Mostrando postagens com marcador Planetas. Mostrar todas as postagens
Mostrando postagens com marcador Planetas. Mostrar todas as postagens

segunda-feira, 12 de junho de 2017

Um buraco incomum em Marte

Durante o final do verão no hemisfério sul de Marte, o ângulo da luz solar que atinge a superfície do Planeta Vermelho revela detalhes súbitos no planeta.

buraco na superfície de Marte

© NASA/JPL-Caltech/MRO (buraco na superfície de Marte)

Nesta imagem, a câmera HiRISE da sonda MRO captou uma área de dióxido de carbono congelado na superfície. Parte do gelo de dióxido de carbono aparece derretido, dando à superfície  esta aparência de queijo suíço. Mas além disso, o que se pode observar é um grande buraco incomum, ou uma cratera no lado direito da imagem, com algum gelo de dióxido de carbono claramente visível no assoalho da cavidade.

Ainda não se sabe ao certo o que causou esta cavidade. Poderia ser uma cratera de impacto criada por meteoro, ou uma cavidade colapsada por derretimento ou sublimação do gelo de dióxido de carbono abaixo da superfície.

A sonda MRO tem orbitado Marte por mais de 10 anos, e completou mais de 50.000 órbitas. A sonda MRO tem duas câmeras. A CTX que tem resolução menor e já imageou mais de 99% da superfície de Marte. E a HiRISE, a câmera de alta resolução que é usada para examinar em detalhe, áreas e objetos de interesse, como esta cavidade incomum na superfície de Marte.

Fonte: Universe Today

quinta-feira, 8 de junho de 2017

Descobertas duas novas luas em Júpiter

O maior planeta do Sistema Solar acaba de ganhar mais duas novas luas, elevando o número total de satélites naturais de Júpiter para 69.

Júpiter e sua lua Ganímedes

© NASA/Michael Benson (Júpiter e sua lua Ganímedes)

O anúncio destas descobertas foi realizado neste mês, em dois comunicados do Minor Planet Center, ligado ao Smithsonian Astrophysical Observatory (SAO). Os dois corpos celestes foram encontrados ao acaso, durante buscas por um possível novo planeta dentro do nosso Sistema Solar.

“Nós continuamos as observações em busca de objetos muito distantes no Sistema Solar exterior além do Cinturão de Kuiper, que inclui a busca por novos planetas como o Planeta X,” disse Scott Sheppard, do Instituto Carnegie, em Washington. “Durante estas campanhas de observações, nós encontramos a maioria das luas conhecidas de Júpiter assim como algumas que eram desconhecidas ou estavam perdidas”.

Júpiter possui quatro grandes luas: Ganímedes, Calisto, Io e Europa, e dezenas de pequenos satélites em sua órbita. Por causa das dimensões, eles são difíceis de serem observados e alguns acabam se perdendo. Segundo Sheppard, no início do ano passado existiam 14 satélites perdidos, mas cinco deles foram localizados novamente durante a campanha de observação.

As duas novas luas foram batizadas como S/2016 J1 e S/2017 J1. Elas foram observadas em março de 2016 e março de 2017, respectivamente, mas anunciadas apenas neste mês após observações de comparação. Pela luminosidade refletida, os astrônomos estimam que estes corpos tenham entre um e dois quilômetros de diâmetro.

“Nós confirmamos que não se tratavam de luas perdidas por termos um ano de observações em ambas, o que nos dá duas novas luas em Júpiter, elevando para 69 as luas conhecidas,” disse Sheppard.

A lua S/2016 J1 foi observada no dia 8 de março do ano passado, no observatório Las Campanas, no Chile, e teve a órbita confirmada há seis semanas por um observatório em Mauna Kea, no Havaí. O satélite está a cerca de 20,6 milhões de quilômetros de Júpiter e sua órbita duras 1,65 anos.

Já a lua S/2017 J1 foi identificada no dia 23 de março deste ano, no observatório Cerro Tololo, também no Chile, e confirmada por dados coletados em Mauna Kea. A distância para Júpiter é de 23,5 milhões de quilômetros, com órbita de 2,01 anos.

Um aspecto interessente nestes satélites, e em outros descobertos anteriormente, é que a maioria destes pequenos corpos apresentam órbitas retrógradas, na direção oposta à rotação do planeta, e com inclinação maior de 90 graus. Estas órbitas distantes e irregulares sugerem que estes corpos foram formados em outra região do Sistema Solar exterior e capturados por Júpiter.

“É provável que encontremos mais algumas novas luas nas nossas observações de 2017, mas precisamos reobservar em 2018 para determinar quais descobertas são novas e quais são de luas perdidas,” afirmou o astrônomo.

Fonte: Carnegie Institution for Science

sábado, 27 de maio de 2017

O planeta Júpiter completamente novo

Os primeiros resultados científicos da missão Juno da NASA a Júpiter retratam o maior planeta do nosso Sistema Solar como um mundo complexo, gigantesco e turbulento, com ciclones polares do tamanho da Terra, sistemas profundos de tempestades que viajam até às profundezas do gigante gasoso e um enorme e irregular campo magnético que pode indicar que foi formado mais próximo da superfície do planeta do que se pensava anteriormente.

o polo sul de Júpiter

© NASA/JPL-Caltech/SwRI/Juno (o polo sul de Júpiter)

A Juno foi lançada no dia 5 de agosto de 2011 e entrou em órbita de Júpiter no dia 4 de julho de 2016. As descobertas da primeira passagem de obtenção de dados, a 4.200 km do topo das nuvens turbulentas de Júpiter no dia 27 de agosto, foram publicadas esta semana em dois artigos na revista Science, bem como em 44 artigos na revista Geophysical Research Letters.

Entre as descobertas que desafiam as suposições estão aquelas fornecidas pela câmara da Juno, JunoCam. As imagens mostram que ambos os polos de Júpiter estão cobertos por tempestades rodopiantes e densamente agrupadas do tamanho da Terra.

"Estamos perplexos no que toca à sua formação, a quão estável é a sua configuração e porque é que o polo norte de Júpiter não se parece com o polo sul," comenta Scott Bolton, pesquisador principal da Juno no SwRI (Southwest Research Institute) em San Antonio, EUA. "Estamos tentando determinar se isto é um sistema dinâmico, se estamos vendo apenas uma etapa e, no próximo ano, vamos assistir ao seu desaparecimento, ou se esta é uma configuração estável e estas tempestades circulam umas em torno das outras."

Outra descoberta vem do instrumento MWR (Microwave Radiometer) da Juno, que estuda a radiação térmica de micro-ondas da atmosfera de Júpiter, do topo das nuvens de amônia até às profundezas da sua atmosfera. Os dados do MWR indicam que as icônicas faixas e zonas de Júpiter são misteriosas, com a banda perto do equador penetrando bem para o interior, enquanto as bandas e zonas em outras latitudes parecem evoluir para outras estruturas. Os dados sugerem que a amônia é bastante variável e continua aumentando tanto para baixo quanto podemos observar com o MWR, que alcança várias centenas de quilômetros.

Antes da missão Juno, sabia-se que Júpiter tinha o campo magnético mais intenso do Sistema Solar. As medições da magnetosfera do planeta gigante, pelo instrumento MAG (magnetometer investigation), indicam que o campo magnético de Júpiter é ainda mais forte do que os modelos previam e de forma mais irregular. Os dados MAG indicam que o campo magnético superou e muito as expetativas: 7.766 G (gauss), cerca de 10 vezes mais intenso do que o campo magnético mais forte encontrado na Terra.

O campo magnético tem uma distribuição desigual sugerindo que o campo pode ser gerado pela ação do dínamo mais próximo da superfície, acima da camada de hidrogênio metálico.

A Juno também está empenhada em estudar a magnetosfera polar e a origem das poderosas auroras de Júpiter. Estas emissões aurorais são provocadas por partículas que captam energia, batendo contra moléculas atmosféricas. As observações iniciais da Juno indicam que o processo parece funcionar de forma diferente em Júpiter do que na Terra.

A Juno está numa órbita polar em torno de Júpiter e a maior parte de cada órbita é passada bem longe do gigante gasoso. Mas, uma vez a cada 53 dias, a sua trajetória aproxima-a de Júpiter por cima do seu polo norte, onde começa um trânsito de duas horas (de polo a polo), viajando de norte para sul com os seus oito instrumentos científicos recolhendo dados e a câmara JunoCam captando imagens. O download de seis megabytes de dados obtidos durante o trânsito pode demorar 36 horas.

