membro mais brilhante do seu próprio grupo de galáxias e estes dois grupos correm em direção um ao outro a mais de 480.000 km/h. Os dados do observatório de raios X Chandra da NASA (em púrpura) mostram gás quente aquecido até milhões de graus, evidência de que os grupos galácticos estão batendo um no outro. Os dados em raios X também revelam que o "olho" esquerdo do grupo do Gato de Cheshire contém, no seu centro, um buraco negro supermassivo e ativo.

O grupo galáctico do Gato de Cheshire pode se tornar um grupo fóssil, definido como um conjunto de galáxias que contém uma galáxia elíptica gigante e outras galáxias muito mais pequenas e tênues. Os grupos fósseis podem representar uma fase temporária que quase todos os grupos galácticos atravessam em algum ponto da sua evolução. Por isso, os astrônomos estão ansiosos por compreender as propriedades e o comportamento destes grupos.

O Gato de Cheshire representa a primeira oportunidade para estudar o progenitor de um grupo fóssil. Estima-se que os dois "olhos" do gato se fundam daqui a cerca de bilhões de anos deixando, num grupo combinado, uma galáxia muito grande e dúzias de galáxias mais pequenas. Nesse ponto, a fusão irá gerar um grupo fóssil e um nome mais apropriado será o grupo "Ciclopes".

O novo artigo científico sobre o Gato de Cheshire foi recentemente publicado na revista The Astrophysical Journal.

Fonte: NASA

terça-feira, 27 de outubro de 2015

Hubble espia fronteiras do Big Bang

Observações pelo telescópio espacial Hubble da NASA/ESA aproveitaram o efeito das lentes gravitacionais para revelar a maior amostra de galáxias mais tênues e antigas do Universo.

aglomerado galáctico MACSJ0717.5 3745

© STScI (aglomerado galáctico MACSJ0717.5+3745)

A imagem acima mostra o aglomerado galáctico MACSJ0717.5+3745. É um dos aglomerados galácticos mais massivos que se conhece e o que tem a maior lente gravitacional.

Algumas destas galáxias formaram-se apenas 600 milhões de anos após o Big Bang e são mais tênues do que qualquer outra galáxia já descoberta pelo Hubble. Foi determinado, pela primeira vez e com alguma confiança, que estas galáxias pequenas foram vitais para a formação do Universo que vemos hoje.

Uma equipe internacional de astrônomos, liderada por Hakim Atek da Ecole Polytechnique Fédérale de Lausanne, na Suíça, descobriu mais de 250 pequenas galáxias que existiram apenas 600 a 900 milhões de anos após o Big Bang, uma das maiores amostras de galáxias anãs já descobertas nestas épocas. A luz destas galáxias demorou mais de 12 bilhões de anos até chegar ao telescópio, permitindo com que os astrônomos olhassem para trás no tempo, quando o Universo ainda era muito jovem.

Apesar de impressionante, o número de galáxias descobertas nesta época antiga não é o único avanço notável da equipe, como Johan Richard do Observatório de Lion, na França, salienta: "as galáxias mais tênues detectadas nestas observações do Hubble são mais fracas do que qualquer outra já descoberta nas mais profundas observações do Hubble."

Ao observar a luz vinda das galáxias, a equipe descobriu que a luz acumulada emitida por estas galáxias pode ter desempenhado um papel importante num dos mais misteriosos períodos do início da história do Universo, a época da reionização. A reionização teve início quando o espesso nevoeiro de hidrogênio gasoso que camuflava o Universo jovem começou a clarear. A luz ultravioleta era agora capaz de viajar distâncias maiores sem ser bloqueada e o Universo tornou-se transparente à luz ultravioleta.

Ao observar a luz ultravioleta das galáxias descobertas neste estudo, foi possível calcular se algumas estiveram envolvidas no processo. Foi observado que as galáxias mais pequenas e abundantes no estudo podem ter desempenhado um papel principal em manter o Universo transparente. Ao fazê-lo, determinaram que a época da reionização, que termina no momento em que o Universo fica totalmente transparente, chegou ao fim cerca de 700 milhões de anos após o Big Bang.

Atek, o autor principal, explica: "Se tivermos em conta apenas as contribuições das galáxias gigantes e brilhantes, descobrimos que estas eram insuficientes para reionizar o Universo. Também precisamos de acrescentar a contribuição de uma população mais abundante de tênues galáxias anãs."

Para fazer estas descobertas, a equipe utilizou as imagens mais profundas de lentes gravitacionais, obtidas até agora, em três aglomerados galácticos, parte do programa Fontier Fields do Hubble. Estes aglomerados geram imensos campos gravitacionais capazes de ampliar a luz das galáxias mais tênues situadas muito atrás dos próprios aglomerados. Isto torna possível a pesquisa e o estudo da primeira geração de galáxias no Universo.

Jean-Paul Kneib da Ecole Polytechnique Fédérale de Lausanne, na Suíça, explica: "os aglomerados do programa Frontier Fields atuam como poderosos telescópios naturais e desvendam estas galáxias tênues e pequenas que, caso contrário, seriam invisíveis."

Mathilde Jauzac da Universidade de Durham, no Reino Unido, e da Universidade de KwaZulu-Natal, na África do Sul, realça a importância da descoberta e a função do Hubble: "O Hubble permanece inigualável na sua capacidade de observar as galáxias mais distantes. A enorme profundidade dos dados do Frontier Fields garante uma compreensão muito precisa do efeito de ampliação do aglomerado, permitindo-nos fazer descobertas como estas."

Estes resultados evidenciam as possibilidades impressionantes do programa Frontier Fields com mais galáxias, até num momento ainda mais antigo, que provavelmente serão reveladas quando o Hubble examinar três outros destes aglomerados galácticos no futuro próximo.

Fonte: ESA

terça-feira, 7 de julho de 2015

Um buraco negro sob uma lente gravitacional

Os observatórios espaciais Integral, Fermi e Swift usaram o poder de ampliação de uma lente cósmica para explorar as regiões internas de um buraco negro supermassivo.

  ilustração de uma lente gravitacional ampliando um buraco negro

  © ESA/ATG medialab (ilustração de uma lente gravitacional ampliando um buraco negro)

Os raios gama são a radiação altamente energética emitida por alguns dos objetos mais extremos do Universo. Por exemplo, jatos de raios gama que se deslocam quase à velocidade da luz são originários de áreas ao redor dos buracos negros. Pensa-se que estes jatos são emitidos por material superaquecido que gira descontroladamente à medida que é devorado pelo buraco negro.