No nosso próximo voo de aproximação, dia 11 de julho, a Juno irá voar diretamente sobre a Grande Mancha Vermelha de Júpiter.

Fonte: NASA

segunda-feira, 8 de maio de 2017

O héxagono de Saturno em toda plenitude

A corrente de jato polar hexagonal de Saturno é a característica brilhante de quase todas as visões da região polar norte de Saturno.

o héxagono de Saturno

© NASA/JPL-Caltech/Space Science Institute/Cassini (o héxagono de Saturno)

A região, que ficou nas sombras durante a primeira parte da missão da sonda Cassini, agora aprecia toda a luz do Sol, permitindo aos cientistas observar diretamente a imagem da luz refletida.


Embora a luz solar esteja caindo no polo norte de Saturno, é suficiente para estudar esta região, pois ela não fornece muito calor. Além do Sol estar baixo no horizonte, assim como no verão nos polos da Terra; o Sol está quase dez vezes mais distante de Saturno do que da Terra. Isso resulta que a luz solar incidindo naquela região é de apenas de 1% de intensidade daquela que chega no nosso planeta.

Esta imagem captada de Saturno foi efetuada a cerca de 31 graus acima do plano do anel. A imagem foi tirada com a câmera grande angular da sonda Cassini em 22 de janeiro de 2017 usando um filtro espectral que admite preferencialmente os comprimentos de onda de luz de infravermelha próxima centrada em 939 nanômetros.


A imagem foi obtida a uma distância de aproximadamente 900.000 quilômetros de Saturno, cuja escala é de 54 km por pixel.

Fonte: Space Science Institute

segunda-feira, 17 de abril de 2017

Descoberta grande mancha fria em Júpiter

Tão grande que pode engolir várias Terras, a Grande Mancha Vermelha de Júpiter é uma tempestade gigantesca que existe há séculos, com ventos que ultrapassam os 600 km por hora.

grande mancha fria em Júpiter

© ESO/T. Stallard (grande mancha fria em Júpiter)

No entanto, esta mancha tem uma rival: uma segunda Grande Mancha no planeta Júpiter, desta vez uma mancha fria.

Os astrnomos descobriram nas regiões polares do planeta uma mancha escura na atmosfera superior, cerca de 200 ºC mais fria do que o meio que a circunda. Chamada “Grande Mancha Fria”, esta intrigante estrutura é comparável em termos de tamanho à Grande Mancha Vermelha, com 24.000 km de um lado ao outro e 12.000 km de altura.

Os dados obtidos ao longo de 15 anos mostram que a Grande Mancha Fria é muito mais volátil que a sua lenta prima. Esta mancha varia drasticamente, tanto em forma como em tamanho, em poucos dias ou semanas; no entanto nunca desaparece, mantendo-se sempre mais ou menos no mesmo local.

Pensa-se que a Grande Mancha Fria é causada pelas auroras poderosas do planeta, as quais liberam energia para a atmosfera sob a forma de calor, que circula em torno do planeta. Este fenômeno dá origem a uma região mais fria na atmosfera superior, o que faz da Grande Mancha Fria o primeiro sistema climático gerado por auroras alguma vez observado.

Fonte: ESO

quinta-feira, 13 de abril de 2017

Descoberto possível gêmeo de Vênus ao redor de estrela anã

Usando o telescópio espacial Kepler da NASA, os astrônomos descobriram um planeta a 219 anos-luz de distância que parece ser um parente próximo de Vênus.

ilustração de um exoplaneta análogo de Vênus em torno de uma anã M

© Danielle Futselaar (ilustração de um exoplaneta análogo de Vênus em torno de uma anã M)

Este mundo recém-descoberto é apenas ligeiramente maior do que a Terra e orbita uma estrela de temperatura baixa chamada Kepler-1649 com um-quinto do diâmetro do nosso Sol.

O planeta abraça firmemente a sua estrela progenitora, completando uma órbita a cada 9 dias. Esta órbita íntima faz com que o fluxo de luz estelar que alcança o planeta seja 2,3 vezes maior do que o fluxo solar na Terra. Em comparação, o fluxo solar de Vênus é 1,9 vezes do que o valor terrestre.

A descoberta fornecerá mais informações sobre a natureza de exoplanetas em torno de anãs M, de longe o tipo mais comum de estrelas no Universo. Enquanto estas estrelas são mais vermelhas e mais tênues do que o Sol, as recentes descobertas exoplanetárias revelaram casos em que mundos tipo-Terra orbitam anãs M em órbitas que os colocam na zona habitável da estrela. Mas estes exoplanetas podem, inevitavelmente, não ser semelhantes à Terra, que tem um clima salubre. Podem ser análogos a Vênus, com atmosferas espessas e temperaturas escaldantes.

Segundo a cientista Isabel Angelo, do Instituto SETI, o estudo de planetas parecidos com Kepler-1649b, análogo de Vênus, "é cada vez mais importante para entender os limites das zonas habitáveis das anãs M."

"Existem vários fatores, como a variabilidade estelar e os efeitos de maré, que tornam estes exoplanetas diferentes de planetas do tamanho da Terra ao redor de estrelas parecidas com o Sol."

Diz-se que Vênus é um planeta irmão da Terra, mas, em muitos aspetos, não é um irmão próximo. Apesar de ter o mesmo tamanho que a Terra, e de estar apenas 40% mais próximo do Sol, a sua atmosfera e temperatura são extremamente diferentes.

Elisa Quintana, do Instituto SETI e do Goddard Space Flight Center da NASA, membro da equipe que descobriu Kepler-1649b, realça que "muitas pessoas estão focadas na descoberta de outras Terras. Mas os análogos de Vênus são igualmente importantes."

"Uma vez que estão prestes a sair novos telescópios, que nos permitirão estudar atmosferas, o foco tanto em análogos da Terra como em análogos de Vênus poderá ajudar-nos a decifrar porque é que, no nosso Sistema Solar, um permite com que a vida se desenvolva e o outro não, apesar de terem massas parecidas, densidades comparáveis, etc."

Fonte: SETI Institute

quarta-feira, 5 de abril de 2017

Órbita de Marte abriga restos de antigos mini-planetas

O planeta Marte partilha a sua órbita com um punhado de asteroides pequenos, os chamados troianos.

pontos de Lagrange ao redor de Marte

© Apostolos Christou (pontos de Lagrange ao redor de Marte)

Agora, uma equipe internacional de astrônomos, usando o VLT (Very Large Telescope) no Chile, descobriu que a maioria destes objetos partilha uma composição comum; são provavelmente restos de um mini-planeta que foi destruído por uma colisão há muito tempo atrás.

Os asteroides troianos movem-se em órbitas com a mesma distância média ao Sol do que um planeta, presos dentro de "refúgios seguros" e gravitacionais 60º à frente e atrás do planeta. O significado especial destes locais foi desvendado pelo matemático francês do século XVIII, Joseph-Louis Lagrange. Em sua honra, são agora conhecidos como "pontos de Lagrange"; o ponto que antecede o planeta é L4; o que sucede o planeta é L5.

Na imagem, à esquerda, os percursos traçados pelos troianos de Marte ao redor de L4 e L5 (cruzes) em relação ao planeta (disco vermelho) e ao Sol (disco amarelo). O círculo pontilhado indica a distância média entre Marte e o Sol. À direita, ampliação da inserção (retângulo) que mostra os percursos dos 8 troianos em L5: 1998 VF31 (marcado "VF31" em azul), Eureka (vermelho), e os 6 objetos identificados como membro da família. Os discos indicam os tamanhos relativos dos asteroides. Eureka, o maior membro, tem cerca de 2 km de comprimento.

Conhecem-se cerca de 6.000 troianos na órbita de Júpiter e cerca de 10 na de Netuno. Pensa-se que remontem aos primeiros tempos do Sistema Solar, quando a distribuição de planetas, asteroides e cometas era muito diferente da que observamos hoje.

Marte é, até agora, o único planeta terrestre que se sabe ter companheiros troianos em órbitas estáveis. O primeiro troiano marciano foi descoberto há mais de 25 anos atrás no ponto L5 e denominado "Eureka" em referência à famosa exclamação do antigo matemático grego Arquimedes. A contagem atual é de nove, um fator de menos 600 em relação aos troianos de Júpiter, mas mesmo até esta amostra relativamente insignificante mostra uma estrutura interessante não vista em qualquer outra parte do Sistema Solar.