Os nossos telescópios nunca serão poderosos o suficiente para revelar estas regiões internas e os cientistas lutam para examinar exatamente o modo como estes jatos são expelidos para o Universo.

"Considerando que não podemos ver claramente o que está acontecendo, nós não compreendemos totalmente este comportamento," afirma Andrii Neronov da Universidade de Genebra, Suíça.

"No entanto, o nosso método permitiu-nos 'resolver' esta região e obter uma ideia da zona do espaço diretamente em torno de um buraco negro supermassivo conhecido como PKS 1830-211."

Este buraco negro está localizado a muitos bilhões de anos-luz de distância. Nem o satélite Integral da ESA nem o telescópio de raios gama Fermi da NASA conseguem observar a região sem ajuda, mas uma feliz coincidência forneceu uma "mãozinha": uma microlente gravitacional.

"Vistos da Terra, os buracos negros são pequenos. É porque estão muito, muito longe," afirma o Dr. Neronov. "Tentar observar o PKS 1830-211 é como tentar observar uma formiga na Lua. Nenhum dos nossos telescópios consegue observar algo tão pequeno, por isso usamos um truque para resolver tal problema, aplicando uma enorme lente gravitacional."

Objetos cósmicos gigantescos, desde estrelas individuais a aglomerados de galáxias, dobram e focam a luz que flui ao seu redor graças à gravidade, agindo como lupas gigantes.

O Dr. Neronov e colegas usaram uma galáxia situada entre o alvo e a Terra para fazer "zoom" do buraco negro e assim medir o tamanho da região que emite os jatos, a primeira vez que este método foi usado com raios gama.

A zona observada do céu cobre uma região com cerca de 100 vezes a distância Terra-Lua. Em termos astronômicos, é notavelmente pequena.

"As nossas observações demonstram que os raios gama vêm das imediações do próprio buraco negro," comenta o Dr. Neronov. "Isto dá-nos uma ideia do que é e não é importante na produção dos jatos. É incrível sermos capazes de ver coisas tão pequenas a distâncias enormes. Estou muito animado por ter um 'buraco negro-escópio' para investigar as regiões internas dos jatos."

A observação da fonte de raios gama com o Integral da ESA e o Fermi e Swift da NASA permitiu com que os astrônomos contruíssem uma imagem mais completa da radiação que flui para fora.

Os raios gama mais energéticos, detectados pelo Fermi, parecem ser provenientes da pequena base do jato. a região com o tamanho de "uma formiga na Lua", enquanto os menos energéticos, detectados pelo Integral, foram emitidos pela muito maior região circundante.

A equipe também estudou raios X usando o Integral e o Swift. Descobriram que estes raios X surgem de uma região em volta do buraco negro que se estende até mais ou menos 400 bilhões de quilômetros.

"Este buraco negro é um dos mais poderosos objetos conhecidos do seu gênero. A caracterização da sua emissão nos fornece muito mais informações acerca da formação destes jatos," afirma Erik Kuulkers, cientista do projeto Integral da ESA.

"Felizmente, o buraco negro está situado na direção do centro da nossa Galáxia, por isso o Integral observa-o com frequência."

"Estas observações fornecem informações exclusivas sobre os processos de alta energia que ocorrem em torno de buracos negros supermassivos, pelo que nos permite 'espreitar' o interior de estruturas minúsculas que estão a enormes distâncias de nós."

Um artigo sobre o assunto foi publicado ontem na edição online da revista Nature Physics.

Fonte: ESA e Max-Planck-Gesellschaft

terça-feira, 9 de junho de 2015

O anel de Einstein revela detalhe extraordinário

A Campanha de Linha de Base Longa do ALMA produziu uma imagem muito detalhada de uma galáxia distante afetada por lente gravitacional.

galáxia distante afetada por lente gravitacional

© ESO (galáxia distante afetada por lente gravitacional)

A imagem mostra uma vista ampliada das regiões de formação estelar na galáxia, com um nível de detalhe nunca antes alcançado numa galáxia tão remota. As novas observações são muito mais detalhadas do que as obtidas pelo telescópio espacial Hubble da NASA/ESA e revelam regiões de formação estelar na galáxia equivalentes a versões gigantes da Nebulosa de Órion.

A Campanha de Linha de Base Longa do ALMA produziu algumas observações extraordinárias e coletou informação com um detalhe sem precedentes dos habitantes do Universo próximo e longínquo. Foram feitas observações no final de 2014 no âmbito de uma campanha que pretendeu estudar uma galáxia distante chamada HATLAS J090311.6+003906, também conhecida pelo nome mais simples de SDP.81. A radiação emitida por esta galáxia sofre um efeito cósmico chamado lente gravitacional. Uma galáxia enorme que se situa entre SDP.81 e o ALMA atua como lente gravitacional, distorcendo a radiação emitida pela galáxia mais distante e criando um exemplo quase perfeito do fenômeno conhecido por Anel de Einstein. Esta galáxia é observada quando o Universo tinha apenas 15 % da sua idade atual, isto é, apenas 2,4 bilhões de anos depois do Big Bang. A radiação levou duas vezes a idade da Terra para chegar até nós,ou seja, 11,4 bilhões de anos, fazendo um desvio pelo caminho em torno da galáxia massiva que se encontra em primeiro plano e comparativamente perto de nós, a cerca de 4 bilhões de anos-luz de distância. As lentes gravitacionais foram prevista por Albert Einstein como parte da sua teoria da relatividade geral. Esta teoria diz-nos que os objetos curvam o espaço e o tempo. Qualquer radiação que se aproxime deste espaço-tempo curvo irá seguir esta curvatura criada pelo objeto. Este fenômeno permite a objetos particularmente massivos, enormes galáxias e aglomerados de galáxias, atuar como lentes de aumento cósmicas. Um anel de Einstein é um tipo especial de lente gravitacional, no qual a Terra, a galáxia que se encontra em primeiro plano e a galáxia mais afastada estão perfeitamente alinhadas, criando uma distorção harmoniosa em forma de anel de luz.
Pelo menos sete grupos de cientistas analisaram de forma independente os dados do ALMA sobre SDP.81. Esta profusão de artigos científicos deu-nos informação sem precedentes sobre esta galáxia, revelando detalhes sobre a sua estrutura, conteúdo, movimento e outras características físicas.
O ALMA funciona como um interferômetro, isto é, a rede múltipla de antenas trabalha em sintonia perfeita coletando radiação como se de um único e enorme telescópio virtual se tratasse. Como resultado, estas novas imagens de SDP.81 possuem uma resolução até 6 vezes melhor que as imagens obtidas no infravermelho com o telescópio espacial Hubble. A capacidade do ALMA em observar os mais ínfimos detalhes é atingida quando as antenas se encontram o mais afastadas possível umas das outras, com até cerca de 15 km de separação entre si. Podem ser medidos nestes dados detalhes até 0,023 segundos de arco. O Hubble observou esta galáxia no infravermelho próximo, com uma resolução de cerca de 0,16 segundos de arco. É de notar, no entanto, que quando observa a menores comprimentos de onda, o Hubble consegue atingir resoluções melhores, até 0,022 segundos de arco no ultravioleta próximo. A resolução do ALMA pode ser ajustada dependendo do tipo de observações, deslocando as antenas para ficarem mais ou menos afastadas entre si. Nestas observações usou-se a maior separação possível, o que resultou na melhor resolução possível.