Para começar, todos os troianos, exceto um, seguem Marte no seu ponto de Lagrange L5. Além do mais, as órbitas de todos menos um dos 8 troianos em L5 estão agrupadas em torno do próprio Eureka. A causa para esta distribuição desigual de objetos ainda não foi determinada, apesar de existirem um par de possibilidades. Num cenário, uma colisão quebrou um asteroide percursor no ponto L5, e os fragmentos constituem o grupo que observamos hoje. Outra possibilidade é que um processo chamado fissão rotacional fez com que Eureka girasse mais depressa, eventualmente libertando pequenos pedaços de si próprio para uma órbita heliocêntrica. Qualquer que seja a razão, o grupo sugere fortemente que os asteroides nesta "família Eureka" fizeram parte de um único objeto ou de um corpo progenitor. Embora as evidências circunstanciais desta hipótese sejam fortes, o teste está em desvendar se os asteroides partilham uma composição comum ou não. Felizmente, isto pode ser feito por telescópio, medindo a cor da luz solar refletida pela superfície dos asteroides, ou seja, obtendo o seu espectro.

Com este objetivo, uma equipe internacional de astrônomos liderados por Apostolos Christou e por Galin Borisov do Observatório e Planetário Armagh, na Irlanda do Norte, Reino Unido, usou o espectrógrafo X-SHOOTER acoplado ao telescópio "Kueyen", a Unidade 2 do VLT do ESO no Chile, no início de 2016, para registar o espectro de dois asteroides que pertencem à família Eureka, 311999 e 385250. Graças à análise dos espectros, descobriram que ambos os objetos são "gêmeos" de Eureka, em termos de composição, confirmando assim a relação entre os asteroides. Também é a primeira vez que se descobre que os asteroides são compostos principalmente por olivina, um mineral que normalmente se forma dentro de objetos muito maiores sob condições de alta pressão de temperatura. A implicação é que estes asteroides são provavelmente relíquias de material do manto de mini-planetas ou "planetesimais" que, como a Terra, desenvolveram uma crosta, um manto e um núcleo através do processo de diferenciação, mas que há muito foram destruídos por colisões.

Christou salienta que "existem muitas outras famílias no cinturão de asteroides entre Marte e Júpiter, e até entre os troianos de Júpiter, mas nenhuma é dominada por asteroides de olivina." Isto está relacionado com o chamado problema do manto em falta: isto é, se acrescentarmos a massa de minerais diferentes no cinturão de asteroides, particularmente aqueles cujos fragmentos se pensa terem pertencido a outros maiores e diferenciados, há falta de material do manto em comparação com material da crosta rochosa e do núcleo.

Embora a descoberta desta família dominada por olivina não forneça uma solução final para o problema do manto em falta, mostra que o material do manto estava presente perto de Marte no início da história do Sistema Solar. Christou explica: “os nossos achados sugerem que este material participou na formação de Marte e, quem sabe, do seu vizinho planetário, a nossa Terra."

As descobertas foram divulgadas num artigo que será publicado neste mês de abril na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Armagh Observatory

Como Marte perdeu a sua atmosfera e se tornou um deserto frígido

De acordo com novos resultados da sonda MAVEN (Mars Atmosphere and Volatile Evolution Mission) da NASA, o vento e a radiação solares são os responsáveis pela remoção da atmosfera marciana, transformando Marte de um planeta que poderia ter suportado vida há bilhões de anos atrás, num mundo frio e desértico.

atmosfera atual e do passado de Marte

© Goddard Space Flight Center (atmosfera atual e do passado de Marte)

"Nós determinamos que a maioria do gás presente na atmosfera de Marte foi perdido para o espaço," realça Bruce Jakosky, pesquisador principal da MAVEN, da Universidade do Colorado em Boulder, EUA. A equipe fez esta determinação a partir dos últimos resultados, que revelam que aproximadamente 65% do argônio que já esteve presente na atmosfera foi perdido para o espaço.

Em 2015, os membros da equipe da MAVEN anunciaram resultados que mostravam uma perda atmosférica atual e descreveram como é que esta atmosfera é removida. A análise presente usa medições da atmosfera de hoje para a primeira estimativa de quanto gás foi perdido ao longo do tempo.

A água líquida, essencial para a vida, não é hoje estável à superfície de Marte porque a sua atmosfera é demasiado fria e fina para a suportar. No entanto, evidências como características que se assemelham com leitos de rio e minerais que só se formam na presença de água líquida, indicam que o antigo clima marciano era muito diferente, quente o suficiente para a água correr à superfície durante longos períodos de tempo.

"Esta descoberta é um importante passo em frente para desvendar o mistério dos ambientes passados de Marte," salienta Elsayed Talaat, cientista do Programa MAVEN, na sede da NASA em Washington. "Num contexto mais amplo, esta informação ensina-nos mais sobre os processos que podem, ao longo do tempo, mudar a habitabilidade de um planeta."

Existem muitas maneiras de um planeta perder parte da sua atmosfera. Por exemplo, reações químicas podem prender o gás nas rochas à superfície, ou uma atmosfera pode ser corroída por radiação e vento da estrela que hospeda o planeta. Os novos resultados revelam que a radiação solar e o vento solar são os responsáveis pela maior parte da perda atmosférica de Marte e que o esgotamento foi suficiente para transformar o clima marciano. O vento solar é um fluxo fino de gás, eletricamente condutor, soprado constantemente a partir da superfície do Sol.

O Sol primitivo tinha uma radiação ultravioleta e um vento solar muito mais intensos, de modo que a perda atmosférica devido a estes processos foi provavelmente muito maior no passado de Marte. Segundo a equipe, estes processos podem ter sido os que controlaram o clima e habitabilidade do planeta. É possível que a vida microbiana possa ter existido à superfície no início da história de Marte. À medida que o planeta arrefecia e secava, qualquer forma de vida pode ter sido empurrada para locais subterrâneos ou para raros oásis à superfície.

Jakosky e a sua equipe obtiveram os novos resultados através da medição da abundância atmosférica de dois isótopos diferentes do gás argônio. Os isótopos são átomos do mesmo elemento, mas com massas diferentes. Uma vez que o mais leve dos dois isótopos escapa para o espaço com mais facilidade, deixa o gás remanescente enriquecido com o isótopo mais pesado. A abundância relativa dos dois isótopos, medida na atmosfera superior e à superfície, possibilitou estimar a fração do gás atmosférico perdido para o espaço.

Dado que um "gás nobre" não pode reagir quimicamente, não pode ser arrastado para as rochas; o único processo que pode remover gases nobres para o espaço é um processo físico chamado pulverização catódica pelo vento solar. Neste processo, os íons capturados pelo vento solar podem impactar Marte a altas velocidades e empurrar, fisicamente, o gás atmosférico para o espaço. A equipe rastreou o argônio porque só pode ser removido por pulverização catódica. Assim que os cientistas determinaram a quantidade de argônio perdida por pulverização, puderam usar esta informação para determinar a perda por pulverização catódica de outros átomos e moléculas, incluindo o dióxido de carbono (CO2).

O CO2 é de interesse porque é o principal constituinte da atmosfera de Marte e porque é um eficiente gás de efeito estufa que pode reter calor e aquecer o planeta. "Nós determinamos que a maioria do CO2 do planeta foi também perdido para o espaço por pulverização catódica," comenta Jakosky. "Existem outros processos que podem remover o CO2, de modo que este processo nos dá o valor mínimo de CO2 que foi perdido para o espaço."

A equipe fez a sua estimativa usando dados da atmosfera superior de Marte, recolhidos pelo instrumento NGIMS (Neutral Gas and Ion Mass Spectrometer) da MAVEN. Esta análise incluiu medições da superfície marciana obtidas pelo instrumento SAM (Sample Analysis at Mars) a bordo do rover Curiosity.

"As medições combinadas permitem uma melhor determinação de quanto argônio marciano foi perdido para o espaço ao longo de bilhões de anos," comenta Paul Mahaffy do Goddard Space Flight Center da NASA. "A utilização de medições de ambas as plataformas aponta para o valor que múltiplas missões têm em fazer medições complementares". Mahaffy, pesquisador principal do SAM e líder do instrumento NGIMS, ambos desenvolvidos no Goddard Space Flight Center.

Um artigo descrevendo os resultados foi publicado na revista Science.

Fonte: University of Arizona

terça-feira, 4 de abril de 2017

O planeta Saturno em infravermelho

Muitos detalhes de Saturno aparecem claramente na luz infravermelha.

Saturno

© Cassini/Maksim Kakitsev (Saturno)

Bandas de nuvens mostram grandes estruturas, incluindo tempestades ao longo delas. Também, bastante impressionante no infravermelho é o padrão incomum de nuvem hexagonal em torno do polo norte de Saturno. Cada lado do hexágono escuro tem aproximadamente o diâmetro da Terra.

A existência do hexágono não foi prevista, e sua origem e provável estabilidade constituem um tópico sendo pesquisado. Os célebres anéis de Saturno circundam o planeta e geram sombras abaixo do equador do planeta.

A imagem em destaque foi tomada pela sonda Cassini em 2014, em várias cores infravermelhas, mas foi processada apenas recentemente. Em setembro deste ano, a missão da sonda Cassini será finalizada de forma dramática, com a sonda sendo direcionada para mergulhar no interior do planeta Saturno.

Fonte: NASA

segunda-feira, 3 de abril de 2017

Auroras alienígenas em Urano

Desde que a Voyager 2 emitiu imagens espetaculares dos planetas nos anos 80, os amantes de planetas foram fisgados pelas auroras extraterrestres.

anel e auroras em Urano

© Hubble/Voyager 2 (anel e auroras em Urano)

Esta é uma imagem composta de Urano pela Voyager 2 e duas observações diferentes feitas por Hubble, uma para o anel e outra para as auroras.

As auroras são causadas por correntes de partículas carregadas como elétrons, que vêm de várias origens, como ventos solares, ionosfera planetária e vulcanismo lunar. Elas ficam estagnadas em poderosos campos magnéticos e são canalizadas para a atmosfera superior, onde suas interações com moléculas de gás, como oxigênio ou nitrogênio, desencadeiam explosões espetaculares de luz.

As auroras alienígenas em Júpiter e Saturno são bem estudadas, mas não se sabe muito sobre as auroras do gigantesco planeta gelado Urano. Em 2011, o telescópio espacial Hubble da NASA/ESA tornou-se o primeiro instrumento a captar uma imagem das auroras em Urano. Em 2012 e 2014 os astrônomos deram uma segunda olhada nas auroras usando as capacidades ultravioletas do Space Telescope Imaging Spectrograph (STIS) instalado no Hubble.

Eles acompanharam os choques interplanetários causados ​​por duas poderosas rajadas de vento solar viajando do Sol para Urano, então usaram o Hubble para captar seu efeito nas auroras de Urano, e observando as auroras mais intensas já vistas no planeta.

Ao observar as auroras ao longo do tempo, foi recolhida a primeira evidência direta de que estas poderosas regiões brilhantes giravam com o planeta. foi possível também redescobrir os polos magnéticos perdidos por Urano, que foram perdidos pouco depois de sua descoberta pela Voyager 2 em 1986 devido a incertezas nas medições e inexpressiva superfície do planeta.

Fonte: ESA

quinta-feira, 23 de março de 2017

Marte tem anéis?

Conhecemos algumas características dos planetas do nosso Sistema Solar, tais como: Júpiter é o maior, Saturno tem anéis, Mercúrio é o mais próximo do Sol, Marte é vermelho, mas é possível que um dos nossos vizinhos mais próximos também tenha tido anéis no seu passado e que possa vir a ter novamente algum dia.

ilustração da desintegração de lua de Marte

© U. Purdue (ilustração da desintegração de lua de Marte)

Esta é a teoria apresentada por cientistas financiados pela NASA da Universidade Purdue, EUA. David Minton e Andrew Hesselbrock desenvolveram um modelo que sugere que detritos expelidos para o espaço por um asteroide ou por outro corpo que colidiu com Marte há cerca de 4,3 bilhões de anos alterna entre a formação de um anel planetário e a aglomeração para formar uma lua.

Uma teoria sugere que a grande bacia polar norte de Marte, a Bacia Borealis, que cobre cerca de 40% do planeta no seu hemisfério norte, foi criada por esse impacto, expulsando detritos para o espaço.

"Este grande impacto teria ejetado material suficiente, da superfície de Marte, para formar um anel," comenta Hesselbrock.

O modelo de Hesselbrock e Minton sugere que à medida que o anel se formava, e os detritos lentamente se afastavam do Planeta Vermelho e se espalhavam, este começou a aglomerar-se e formou, eventualmente, uma lua. Ao longo do tempo, a força gravitacional de Marte teria puxado esta lua em direção do planeta até atingir o limite de Roche, a distância na qual as forças de maré de um planeta desintegram um corpo celeste unido apenas pela gravidade.

Fobos, uma das luas de Marte, está ficando cada vez mais próxima do planeta. De acordo com o modelo, Fobos irá desintegrar-se quando atingir o limite de Roche, e produzir um conjunto de anéis daqui a cerca de 70 milhões de anos. Dependendo da posição do limite de Roche, Minton e Hesselbrock pensam que este ciclo poderá ter-se repetido entre três e sete vezes ao longo de bilhões de anos. Segundo o modelo, de cada vez que uma lua se desintegra e é reformada a partir do anel resultante, a sua lua sucessora seria cinco vezes menor do que a anterior, e os detritos teriam caído para o planeta, possivelmente explicando depósitos sedimentares enigmáticos encontrados perto do equador de Marte.

"Poderíamos ter sedimentos lunares com quilômetros de espessura a chovendo nos primeiros tempos da história do planeta, e existem depósitos sedimentares enigmáticos em Marte sem nenhuma explicação de como lá chegaram," comenta Minton. "E agora é possível estudar esse material."

Outras teorias sugerem que o impacto que produziu a Bacia Polar Norte levou à formação de Fobos há 4,3 bilhões de anos atrás, mas Minton disse que é improvável que a lua tenha durado todo este tempo. Além disso, Fobos teria que ter sido formada longe de Marte e teria que ter atravessado a ressonância de Deimos, a mais exterior das duas luas de Marte. A ressonância ocorre quando duas luas exercem influência gravitacional uma sobre a outra repetidamente e periodicamente, como fazem as luas principais de Júpiter. Ao passar pela sua ressonância, Fobos teria alterado a órbita de Deimos. Mas a órbita de Deimos está a um grau do equador de Marte, sugerindo que Fobos não teve nenhum efeito sobre Deimos.

"Não aconteceu muita coisa à órbita de Deimos desde que se formou," comenta Minton. "Fobos, ao passar por estas ressonâncias, teria mudado isso."

"Esta pesquisa destaca ainda mais maneiras dos impactos afetarem um corpo planetário," comenta Richard Zurek do Jet Propulsion Laboratory (JPL) da NASA em Pasadena, Califórnia, EUA. Ele é cientista do projeto Mars Reconnaissance Orbiter (MRO) da NASA, cujo mapeamento gravitacional forneceu suporte para a hipótese de que as planícies ao norte foram formadas por um impacto gigante.

Minton e Hesselbrock vão concentrar-se agora ou na dinâmica do primeiro conjunto de anéis formados ou nos materiais que choveram sobre Marte derivados da desintegração das luas.

Um artigo foi publicado na revista Nature Geoscience.

Fonte: Purdue University

domingo, 19 de março de 2017

Polo sul de Encélado é mais quente por baixo da superfície

Ao longo da última década, a missão internacional da Cassini revelou uma intensa atividade no polo sul da gelada lua de Saturno, Encélado, com fraturas quentes que expelem jatos ricos em água e que sugerem um mar subterrâneo.

Encélado e as listras de tigre em azul

© NASA/JPL/Space Science Institute/Cassini (Encélado e as listras de tigre em azul)

Um novo estudo, baseado em observações de micro-ondas desta região, mostra que a lua é mais quente do que o esperado apenas alguns metros abaixo da sua superfície gelada. Isto sugere que o calor é produzido sobre uma ampla área nesta região polar, transportado sob a crosta e que o reservatório de água líquida de Encélado pode estar à espreita apenas alguns quilômetros abaixo.

Em 2005, observações da missão Cassini revelaram plumas de vapor de água e gelo liberadas para o espaço a partir do polo sul de Encélado, a sexta maior lua de Saturno. Estes jatos têm origem nas "listras de tigre", quatro fraturas quentes na superfície gelada da lua. A composição salgada destes jatos aponta para um mar subterrâneo de água líquida que pode interagir com o núcleo rochoso de Encélado, semelhante ao oceano subsuperficial que se pensa existir na lua de Júpiter, Europa.