imagem composta do anel de Einstein de SDP.81 e da galáxia reconstruída

© ESO (imagem composta do anel de Einstein de SDP.81 e da galáxia reconstruída)

Os sofisticados modelos dos astrônomos revelam estruturas pormenorizadas, nunca antes vistas no corpo da galáxia SDP.81, sob a forma de nuvens de poeira que acredita-se serem repositórios de gás molecular frio, os locais de nascimento de estrelas e planetas. Estes modelos foram corrigidos da distorção produzida pelo efeito de lente gravitacional.
Como resultado, as observações ALMA são tão nítidas que os investigadores podem ver acúmulos de formação estelar na galáxia, com um tamanho de até 100 anos-luz, o que equivale a observar versões gigantes da Nebulosa de Órion produzindo milhares de vezes mais estrelas jovens no lado distante do Universo. Esta é a primeira vez que tal fenômeno é observado a distâncias tão grandes.
“A imagem reconstruída da galáxia obtida com o ALMA é espetacular”, diz Rob Ivison, co-autor de dois artigos científicos que descrevem os resultados e Diretor de Ciência do ESO. “A enorme área coletora do ALMA, a grande separação entre as suas antenas e a atmosfera muito estável que existe por cima do deserto do Atacama, levaram a que conseguíssemos obter um detalhe sem precedentes tanto nas imagens como nos espectros, o que significa que temos observações muito sensíveis, assim como informação sobre como é que as diferentes partes da galáxias se movimentam. Podemos estudar galáxias no outro extremo do Universo à medida que se fundem e formam enormes quantidades de estrelas. Isto é o tipo de coisa que me faz levantar cedo da cama!”.
Utilizando a informação espectral coletada pelo ALMA, os astrônomos mediram também como é que a galáxia distante gira e estimaram a sua massa. Os dados mostraram que o gás contido nesta galáxia é instável; acumulações de gás estão colapsando sobre si mesmo, indo muito provavelmente no futuro dar origem a regiões gigantes de formação estelar.
Curiosamente, a modelização do efeito de lente gravitacional indica também a existência de um buraco negro supermassivo no centro da galáxia que atua como lente. A região central da SDP.81 é muito tênue para poder ser detectada, levando à conclusão de que a galáxia em primeiro plano possui um buraco negro supermassivo com mais de 200 a 300 milhões de vezes a massa do Sol.
O número de artigos científicos publicados usando um único conjunto de dados do ALMA demonstra bem a excitação gerada pelo potencial da alta resolução e poder coletor da rede. Mostra também como é que o ALMA permitirá aos astrônomos fazer mais descobertas nos anos vindouros, levantando ainda mais questões sobre a natureza das galáxias distantes.

Fonte: ESO

quinta-feira, 16 de abril de 2015

Descoberto exoplaneta gigante gasoso através de lente gravitacional

Astrônomos usando o telescópio espacial Spitzer da NASA e o telescópio polonês Optical Gravitational Lensing Experiment (OGLE) no Observatório de Las Campanas no Chile descobriram um dos mais distantes exoplanetas conhecidos, um planeta gigante gasoso localizado a aproximadamente 13.000 anos-luz de distância e chamado de OGLE-2014-BLG-0124LB.

ilustração de um exoplaneta massivo

© CfA/Christine Pulliam (ilustração de um exoplaneta massivo)

O efeito de microlente é uma forma de lente gravitacional na qual a luz de uma fonte de fundo é curvada pelo campo gravitacional de uma lente de primeiro plano para criar imagens distorcidas.

A técnica como um todo já foi responsável por descobrir três dezenas de planetas, com o mais distante localizado a 25.000 anos-luz de distância, o OGLE-2008-BLG-092LAb. Contudo, metade desses exoplanetas não podem ter sua localização precisamente definida.

Nesse ponto é onde o telescópio Spitzer pode ajudar os astrônomos, graças à sua órbita. O telescópio circula o nosso Sol, e está atualmente a cerca de 207 milhões de quilômetros da Terra.

Quando o Spitzer observa um evento de microlente simultaneamente com um telescópio na Terra, ele vê a estrela brilhando num tempo diferente, devido à grande distância entre os dois telescópios e seus pontos de vista único. Essa técnica recebe o nome de paralaxe.

“O Spitzer é o primeiro telescópio espacial a fazer medidas de paralaxe para microlentes para um planeta. Técnicas de paralaxe tradicionais que empregam telescópios em Terra não são tão efetivas como quando empregadas à grandes distâncias”, disse Jennifer Yee, do Harvard-Smithsonian Center for Astrophysics (CfA).

No caso do OGLE-2014-BLG-0124Lb, a duração do evento de microlente acontece com 150 dias de comprimento. Tanto o OGLE como o Spitzer detectaram o aumento do exoplaneta, com o Spitzer observando 20 dias antes. Esse tempo de intervalo entre a observação do evento pelos telescópios foi usado para calcular a distância para estrela e para o exoplaneta.

Sabendo a distância pode-se então determinar a massa do OGLE-2014-BLG-0124Lb, que tem cerca metade da massa de Júpiter.

De acordo com os astrônomos, o planeta com massa de 0,5 vezes a massa de Júpiter orbita uma estrela com massa de 0,7 vezes a massa do Sol, a uma distância de 3,1 UA.

O estudo foi publicado no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 8 de abril de 2015

O ALMA obtém imagens espectaculares na sua configuração máxima

O Atacama Large  Millimeter/submillimeter Array (ALMA) captou recentemente imagens de nitidez sem precedentes que mostram o quase perfeito anel gravitacional de Einstein de uma galáxia distante e a superfície do asteroide Juno.

galáxia SDP.81 afetada por lente gravitacional

© ALMA/B. Saxton (galáxia SDP.81 afetada por lente gravitacional)

A região central alaranjada e brilhante do anel revela a poeira resplandescente na distante galáxia SDP.81. As regiões de menor resolução que circundam o anel traçam a radiação milimétrica emitida por dióxido de carbono e por moléculas de água.

Estas imagens extraordinárias foram obtidas no final de 2014 no âmbito da Campanha de Linha de Base Longa do ALMA, que foi testada com sucesso, tendo-se verificado a capacidade do telescópio para observar os menores detalhes. Este efeito é conseguido quando as antenas se encontram na sua separação máxima: até 15 quilômetros de distância entre si.
Foram selecionados cinco alvos de estudo durante a Campanha de Linha de Base Longa do ALMA, os quais incluíram o disco protoplanetário de HL Tauri, a galáxia afetada por lente gravitacional SDP.81, o asteroide Juno, a estrela Mira e o quasar 3C138.

A SDP.81 é uma galáxia com formação estelar ativa observada quando o Universo tinha apenas 15% da sua idade atual. Está sofrendo o efeito de lente gravitacional devido a uma galáxia massiva que se encontra comparativamente mais perto, a uns quatro bilhões de anos-luz de distância. A lente gravitacional deu origem a um anel de Einstein quase perfeito. A resolução do ALMA para este objeto, utilizando linhas de base longas, excedeu a de qualquer outro telescópio que o observou anteriormente, incluindo o telescópio espacial Hubble da NASA/ESA. A imagem obtida revela imenso detalhe na estrutura do anel, detalhe este nunca antes observado.
O segundo alvo está muito mais próximo de nós. Uma série de imagens obtidas com o ALMA deram-nos uma visão sem precedentes da superfície de Juno, um dos maiores membros do cinturão principal de asteroides do Sistema Solar. Compiladas numa pequena animação, estas imagens de alta resolução mostram a rotação do asteroide à medida que brilha nos comprimentos de onda do milímetro.

© ESO/ALMA/NRAO/NAOJ (rotação do asteroide Juno)

A sequência completa das observações ALMA foi executada em quatro horas, quando Juno se encontrava a aproximadamente 295 milhões de quilômetros da Terra. A resolução das novas observações do ALMA é muito melhor do que a de observações feitas anteriormente a comprimentos de onda semelhantes e é suficiente para resolver a forma irregular do asteroide e indicar estruturas proeminentes na sua superfície.
Os cinco objetos foram escolhidos de forma a mostrar o potencial científico do ALMA, o maior observatório terrestre do mundo, na sua configuração mais extensa.

Foram publicados na revista especializada Astrophysical Journal Letters quatro artigos científicos escritos por representantes de toda a equipe internacional do ALMA, detalhando estas observações.

Fonte: ESO

terça-feira, 3 de fevereiro de 2015

As ondas gravitacionais permanecem elusivas

Apesar de relatos anteriores de uma possível detecção, a análise conjunta de dados do satélite Planck da ESA e das experiências terrestres BICEP2 e Keck Array não encontraram provas conclusivas de ondas gravitacionais primordiais.

orientação do campo magnético galáctico

© ESA/Planck (orientação do campo magnético galáctico)

Esta imagem mostra uma região do céu do hemisfério sul e tem por base observações efetuadas pelo satélite Planck da ESA em micro-ondas e em comprimentos de onda submilimétricos. A escala de cores representa a emissão da poeira, um componente menor mas crucial do meio interestelar que permeia a Via Láctea. A textura, por sua vez, indica a orientação do campo magnético galáctico.
É baseado em medições da direção da luz polarizada emitida pela poeira. A emissão de poeira é mais forte no plano da Galáxia (topo da imagem), mas que não pode ser negligenciada nas outras regiões do céu. A pequena nuvem visível em vermelho, na direção do canto superior direito do campo BICEP2, mostra a emissão da poeira da Pequena Nuvem de Magalhães, uma galáxia satélite da Via Láctea.

O Universo começou há cerca de 13,8 bilhões de anos e evoluiu a partir de um estado extremamente quente, denso e uniforme até ao cosmos rico, complexo e repleto de galáxias, estrelas e planetas que vemos hoje em dia.

A radiação cósmica de fundo em micro-ondas (em inglês, Cosmic Microwave Background, ou CMB) é uma extraordinária fonte de informações sobre a história do Universo, o legado da radiação emitida apenas 380.000 anos após o Big Bang.

O satélite Planck da ESA observou este pano de fundo em todo o céu numa precisão sem precedentes e uma ampla variedade de novas descobertas acerca do início do Universo já foram reveladas ao longo dos últimos dois anos.

Mas os astrônomos "escavam" cada vez mais fundo na esperança de explorar ainda mais para trás no tempo: estão à procura de uma assinatura específica da "inflação" cósmica, uma breve expansão acelerada que, segundo a teoria atual, o Universo sofreu quando tinha apenas uma minúscula fração de segundo.

Esta assinatura seria permeada por ondas gravitacionais, pequenas perturbações no tecido do espaço-tempo que podem ter sido geradas durante a fase inflacionária.

Curiosamente, estas perturbações deveriam deixar uma marca em outra característica da radiação cósmica de fundo: a sua polarização. Quando as ondas de luz vibram preferencialmente numa certa direção, dizemos que a luz é polarizada.

A CMB é polarizada, exibindo um arranjo complexo pelo céu. Isto surge a partir da combinação de dois padrões básicos: circulares e radiais (conhecidos como modos-E) e encaracolados ou torcidos (modos-B).