Muitos dos voos rasantes da Cassini por Encélado foram dedicados a compreender a estrutura interior deste corpo fascinante e o seu reservatório líquido potencialmente habitável. Agora, um estudo baseado em dados recolhidos durante uma passagem rasante em 2011 indica que o mar oculto da lua pode estar mais próximo da superfície do que se pensava anteriormente.

"Estas observações fornecem uma visão única do que está acontecendo por baixo da superfície. Mostram que os primeiros metros abaixo da superfície da área que investigamos, embora a uns frios 50 a 60 K, são muito mais quentes do que esperávamos: provavelmente até 20 K mais quentes em alguns lugares," acrescenta Alice Le Gall, do LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales) e da UVSQ (Université Versailles Saint-Quentin), França, e membro associada do instrumento RADAR da Cassini.

"Isto não pode ser explicado apenas como resultado da iluminação do Sol e, em menor escala, do aquecimento de Saturno, de modo que deve haver uma fonte adicional de calor."

O calor detectado parece estar sob uma camada muito mais fria de geada, uma vez que nenhuma anomalia semelhante foi encontrada em observações infravermelhas da mesma região, estas estudam a temperatura da superfície, mas não são sensíveis ao que está por baixo.

As observações utilizadas por Alice e seus colaboradores cobrem uma faixa estreita, em forma de arco, da região polar sul, com cerca de 500 km de comprimento e 25 de largura, localizadas apenas 30 a 50 km para norte das listras de tigre. Devido às restrições operacionais, não foi possível obter observações em micro-ondas das próprias fraturas ativas. Isto teve o benefício de permitir com que os cientistas observassem que os terrenos termicamente anômalos de Encélado se estendem bem além das listras de tigre.

"A anomalia térmica que vemos em micro-ondas é especialmente pronunciada em três fraturas que não são diferentes das listras de tigre, exceto que não parecem ser, de momento, a fonte dos jatos," salienta Alice.

Estas fraturas aparentemente dormentes situadas acima do mar quente e subterrâneo apontam para um caráter dinâmico da geologia de Encélado: a lua pode ter passado por vários episódios de atividade em diferentes locais durante a sua história passada.

Mesmo que as observações cubram apenas uma pequena região dos terrenos polares sul, é provável que toda a região seja quente e que o oceano de Encélado esteja a uns meros 2 km da superfície gelada. O achado está em concordância com os resultados de um outro estudo recente, liderado por Ondrej Cadek e publicado em 2016, que estimou a espessura da crosta de Encélado. Com uma profundidade média de 18 a 22 km, a concha gelada parece diminuir para menos de 5 km no polo sul.

Alice e seus colaboradores pensam que a fonte subterrânea deste aquecimento está ligada com o ciclo de marés da lua ao longo da sua órbita excêntrica ao redor de Saturno. Isto induz compressões de tensão e deformações na crosta, levando à formação de falhas e fraturas enquanto, ao mesmo tempo, aquece as camadas subsuperficiais. Neste cenário, a crosta gelada mais fina da região polar sul está sujeita a uma maior deformação das marés que, por sua vez, libera mais calor e contribui para a manutenção da água subterrânea no estado líquido.

"Se o mar subterrâneo de Encélado estiver realmente tão perto da superfície como este estudo indica, então uma missão futura a esta lua, transportando um instrumento de penetração de radar, poderá ser capaz de detectá-lo," comenta Nicolas Altobelli, cientista do projeto Cassini-Huygens da ESA.

Um novo estudo foi publicado na revista Nature Astronomy.

Fonte: ESA

Vento meridional de Vênus foi detectado em ambos os hemisférios

A primeira evidência científica de que existe em Vênus uma circulação de vento entre o equador e os polos, ou vento meridional, foi reunida por uma equipe internacional liderada por Pedro Machado, do Instituto de Astrofísica e Ciências do Espaço (IA) e da Faculdade de Ciências da Universidade de Lisboa (FCUL).

ventos em Vênus

© P. Machado (ventos em Vênus)

Através do estudo da radiação solar refletida no topo das nuvens de Vênus, Pedro Machado e a sua equipe identificaram, em ambos os hemisférios, uma componente de vento perpendicular ao equador, concordante com a circulação atmosférica característica de uma célula de Hadley e com uma velocidade média de 81 km/h. Uma célula de Hadley, pela primeira vez identificada na atmosfera da Terra por George Hadley no século XVIII, é uma circulação atmosférica caracterizada pela ascensão de ar quente na região do equador e fluindo na direção dos polos rumo a latitudes médias, onde desce de novo para mais perto da superfície e regressa ao equador.

"Esta detecção é crucial para entender o transporte de energia entre a zona equatorial e as altas latitudes, trazendo luz a um fenômeno que há décadas permanece inexplicado e que é a super-rotação da atmosfera de Vênus," disse Machado.

A super-rotação da atmosfera de Vênus consiste no fato de os ventos paralelos ao equador, ou ventos zonais, serem responsáveis por a atmosfera completar uma volta ao planeta em apenas pouco mais de quatro dias terrestres, ou seja, 60 vezes mais rápido do que o período de rotação do globo sólido, que é de 243 dias terrestres.

Atualmente a comunidade científica procura um modelo físico capaz de explicar este fenômeno de super-rotação. Este modelo estuda a variação do vento paralelo ao equador, ou vento zonal, ao longo do tempo e ao longo das várias latitudes, assim como com os primeiros dados sobre a existência de um vento meridional. Um dos próximos passos será identificar o ramo do vento meridional a menor altitude em que o ar regressa ao equador.

Machado e a sua equipe são também autores do único método, hoje existente, que utiliza a radiação visível para a medição, a partir de telescópios na Terra, da velocidade instantânea do vento na atmosfera de outro planeta. Baseia-se no efeito de Doppler que as nuvens, pela sua deslocação, aplicam à luz do Sol que refletem.

"Vários grupos de pesquisa tentaram medir o vento meridional em Vênus. As tentativas feitas até agora baseadas em observações a partir do solo foram infrutíferas, enquanto que as que utilizaram dados da sonda espacial Venus Express estavam limitadas ao hemisfério sul e revelando resultados pouco conclusivos," comenta Machado.

Os dados deste estudo foram obtidos com observações simultâneas e coordenadas da atmosfera de Vênus realizadas com a sonda Venus Express, da Agência Espacial Europeia (ESA), e com o Telescópio Canada-France-Hawaii (CFHT) utilizando o espetrógrafo de alta resolução ESPaDOnS.

Este resultado foi publicado na revista científica Icarus.

Fonte: Instituto de Astrofísica e Ciências do Espaço

segunda-feira, 13 de março de 2017

A lua Pan de Saturno

Por que a lua Pan de Saturno parece tão estranha?

a lua Pan de Saturno

© NASA/Cassini (a lua Pan de Saturno)

Imagens tiradas na semana passada pela sonda Cassini orbitando Saturno revelaram detalhes sem precedentes da lua Pan. As imagens surpreendentes mostram uma lua que parece algo como uma noz. É possível ver no meio do satélite uma protuberância, já que muito provavelmente ele é formado pela ruptura de um satélite maior e pela fusão de diferentes pedaços.

Outras características visíveis em Pan incluem terreno ondulado, cumes longos, e algumas crateras. Abrangendo 30 quilômetros de diâmetro, Pan orbita dentro dos 325 quilômetros de largura da Abertura Encke do anel A do planeta Saturno, uma lacuna conhecida desde o final dos anos 1800.

A lua Pan completa uma volta ao redor de Saturno a cada 13,8 horas.

No próximo mês, a Cassini será direcionada para passar perto da lua massiva de Saturno, Titã, para que ela possa ser puxada para uma série final de órbitas que a levarão completamente dentro dos anéis de Saturno e prepará-la para mergulhar na atmosfera de Saturno.

Fonte: NASA & Astronomy

sexta-feira, 3 de março de 2017

Descoberto o elo perdido na formação planetária

Os planetas possivelmente se formam nos discos de gás e poeira encontrados ao redor de estrelas jovens.

disco protoplanetário

© Jean-François Gonzalez (disco protoplanetário)

A imagem acima mostra um disco protoplanetário visível como um brilhante anel de poeira. O gás tem tons de azul e a poeira de vermelho.

Mas ainda não há uma teoria completa da sua origem que explica como é que a poeira inicial se desenvolve em sistemas planetários. Uma equipe francesa, britânica e australiana pensa que tem agora a resposta. As suas simulações mostram a formação de "armadilhas de poeira" onde fragmentos do tamanho de seixos se reúnem e aglomeram, para dar origem aos blocos de construção dos planetas.

O nosso Sistema Solar (e outros sistemas planetários) começou com discos de gás e grãos de poeira em torno de uma estrela jovem. Os processos que convertem estes grãos minúsculos, cada com micr\õmetros de diâmetro, em agregados com alguns centímetros, e o mecanismo para fabricar núcleos planetários a partir de "planetesimais" de tamanho quilométrico, são bem compreendidos.

O estágio intermediário, que aglutina em seixos e os aglomera em objetos com o tamanho de asteroides, é menos claro, mas, com mais de 3.500 planetas já descobertos ao redor de outras estrelas, todo o processo parece ser omnipresente.

O Dr. Jean-François Gonzalez, do Centre de Recherche Astrophysique, na França, liderou o novo trabalho. Ele comenta: "Até agora, temos lutado para explicar como é que seixos se juntam para formar planetas e, mesmo assim, já descobrimos grandes números de planetas em órbita de outras estrelas. Isso levou-nos a pensar sobre como resolver este mistério."

Existem duas barreiras principais que precisam ser superadas para que os seixos se tornem em planetesimais. Em primeiro lugar, o arrasto do gás sobre as partículas de poeira num disco faz com que se desloquem rapidamente em direção à estrela central, onde são destruídos, não deixando nenhum material para formar planetas. O segundo desafio é que os grãos em crescimento podem ser quebrados por colisões a alta velocidade, fragmentando-os num grande número de pedaços menores e invertendo o processo de agregação.

Os únicos locais, nos discos de formação planetária, onde estes problemas podem ser superados são chamados de "armadilhas de poeira". Nestas regiões de alta pressão, o movimento de deriva diminui, permitindo com que os grãos de poeira se acumulem. Com a sua velocidade reduzida, os grãos também podem evitar a fragmentação quando colidem.

Até agora, os astrônomos pensavam que as armadilhas de poeira só podiam existir em ambientes muito específicos, mas as simulações de computador indicam que são muito comuns. O seu modelo presta especial atenção à forma como a poeira num disco arrasta o componente gasoso. Na maioria das simulações astronômicas, o gás faz com que a poeira se mova, mas às vezes, nas configurações mais densas, a poeira atua mais fortemente sobre o gás.

Este efeito, conhecido como retro-reação aerodinâmica de arrasto, é geralmente negligenciável e tem sido, até agora, ignorado nos estudos de grãos em crescimento e fragmentação. Mas os seus efeitos tornam-se importantes em ambientes ricos em poeira, como aqueles encontrados onde os planetas se formam.

O efeito de retro-reação retarda o desvio interno dos grãos, o que lhes dá tempo para crescer em tamanho. Os grãos suficientemente grandes tornam-se livres da influência do gás, diminuindo a alteração dos seus movimentos. O gás, sob a influência desta reação inversa, é empurrado para fora e forma uma região de alta pressão: a armadilha de poeira. Estas armadilhas espontâneas concentram então os grãos oriundos das regiões mais externas do disco, criando um anel muito denso de sólidos e dando uma ajuda à formação dos planetas.

Observatórios como o ALMA, no Chile, já vêm anéis brilhantes e escuros em sistemas de formação planetária que se pensa serem armadilhas de poeira. Gonzalez e a sua equipe, e outros grupos de pesquisa espalhados pelo mundo, planejam agora estender o modelo de armadilha até ao processo de formação dos planetesimais.

Esta é uma solução simples e robusta para um problema de longa data na formação planetária.

Os seus resultados foram publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Swinburne University of Technology

quarta-feira, 1 de março de 2017

Uma nova definição para planeta é proposta

Em 2006, durante sua 26ª Assembleia Geral, a União Astronômica Internacional (UAI) adotou uma definição formal para o termo “planeta”.

  montagem de objetos no Sistemas Solar com menos de 10.000 km de diâmetro

  © Emily Lakdawalla (montagem de objetos no Sistemas Solar com menos de 10.000 km de diâmetro)

Esta decisão foi tomada na esperança de dissipar a ambiguidade sobre quais os corpos que deveriam ser designados “planetas”, uma questão que atormentava os astrônomos desde que foram descobertos objetos de maior porte além da órbita de Netuno comparáveis em tamanho e massa com Plutão.

Consequentemente, diferentemente do previsto pela UAI, a definição adotada acabou resultando em um certo grau de controvérsia na comunidade astronômica e foi alvo de debates entre o público em geral. Por esta razão, uma equipe de cientistas planetários, o qual inclui o famoso “defensor de Plutão” Alan Stern, se juntou para propor um novo significado para o termo “planeta”. Com base na sua definição geofísica, o termo “planeta” passaria a ser aplicado a mais de 100 corpos no Sistema Solar, incluindo a nossa própria Lua.

A controversa definição em vigor da UAI (5ª Resolução) estabelece que um “planeta” é definido com base nos seguintes critérios:

1 – Um “planeta” é um corpo celestial que:

  • orbita o Sol;
  • possui massa suficiente para que a sua própria gravidade supere as forças de corpo rígido, de modo que assume uma forma de equilíbrio hidrostático (quase redondo), e;
  • que tenha “limpado” sua vizinhança orbital.

2 – Um “planeta anão” é um corpo celeste que:

  • orbita o Sol;
  • possui massa suficiente para que a sua própria gravidade supere as forças de corpo rígido, de modo que assume uma forma de equilíbrio hidrostático (quase redondo);
  • que não tenha “limpado” a sua vizinhança orbital, e;
  • não é um satélite natural.

3 – Todos os demais objetos, exceto os satélites naturais, em órbita do Sol, serão referidos coletivamente como “Corpos Pequenos do Sistema Solar”.

Por causa destes critérios, Plutão deixou de ser considerado um “planeta” e foi reclassificado para a categoria 2, como um “planeta anão”, plutoide, plutino, Objeto Transnetuniano ou Objeto Cinturão de Kuiper. Além disso, corpos redondos como Ceres e alguns objetos transnetunianos recém-descobertos como Éris, Haumea, Makemake e similares, também foram designados “planetas anões”. Naturalmente, esta definição não foi bem aceita por alguns cientistas, entre eles um grupo de geólogos planetários.

Agora, uma equipe liderada por Kirby Runyon, estudante de doutorado do Departamento de Ciências Terrestres e Planetárias da Universidade Johns Hopkins, que inclui cientistas do SwRI (Southwest Research Institute) em Boulder, Colorado, EUA; do NOAO (National Optical Astronomy Observatory) em Tucson, Arizona, EUA; do Observatório Lowell em Flagstaff, Arizona, EUA; e do Departamento de Física e Astronomia da Universidade George Mason, propõe mudanças nos critérios da UAI.

O seu estudo, intitulado “A Geophysical Planet Definition“, foi recentemente publicado e aborda o que a equipe vê como “uma necessidade de uma nova definição que leve em conta as propriedades geofísicas de um planeta”. Em outras palavras, eles julgam que um “planeta” deve ser assim designado somente baseando-se em suas propriedades intrínsecas, em vez de tomar em consideração suas propriedades orbitais ou extrínsecas.

“Um planeta é um corpo de massa subestelar que jamais tenha sofrido a fusão nuclear e que cuja gravidade é suficiente para assumir uma forma esferoidal adequadamente descrita por uma elipsoide triaxial, independentemente dos seus parâmetros orbitais,” sugeriram Runyon e equipe.

Esta definição é uma tentativa de estabelecer algo que é útil para todos os envolvidos no estudo da ciência planetária, que sempre incluiu geólogos.

“A definição da UAI pode ser útil para os astrônomos planetários preocupados com as propriedades orbitais dos corpos do Sistema Solar e pode capturar a essência do que um ‘planeta’ é para eles. Mas, a definição não é útil para os geólogos planetários. Eu estudo paisagens e como as paisagens evoluem. Também me aborreceu que a UAI tomasse para si a decisão de algo que os geólogos também usam. Tendo em vista o modo como o nosso cérebro evoluiu, nós fazemos o Universo ter sentido através da classificação das coisas. A Natureza existe em um continuum, não em caixas discretas. No entanto nós, como seres humanos, precisamos de classificar coisas a fim de trazer ordem ao caos. Ter uma definição da palavra ‘planeta’, que expressa o que pensamos que um planeta deve ser é concordante com o nosso desejo de levar a ordem ao caos e de entender o Universo,” afirmou Runyon.