Vários fenômenos do Universo produzem ou modos-E ou modos-B em diferentes escalas angulares e a identificação das várias contribuições requer medições extremamente precisas. Os modos-B podem conter o incrediente da inflação no início do Universo.

"A procura deste registo único do Universo muito jovem é tão difícil quanto emocionante, uma vez que o sinal sutil está escondido na polarização da CMB, que por si só representa apenas uma pequena percentagem da luz total," afirma Jan Tauber, cientista do projeto Planck da ESA.

O Planck não está sozinho nesta pesquisa. No início de 2014, uma outra equipe de astrõnomos apresentou resultados baseados em observações da radiação cósmica de fundo polarizada numa pequena zona de céu realizadas entre 2010 e 2012 com o telescópio BICEP2, uma experiência localizada no Pólo Sul. A equipe também usou dados preliminares de outra experiência no Pólo Sul, o Keck Array.

Encontraram algo novo: modos-B encaracolados na polarização observada ao longo de zonas do céu poucas vezes maiores que a Lua Cheia.

A equipe BICEP2 apresentou evidências privilegiando a interpretação de que este sinal era originário de ondas gravitacionais primordiais, o que provocou uma resposta enorme na comunidade acadêmica e no público em geral.

No entanto, a poeira interestelar na Via Láctea pode produzir um efeito semelhante. A Via Láctea é permeada por uma mistura de gás e poeira que brilha a frequências semelhantes àquelas da CMB e esta emissão em primeiro plano afeta a observação da luz cósmica mais antiga. É necessária uma análise muito cuidadosa a fim de separar a emissão, no plano da frente, da emissão do fundo cósmico. Criticamente, a poeira interestelar também emite luz polarizada, afetando assim a polarização da CMB.

"Quando detectamos pela primeira vez este sinal nos nossos dados, contamos com os modelos da emissão de poeira galáctica disponíveis no momento," afirma John Kovac, pesquisador principal do BICEP2 na Universidade de Harvard, EUA. "Estes pareciam indicar que a região do céu escolhida para as nossas observações tinham uma polarização de poeira muito mais baixa do que o sinal detectado."

As duas grandes experiências terrestres recolheram dados numa única frequência de micro-ondas, tornando difícil a separação das emissões oriundas da Via Láctea das do fundo cósmico.

Por outro lado, o Planck observou o céu em nove canais de frequência de micro-ondas e sub-milimétricos, sete dos quais também foram equipados com detectores sensíveis à polarização. Com uma análise meticulosa, estes dados multifrequência podem ser usados para separar as várias contribuições.

A equipe BICEP2 escolheu um campo onde acreditavam que a emissão de poeira seria baixa e, portanto, interpretaram o sinal como provavelmente cosmológico.

No entanto, assim que os mapas da emissão polarizada da poeira galáctica foram divulgados pelo Planck, ficou claro que esta contribuição de primeiro plano podia ser maior do que o anteriormente esperado.

Em Setembro de 2014 o Planck revelou pela primeira vez que a emissão polarizada da poeira é significativa ao longo de todo o céu e comparável com o sinal detectado pela experiência BICEP2 mesmo nas regiões mais limpas.

Assim, as equipes do Planck e da experiência BICEP2 uniram forças, combinando a capacidade do satélite para lidar com primeiros planos usando observações em diversas frequências, incluindo aquelas onde a emissão de poeira é mais forte, com a maior sensibilidade das experiências terrestres sobre áreas limitadas do céu, graças à sua tecnologia recentemente melhorada. Nesse momento, a gama completa de dados do Keck Array para 2012 e 2013 já estavam também disponíveis.

"Este trabalho conjunto mostrou que a deteção dos modos-B primordiais já não é robusta após a remoção da emissão da poeira galáctica," afirma Jean-Loup Puget, pesquisador principal do instrumento HFI do Planck e do Institut d’Astrophysique Spatiale em Orsay, França. "Por isso, infelizmente, não fomos capazes de confirmar que o sinal é um traço da inflação cósmica."

Outra fonte de polarização de modos-B, que remonta ao início do Universo, foi detectada neste estudo, mas em escalas muito menores no céu.

Este sinal, descoberto pela primeira vez em 2013, não é uma exploração direta da fase inflacionária, é induzido pela teia cósmica de estruturas gigantescas que povoam o Universo e que mudam o percurso dos fótons da CMB no seu caminho até nós.

Este efeito é chamado de "lente gravitacional", uma vez que é provocado por objetos maciços que dobram o espaço circundante e assim desviam a trajetória da luz como uma lupa. A detecção deste sinal com o Planck, BICEP2 e Keck Array, é o mais forte até agora.

Quanto aos sinais do período de inflação, a questão permanece em aberto.

"Embora ainda não tenhamos encontrado fortes evidências do sinal de ondas gravitacionais primordiais nas melhores observações da polarização da CMB atualmente disponíveis, isso não significa que temos que excluir a inflação," explica Reno Mandolesi, pesquisador principal do instrumento LFI do Planck e da Universidade de Ferrara, Itália.

De fato, o estudo conjunto estabelece um limite máximo para a quantidade de ondas gravitacionais da inflação, que podem ter sido criadas no momento mas a um nível demasiado baixo para serem confirmadas com esta análise.

"Este estudo mostra que o número de ondas gravitacionais pode, provavelmente, não ser mais do que metade do sinal observado," afirma Clem Pryke, pesquisador principal da experiência BICEP2 na Universidade de Minnesota, EUA.

"O novo limite superior para o sinal devido a ondas gravitacionais é compatível com o limite superior que obtivemos anteriormente com o Planck usando as flutuações de temperatura da CMB," comenta Brendan Crill, membro das equipes do Planck e da BICEP2 no JPL da NASA.

Fonte: ESA

terça-feira, 21 de outubro de 2014

Encontrada galáxia extremamente distante através de lente gravitacional

Espiando através de uma lupa cósmica gigante, o telescópio espacial Hubble da NASA/ESA detectou uma galáxia pequena e tênue, uma das galáxias mais distantes já observadas.

aglomerado de galáxias Abell 2744

© NASA/J. Lotz/STScI (aglomerado de galáxias Abell 2744)

O pequeno objeto está a uma distância estimada em mais de 13 bilhões de anos-luz. Esta galáxia fornece um olhar sobre os anos mais jovens do Universo e pode ser apenas a ponta do iceberg.

"Esta galáxia é um exemplo do que se suspeita ser uma população abundante e subjacente de objetos extremamente pequenos e tênues que existiam cerca de 500 milhões de anos após o Big Bang, o início do Universo," explica o líder do estudo Adi Zitrin do Instituto de Tecnologia da Califórnia em Pasadena, no estado americano da Califórnia. "A descoberta diz-nos que galáxias tênues como esta existem, e que devemos continuar à sua procura e à procura de objetos ainda mais fracos, a fim de podermos entender como as galáxias e o Universo têm evoluído ao longo do tempo."

A galáxia foi detectada pelo programa Frontier Fields, um esforço ambicioso de três anos que junta o Hubble a outros grandes observatórios, o telescópio espacial Spitzer e o observatório de raios X Chandra, para examinar o Universo primordial ao estudar grandes aglomerados de galáxias. Estes aglomerados são tão maciços que a sua gravidade curva a luz que passa por eles, ampliando, iluminando e distorcendo objetos de fundo num fenômeno chamado lente gravitacional. Estas lentes poderosas permitem encontrar muitas estruturas tênues e distantes que de outra forma seriam demasiado fracas para observar.

A descoberta foi feita usando o poder de lente do gigantesco aglomerado de galáxias Abell 2744, apelidado de Aglomerado de Pandora, que produziu três imagens ampliadas da mesma galáxia tênue. Cada imagem ampliada torna a galáxia 10 vezes maior e mais brilhante do que seria sem as qualidades de ampliação do aglomerado.

A galáxia mede uns meros 850 anos-luz de diâmetro, 500 vezes mais pequena que a nossa Via Láctea, e tem uma massa estimada correspondente a apenas 40 milhões de sóis. A nossa Galáxia, em comparação, tem uma massa estelar de várias centenas de bilhões de sóis. E a galáxia forma aproximadamente uma estrela a cada três anos, ao passo que a Via Láctea forma aproximadamente uma estrela por ano. No entanto, tendo em conta o seu tamanho pequeno e baixa massa, Zitrin realça que a galáxia minúscula na verdade está evoluindo rapidamente e formando estrelas de modo eficiente.

Os astrônomos acreditam que galáxias como esta são, provavelmente, pequenos aglomerados de matéria que começou a formar estrelas e a brilhar, mas ainda sem uma forma definida. É possível que o Hubble esteja apenas detectando um aglomerado brilhante devido ao efeito de lente. Isto explicaria porque é que o objeco é mais pequeno que as galáxias típicas dessa época.

A equipe de Zitrin avistou a galáxia gravitacionalmente multiplicada em imagens do aglomerado obtidas no infravermelho próximo e no visível, captadas pelas câmaras WFC3 (Wide Field Camera 3) e ACS (Advanced Camera for Surveys) do Hubble. Mas eles precisavam de medir quão longe estava da Terra.

Normalmente, os astrônomos conseguem determinar a distância de um objeto através da sua luz "esticada" à medida que o Universo se expande lentamente. Este efeito é medido com precisão através de espectroscopia, que caracteriza a luz de um objeto. Mas esta galáxia e outros objetos ampliados pelo efeito de lente gravitacional, encontrados neste período jovem do Universo, estão demasiado distantes e são muito tênues para a espectroscopia, por isso utiliza-se a cor de um objeto para estimar a sua distância. A expansão do Universo torna o objeto mais avermelhado de forma previsível possibilitando sua medida.

A equipe de Zitri aplicou a técnica de análise de cor e aproveitou as múltiplas imagens produzidas pela lente gravitacional para confirmar independentemente a estimativa de distância do grupo. Os astrônomos mediram a separação angular entre as três imagens ampliadas da galáxia nas fotos do Hubble. Quanto maior a separação angular devido ao efeito de lente, mais distante está o objeto da Terra.

Para testar este conceito, foi comparada as três imagens ampliadas com as posições de outros objetos de fundo mais próximos e também multiplicados no aglomerado de Pandora. A distância angular entre as imagens ampliadas de galáxias mais próximas era menor.

"Estas medições sugerem que, dada a grande separação angular entre as três imagens da nossa galáxia de fundo, o objeto deve estar muito longe," explica Zitrin. "Também coincide com a estimativa de distância que foi calculada, com base na técnica de análise de cor. Temos uma confiança de 95% na distância deste objeto remoto, com um 'redshift' de 10, uma medida da expansão do espaço desde o Big Bang. A lente tira qualquer dúvida de que este possa ser um objeto próximo altamente avermelhado, que se mascara como um objeto muito mais distante."

Os astrônomos debatem há muito tempo se essas galáxias iniciais podem ter fornecido radiação suficiente para aquecer o hidrogênio que arrefeceu logo após o Big Bang. Pensa-se que este processo, chamado reionização, ocorreu 200 milhões até um bilhão de anos após o nascimento do Universo. A reionização tornou o Universo transparente à luz, permitindo sua observação muito atrás no tempo sem encontrar uma "névoa" de hidrogêio frio.

Os resultados foram publicados na revista The Astrophysical Journal Letters.

Fonte: NASA

sexta-feira, 8 de agosto de 2014

Hubble mostra lente gravitacional mais longínqua

Usando o telescópio espacial Hubble da NASA/ESA, astrônomos descobriram inesperadamente a galáxia mais distante que atua como lente cósmica de aumento.

aglomerado de galáxias IRC 0128

© Hubble (aglomerado de galáxias IRC 0128)

Vista na imagem como era há 9,6 bilhões de anos atrás, esta gigantesca galáxia elíptica quebra o recorde anterior por 200 milhões de anos.

Estas galáxias são tão grandes que a sua gravidade dobra, amplia e distorce a luz de objetos para trás delas, um fenômeno chamado lente gravitacional. A descoberta de um destes objetos, numa área tão pequena do céu, é um evento tão raro que normalmente precisariamos de estudar uma região centenas de vezes maior para apenas encontrar uma.