A nova definição proposta também é uma tentativa de solucionar muitos dos aspectos mais controversos e restritivos da definição adotada pela UAI. Por exemplo, a nova definição levantada por Runyon e sua equipe aborda a questão de orbitar ou não o Sol, o que se aplica aos objetos encontrados em torno de outras estrelas (os exoplanetas). As regras da UAI não tratam deste aspecto. Além disso, de acordo com a definição, estão inclusos os planetas “fugitivos” ou “flutuantes”, aqueles que foram expulsos dos seus sistemas estelares. Estes corpos livres, sem estrela hospedeira, não seriam conforme a definição da UAI tecnicamente classificados de “planetas”.

Para complicar ainda mais, há a questão problemática estabelecida pela regra: a “limpeza da vizinhança orbital”. Como tem sido enfatizado por muitos que rejeitam a definição da UAI, planetas como a Terra não satisfazem a qualificação, uma vez que pequenos novos corpos estão sendo constantemente injetados em órbitas que atravessam o nosso planeta, como por exemplo: os NEOs (Near-Earth Objects). Além disso, a nova definição proposta procura resolver esta regra, considerada indiscutivelmente um dos aspetos mais lamentáveis da resolução de 2006 da UAI.

“A maior motivação, para mim, é: cada vez que falo sobre isto ao público em geral, as pessoas comentam logo que ‘Plutão já não é um planeta’. O interesse das pessoas em um corpo parece ligado com a presença ou ausência do rótulo ‘planeta’. Eu quero deixar bem claro na mente do público o que realmente é um planeta. A definição da UAI não se ajusta à minha intuição e acho que também não se ajusta à intuição das outras pessoas,” declarou Runyon.

O estudo foi preparado para a 49ª Conferência de Ciência Planetária e Lunar. Esta conferência anual, que acontecerá nos dias 20 a 24 de março de 2017 em Houston, Texas, envolverá especialistas de todos os cantos do mundo que se reúnem para partilhar as mais recentes descobertas da ciência planetária. Agora, na 49ª Conferência, Ruynon e colegas esperam apresentar os últimos resultados como parte do Evento de Educação e Envolvimento Público.

Ruynon espera que, através da apresentação de um pôster de tamanho gigante, como um ferramental educacional, eles poderão mostrar como esta nova definição irá facilitar o estudo dos corpos do Sistema Solar de uma maneira mais inclusiva e intuitiva.

“Escolhemos publicá-lo nesta secção da conferência dedicada à educação. Especificamente, quero influenciar os professores escolares sobre a definição que podem ensinar aos alunos. Esta não é a primeira vez que alguém propõe uma definição que não a proposta pela UAI. Mas poucos falam sobre educação. Falam entre os pares e pouco progresso acontece. Quero divulgar o estudo em uma secção que alcance os professores,” destacou Runyon.

Naturalmente, há aqueles que podem levantar dúvidas sobre como esta definição poderia levar a considerarmos planetas em demasia. Se a propriedade intrínseca do equilíbrio hidrostático é o único qualificador real, então corpos grandes como Ganimedes, Titã, Europa e até a Lua também seriam considerados “planetas”. Dado que esta definição resultaria em um Sistema Solar com cerca de 110 “planetas”, temos que nos perguntar se talvez seja demasiado inclusivo. No entanto, Runyon não está preocupado com estes números. Desde a publicação do artigo, Runyon tem sido indagado se pretende apresentar esta proposta à UAI para sanção oficial. Runyon disse: Não!

“Isto porque partimos do princípio que a UAI é que detém o poder para dizer qual é a definição. Nós, no campo da ciência planetária, não precisamos da definição da UAI. A definição de palavras baseia-se, em parte, na forma como são utilizadas. Se a definição geofísica é a definição que as pessoas usam e que os professores ensinam, então esta irá tornar-se, de fato, a definição usual, apesar dos votos da UAI em Praga,” respondeu Runyon.

Independentemente da opinião das pessoas sobre a definição de “planeta” pela UAI (ou a proposta por Runyon e colegas), é claro que o debate está longe do fim. Antes de 2006, não havia definição exata do termo planeta. Além disso, constantemente são descobertos novos corpos astronômicos que desafiam as nossas noções do que constitui um planeta. No final, é o processo de descoberta que conduz os esquemas de classificação e não o contrário.

Na minha opinião a proposta corrige o problema da órbita, porém não deveria considerar os satélites naturais, ou seja, a Lua não seria admitida como planeta, e reduziria o número na classificação de novos planetas.

Fonte: Universe Today

sexta-feira, 24 de fevereiro de 2017

Dois asteroides distantes dão pistas sobre possível "Planeta Nove"

As propriedades dinâmicas destes asteroides, observados espectroscopicamente pela primeira vez usando o Gran Telescopio CANARIAS, sugerem uma possível origem comum e dão uma pista para a existência de um planeta localizado além de Plutão, o chamado "Planeta Nove".

esquema das órbitas de seis dos sete objetos transnetunianos extremos

© Wikipedia (esquema das órbitas de seis dos sete objetos transnetunianos extremos)

No ano 2000 foi descoberto o primeiro de uma nova classe de objetos do Sistema Solar distante, orbitando o Sol a uma distância maior do que a de Netuno: os objetos transnetunianos extremos (ETNOs). As suas órbitas estão muito longe do Sol em comparação com a da Terra. Nós orbitamos o Sol a uma distância média de 1 Unidade Astronômica (1 UA corresponde a 150 milhões de quilômetros), mas os ETNOs orbitam a mais de 150 UA. Para termos uma ideia de quão longe estão, a órbita de Plutão é próxima de 40 UA e a sua maior aproximação ao Sol (periélio) situa-se em 30 UA. Esta descoberta foi um marco nos estudos do Sistema Solar e, até agora, foram identificados um total de 21 ETNOs.

Recentemente, vários estudos sugeriram que os parâmetros dinâmicos dos ETNOs podem ser melhor explicados se existisse um ou mais planetas com massas várias vezes a da Terra orbitando o Sol a distância de centenas de UA. Em particular, em 2016 os pesquisadores Brown e Batygin usaram as órbitas de sete ETNOs para prever a existência de uma "superterra" em órbita do Sol a cerca de 700 UA. Esta categoria de massas é denominada subnetuniana. Esta ideia é referida como Hipótese do Planeta Nove e é um dos temas atuais de mais interesse na ciência planetária. No entanto, dado que os objetos estão tão distantes, a luz que recebemos deles é muito fraca e até agora o único dos 21 objetos transnetunianos observados espectroscopicamente era Sedna.

Agora, uma equipe de pesquisadores liderados pelo Instituto de Astrofísica das Canárias (IAC), em colaboração com a Universidade Complutense de Madrid, deu um passo em direção à caracterização física destes corpos e, através do seu estudo, confirmar ou refutar a Hipótese do Planeta Nove. Os cientistas fizeram as primeiras observações espectroscópicas de 2004 VN112 e 2013 RF98, ambos particularmente interessantes dinamicamente porque as suas órbitas são quase idênticas e os polos das órbitas estão separados por um ângulo muito pequeno. Isto sugere uma origem comum e as suas órbitas atuais podem ser o resultado de uma interação passada com o hipotético Planeta Nove. Este estudo sugere que este par de ETNOs foi um asteroide binário que se separou depois de um encontro com um planeta localizado além da órbita de Plutão.

Para chegar a estas conclusões, fizeram as primeiras medições espectroscópicas de 2004 VN112 e 2013 RF98 no visível. Estas foram realizadas em colaboração com os astrônomos Gianluca Lombardi e Ricardo Scarpa, usando o espectrógrafo OSIRIS acoplado ao Gran Telescopio CANARIAS (GTC), situado no Observatório Roque de los Muchachos (Garafía, La Palma). Foi um trabalho árduo identificar estes asteroides porque a sua grande distância significa que o seu movimento aparente no céu é muito lento. Então, mediram as suas magnitudes aparentes (o seu brilho visto a partir da Terra) e também recalcularam a órbita de 2013 RF98, que tinha sido mal determinada. Descobriram este objeto a uma distância de mais de um minuto de arco da posição prevista a partir das efemérides. Estas observações ajudaram a melhorar a órbita computacional e foram publicadas pelo Minor Planet Center (MPEC 2016-U18: 2013 RF98), o organismo responsável pela identificação de cometas e planetas menores (asteroides), bem como pelas medições dos seus parâmetros e posições orbitais.