O objeto atrás desta lente cósmica é uma pequena galáxia espiral que está passando por um surto rápido de formação estelar. A sua luz demorou 10,7 bilhões de anos até chegar aqui, e observar um alinhamento como este, a uma grande distância da Terra, é realmente um achado raro. A localização de mais destas galáxias distantes que atuam como lentes vai fornecer informações sobre como as galáxias no início do Universo se tornaram nas gigantescas galáxias dominadas por matéria escura de hoje em dia. A matéria escura não pode ser vista, mas representa a maior parte da matéria do Universo.

"Quando observamos mais de 9 bilhões de anos para trás no Universo, não esperamos encontrar este tipo de lente," explicou Kim-Vy Tran da Universidade A&M do Texas em College Station, EUA. "É muito difícil ver um alinhamento entre duas galáxias no Universo jovem. Imagine segurar numa lupa e movê-la para mais longe. Quando olhamos pela lupa à distância do braço esticado, as hipóteses de vermos um objeto ampliado são altas. Mas se movermos a lupa para o outro lado do ambiente, as nossas hipóteses de ver a lupa quase perfeitamente alinhada com outro objeto diminuem."

Os membros da equipe, Kenneth Wong e Sherry Suyu da ASIAA (Academia Sinica Institute of Astronomy & Astrophysics) em Taipé, Taiwan, usaram a lente gravitacional do alinhamento fortuito para medir a massa total da galáxia gigante, incluindo a quantidade de matéria escura, ao avaliar a intensidade dos seus efeitos de lente sobre a luz da galáxia de fundo. A galáxia em primeiro plano tem mais de 180 bilhões de vezes a massa do Sol e, para a época, é uma galáxia gigante. É também um dos membros mais brilhantes de um aglomerado de galáxias distante, chamado IRC 0128.

"Conhecemos centenas de galáxias que atuam como lentes, mas quase todas são relativamente próximas, em termos cósmicos," afirma Wong, primeiro autor do artigo científico da equipe. "A descoberta de uma lente tão distante quanto esta é muito especial porque podemos aprender mais sobre o conteúdo de matéria escura de galáxias no passado distante. Ao comparar a nossa análise desta galáxia com outras mais próximas, podemos começar a compreender como o conteúdo de matéria escura evoluiu ao longo do tempo."

A equipe suspeita que a galáxia continuou crescendo ao longo dos últimos 9 bilhões de anos, ganhando estrelas e matéria escura ao canibalizar galáxias vizinhas. Os estudos recentes sugerem que estas galáxias massivas ganham mais matéria escura que estrelas à medida que continuam a crescer. Os astrônomos tinham assumido que a matéria escura e a matéria normal acumulavam-se igualmente numa galáxia ao longo do tempo, mas sabemos agora que a proporção de matéria escura para matéria normal muda com o tempo. Esta galáxia recém-descoberta vai eventualmente tornar-se muito mais massiva que a Via Láctea e terá também mais matéria escura.

Tran e a sua equipe estavam estudando a formação estelar em dois aglomerados de galáxias distantes, incluindo IRC 0218, quando se depararam com a lente gravitacional. Enquanto analisava dados espectrográficos do Observatório W. M. Keck no Havaí, Tran avistou uma forte detecção de hidrogênio gasoso quente que parecia surgir de uma galáxia elíptica gigante e distante. A detecção foi surpreendente porque o hidrogênio gasoso e quente é uma assinatura clara de nascimento estelar. As observações anteriores mostraram que a gigante elíptica, que residia no aglomerado galáctico IRC 0128, era uma galáxia velha e calma, que tinha parado de fabricar estrelas há muito tempo atrás. Outra descoberta intrigante foi que as jovens estrelas estavam muito mais distantes do que a galáxia elíptica. Tran ficou muito surpreendida e preocupada, e pensou que a sua equipe tinha feito um grande erro com as suas observações.

A astrônoma logo percebeu que não tinha cometido um erro quando estudou imagens do Hubble obtidas em comprimentos de onda azul, que revelou o brilho das estrelas incipientes. As imagens, obtidas com a câmara ACS (Advanced Camera for Surveys) e WFC3 (Wide Field Camera 3) do Hubble, revelaram um objeto azul e com a forma de uma sobrancelha perto de um ponto azul manchado ao redor da elíptica gigante. Tran reconheceu as características invulgares como as imagens ampliadas e distorcidas de uma galáxia ainda mais distante por trás da galáxia elíptica, a assinatura de uma lente gravitacional.

Para confirmar a sua hipótese de lente gravitacional, a equipe analisou dados de arquivo de dois programas de observação do Hubble, o 3D-HST, um estudo espectroscópico perto do infravermelho com o instrumento WFC3, e o CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), um grande programa de céu profundo do Hubble. Os dados mostraram outra impressão digital de gás quente ligado à galáxia mais distante.

A galáxia distante é demasiado pequena e longínqua para o Hubble determinar a sua estrutura. Por isso, foi analisada a distribuição de luz no objeto para inferir a sua forma espiral. Além disso, as galáxias espirais são mais abundantes durante estes primeiros tempos. As imagens do Hubble também revelaram pelo menos uma região compacta e brilhante perto do centro. A equipe suspeita que a região brilhante é devido a uma onda de formação estelar e é provavelmente constituída por hidrogênio gasoso, aquecido pelas estrelas jovens e massivas. À medida que o grupo de pesquisadores continua o seu estudo de formação estelar em aglomerados galácticos, estará à procura de mais assinaturas de lentes gravitacionais.

Os resultados da equipe foram publicados na edição de 10 de Julho da revista The Astrophysical Journal Letters.

Fonte: NASA

terça-feira, 21 de janeiro de 2014

Olhando através de uma lente gravitacional

Nessa nova imagem do Hubble, dois objetos são claramente visíveis, brilhando intensamente.

quasar QSO 0957+561

© Hubble (quasar QSO 0957+561)

Quando eles foram descobertos em 1979, acreditava-se que eles eram objetos separados, contudo, os astrônomos rapidamente perceberam que esses objetos gêmeos são muito idênticos. Eles estavam muito próximos, estavam localizados à mesma distância de nós e tinham surpreendentemente propriedades similares. A razão para eles serem tão similares não era uma bizarra coincidência, eles eram de fato o mesmo objeto.

Esses sósias cósmicos na verdade representam um objeto conhecido como um quasar duplo, denominado de QSO 0957+561, também conhecido popularmente como o Quasar Gêmeo, que localiza-se a cerca de 14 bilhões de anos-luz da Terra. Os quasares são os centros intensamente poderosos das galáxias distantes. Assim, por que nós observamos esse quasar em dupla?

Localizada a aproximadamente 4 bilhões de anos-luz da Terra, e diretamente em frente à nossa linha de visão está a imensa galáxia YGKOW G1. Essa galáxia foi a primeira lente gravitacional observada na história, um objeto com uma massa tão grande que pode distorcer a luz de objetos localizados atrás dela. Esse fenômeno não só permite que possamos ver objetos muito distantes, mas também em casos como esse que observamos tais objetos duas vezes.

Juntamente com o aglomerado de galáxias onde reside, a YGKOW G1 exerce uma enorme força gravitacional. Isso não afeta a forma da galáxia, as estrelas que formam e os objetos ao seu redor, isso afeta o espaço em que ela se localiza, dobrando e distorcendo o ambiente e produzindo efeitos bizarros como essa imagem dupla de um quasar.

Essa observação de uma lente gravitacional, a primeira desse tipo, significou mais do que apenas a descoberta de uma impressionante ilusão de óptica que permitiu que os telescópios como o Hubble pudessem efetivamente ver além da galáxia. Isso representou a evidência da Teoria da Relatividade Geral de Einstein. A teoria tinha identificado as lentes gravitacionais somente pelos seus efeitos observáveis, mas até essa observação nenhuma lente havia sido observada desde que a ideia havia sido proposta em 1936.

Fonte: ESA

quinta-feira, 16 de janeiro de 2014

Primeira medição em raios gama de lente gravitacional

Uma equipe internacional de astrônomos, usando observatório Fermi da NASA fez a primeira medição de raios gama de uma lente gravitacional.

lente gravitacional em raios gama

© Fermi/LAT (lente gravitacional em raios gama)

A lente gravitacional é uma espécie de telescópio natural formada quando um alinhamento cósmico raro permite que a gravidade de um objeto massivo distorça e amplifique a luz de uma fonte mais distante.
Essa conquista abre novos caminhos para a pesquisa, incluindo uma nova maneira de sondar as regiões de emissão próximo aos buracos negros supermassivos. Pode até ser possível encontrar outras lentes gravitacionais com dados do telescópio espacial de raios gama Fermi.
Em setembro de 2012, o Large Area Telescope (LAT) do Fermi detectou uma série de brilhantes explosões de raios gama de uma fonte conhecida como B0218+357, localizada 4,35 bilhões de anos-luz da Terra, na direção da constelação Triangulum.

lente gravitacional no óptico

© Hubble (lente gravitacional no óptico)

A fonte B0218+357 é classificada como blazar, um tipo de galáxia ativa conhecida por suas emissões intensas e comportamento imprevisível. No coração do blazar está um buraco negro gigante com uma massa milhões de bilhões de vezes a do Sol. Como a matéria espirala em direção ao buraco negro, alguns emana para fora jatos de partículas que viajam próximo da velocidade da luz em direções opostas.
Muito antes de a luz do B0218+357 chegar até nós, ele passa diretamente através de uma galáxia espiral na frente a cerca de 4 bilhões de anos-luz de distância.
A gravidade da galáxia distorce a luz em diferentes caminhos, por isso o blazar ao fundo é visto como imagem dupla. Com apenas um terço de um segundo de arco (menos de 0,0001 graus) entre eles, o B0218+357 detêm o recorde para a menor separação de qualquer sistema conhecido com influência da lente gravitacional.
Enquanto telescópios ópticos e radiotelescópios podem monitorar as imagens de blazars individuais, o LAT do Fermi não pode. Em vez disso, a equipe do Fermi explorou um efeito de "reprodução de atraso".
"Um caminho de luz é ligeiramente mais longo do que o outro, então quando nós detectamos explosões em uma imagem, podemos tentar pegá-las dias depois, quando elas repetirem em outra imagem", disse o membro da equipe Jeff Scargle, astrofísico do Centro de Pesquisa Ames da NASA, em Moffett Field, Califórnia.
Em setembro de 2012, quando a atividade da combustão do blazar tornou a fonte de raios gama mais brilhante do lado de fora de nossa própria galáxia, Teddy Cheung, astrofísico do Laboratório de Pesquisa Naval em Washington, percebeu que era uma oportunidade de ouro. Na reunião da Sociedade Astronômica Americana, em National Harbor, Maryland, Cheung disse que a equipe havia identificado três episódios de explosões mostrando atrasos de reprodução de 11,46 dias, com a evidência mais forte encontrada em uma sequência de explosões capturadas em uma semana de duração de observações do LAT. Curiosamente, o atraso de raios gama é de cerca de um dia a mais do que as observações de rádio denunciaram para este sistema. Os astrônomos não acham que os raios gama surgem das mesmas regiões que as ondas de rádio, de modo que essas emissões provavelmente se originam de diferentes caminhos, com diferentes atrasos e ampliações, ao atravessar através da lente.
"Ao longo de um dia, uma dessas explosões pode iluminar o blazar por 10 vezes em raios gama, mas apenas 10 por cento em luz visível e de rádio, que nos diz que a região emissora de raios gama é muito pequena em comparação com aquelas com menor emissão de energia", disse o membro da equipe Stefan Larsson, um astrofísico da Universidade de Estocolmo, na Suécia.
Como resultado, a gravidade de pequenas concentrações de matéria na galáxia sob influência da lente gravitacional pode desviar e ampliar os raios gama de forma mais significativa do que a luz de baixa energia. Dissociar os chamados efeitos de microlente representa um desafio para tomar vantagem adicional de observações de lentes de alta energia.
Os cientistas dizem que comparar observações de rádio e de raios gama de sistemas adicionais nestas condições pode ajudar a fornecer novas perpectivas sobre o funcionamento de jatos de buracos negros poderosos e estabelecer novas restrições sobre as quantidades cosmológicas importantes, como a constante de Hubble, que descreve a taxa de expansão do Universo.
O resultado mais emocionante seria a detecção de um atraso de reprodução em uma fonte de raios gama ainda não identificada como uma lente gravitacional em outros comprimentos de onda do LAT.
Um artigo descrevendo a pesquisa aparecerá em uma futura edição do The Astrophysical Journal Letters.

Fonte: NASA