O espectro visível pode também dar algumas informações sobre a sua composição. Medindo a inclinação do espectro, é possível saber se têm gelo puro às suas superfícies, como é o caso de Plutão, bem como compostos de carbono altamente processados. O espectro também pode indicar a possível presença de silicatos amorfos, como nos asteroides troianos associados com Júpiter. Os valores obtidos para 2014 VN112 e 2013 RF98 são quase idênticos e semelhantes àqueles observados fotometricamente para outros dois ETNOs, 2000 CR105 e 2012 VP113. No entanto, Sedna, o único destes objetos previamente observado espectroscopicamente, mostra valores muitos diferentes dos restantes. Estes cinco objetos fazem parte do grupo de sete usados para testar a Hipótese do Planeta Nove, o que sugere que todos deveriam ter uma origem comum, à exceção de Sedna, que se pensa ter vindo da parte interna da nuvem de Oort.

"Os gradientes espectrais semelhantes observados para o par 2004 VN112 e 2013 RF98 sugerem uma origem física comum," explica Julia de León, a autora principal do artigo, astrofísica do IAC. "Estamos propondo a possibilidade de terem sido anteriormente um asteroide binário que se afastou durante um encontro com um objeto mais massivo." Para validar esta hipótese, a equipe realizou milhares de simulações numéricas para ver como os polos das órbitas se separariam com o passar do tempo. Os resultados destas simulações sugerem que um possível Planeta Nove, com uma massa entre 10 e 20 massas terrestres, orbitando o Sol a uma distância entre 300 e 600 UA, pode ter desviado o par 2004 VN112 e 2013 RF98 há cerca de 5 a 10 milhões de anos atrás. Isto poderia explicar, em princípio, como estes dois asteroides, que começaram como um par em órbita um do outro, se separaram gradualmente nas suas órbitas porque fizeram uma aproximação a um objeto muito mais massivo num momento particular do seu passado.

Este estudo foi recentemente publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica de Canarias

terça-feira, 31 de janeiro de 2017

Imagens mostram anéis de Saturno em detalhe sem precedentes

Imagens recentemente divulgadas mostram a incrível proximidade com que a nave Cassini da NASA, agora na sua fase de "pastoreio dos anéis", está observando os deslumbrantes anéis gelados de Saturno.

anel A de Saturno

© Cassini (anel A de Saturno)

Esta imagem da Cassini mostra uma onda de densidade no anel A (à esquerda) situada a cerca de 134.500 km de Saturno. As ondas de densidade são acumulações de partículas a certas distâncias do planeta. Esta característica está recheada de perturbações irregulares denominadas "palha". A onda, propriamente dita, é criada pela gravidade das luas Jano e Epimeteu, que partilham a mesma órbita ao redor de Saturno. No outro lado, a cena é dominada por sulcos de uma passagem recente da lua Pan.

As visões são algumas das imagens mais próximas das partes externas dos anéis principais, possibilitando uma oportunidade ansiosamente aguardada de observar aspectos como "palha" e "hélices". Embora a Cassini já tenha visto estas características antes, as órbitas atuais e especiais estão fornecendo oportunidades para as observar em maior detalhe. As novas imagens possuem resolução suficiente para captar detalhes tão pequenos quanto 550 metros, à escala dos maiores edifícios da Terra.

A Cassini está agora na metade da sua penúltima fase da missão, na execução de 20 órbitas que mergulham para além da orla externa do sistema principal de anéis. Estas órbitas rasantes começaram no mês de novembro do ano passado e vão continuar até ao final de abril deste ano, quando a Cassini começar o seu Grande Final. Durante as 22 órbitas finais, a Cassini mergulhará repetidamente através do espaço entre os anéis e Saturno. O primeiro mergulho final está agendado para 26 de abril.

Por agora, a sonda veterana está passando além das fronteiras externas dos anéis a cada semana, reunindo algumas das melhores imagens dos anéis e das luas. A Cassini já enviou as melhores imagens das pequenas luas Dafne e Pandora.

Algumas das estruturas vistas nas imagens recentes da Cassini não foram observáveis com este nível de detalhe desde que a sonda chegou a Saturno em meados de 2004. Neste momento, os detalhes finos das palhas e hélices, provocados por partículas anulares aglomeradas e pequenas luas, respetivamente, nunca tinham sido vistos antes (embora as hélices estivessem presentes em imagens da chegada da Cassini, foram só descobertas numa análise posterior concluída no ano seguinte).

A Cassini aproximou-se um pouco mais dos anéis durante a sua chegada a Saturno, mas a qualidade destas imagens não era tão alta quanto nas imagens novas. Estas observações preciosas apenas olhavam para o lado retroiluminado dos anéis com períodos curtos de exposição para minimizar manchas devido ao rápido movimento da Cassini enquanto saltava sobre o plano dos anéis. Isto resultou em imagens cientificamente deslumbrantes, mas um pouco escuras e com ruído.

Em contraste, as ampliações que a Cassini começou a captar nas suas órbitas de pastoreio são obtidas tanto nos lados iluminados como retroiluminados dos anéis.

Depois de quase 13 anos estudando os anéis de Saturno, a equipe da Cassini tem uma compreensão mais profunda e rica do que vislumbram, mas ainda antecipam novas surpresas.

"Estas passagens íntimas representam a abertura de uma janela inteiramente nova nos anéis de Saturno e, ao longo dos próximos meses, esperamos dados ainda mais empolgantes à medida que treinamos as nossas câmaras em outras partes dos anéis mais próximas do planeta," comenta Matthew Tiscareno, cientista da Cassini que estuda os anéis de Saturno no Instituto SETI, em Mountain View, Califórnia. 

Lançada em 1997, a Cassini tem vindo a visitar o sistema saturniano desde que aí chegou em 2004 para um estudo do planeta, dos anéis, das luas e da sua vasta magnetosfera. A Cassini fez inúmeras descobertas dramáticas, incluindo um oceano global com indicações de atividade hidrotermal no interior da lua Encélado e mares de metano líquido na lua Titã.

Fonte: Jet Propulsion Laboratory

domingo, 15 de janeiro de 2017

Júpiter crescente e a Grande Mancha Vermelha

Esta imagem que mostra o planeta Júpiter numa fase crescente e em destaque a icônica Grande Mancha Vermelha, foi criada pelo cientista cidadão Roman Tkachenko, usando os dados do instrumento da JunoCam, a câmera a bordo da sonda Juno.

Júpiter crescente e a Grande Mancha Vermelha

© NASA/JPL-Caltech/Roman Tkachenko (Júpiter crescente e a Grande Mancha Vermelha)

Abaixo da Grande Mancha Vermelha, uma tempestade avermelhada de longa duração conhecida como Oval BA também é visível. Nota-se na imagem também uma série de tempestades esbranquiçadas e de forma ovalada, conhecidas informalmente como Colar de Pérolas.

A imagem foi realizada no dia 11 de Dezembro de 2016, às 8:30 da manhã, hora de Brasília, quando a nave espacial Juno realizou seu terceiro sobrevôo próximo de Júpiter. No momento em que esta imagem foi efetuada a sonda estava a cerca de 458.800 km de distância do planeta.

As imagens brutas da JunoCam estão disponíveis para o público que possa processar da maneira que quiser e postar no site, sendo que os melhores processamentos são escolhidos e citados. Para participar acesse: http://www.missionjuno.swri.edu/junocam

Fonte: NASA

sábado, 24 de dezembro de 2016

Próximo de Pandora

Esta imagem da nave espacial de Cassini da NASA é uma das vistas de alta resolução nunca tomadas da lua Pandora de Saturno.

Pandora

© NASA/JPL/Space Science Institute/Cassini (Pandora)

Pandora possui 84 quilômetros de extensão e trafega numa órbita próxima da fronteira exterior do anel F de Saturno.

A Cassini captou a imagem durante seu mais próximo voo de Pandora no dia 18 de dezembro de 2016, durante o terceiro de seus passeios de rastreio pelas bordas externas dos anéis principais de Saturno.

A imagem foi tirada em luz verde com a câmera de ângulo estreito da nave espacial Cassini a uma distância de aproximadamente 40,5 quilômetros de Pandora. A escala da imagem é de 240 metros por pixel.

Na imagem nota-se duas grandes crateras com cerca de 30 km de diâmetro. O interior destas crateras encontra-se preenchido por uma espessa camada de detritos. Estes materiais são provavelmente finas partículas de gelo dos anéis resgatadas pela fraca gravidade de Pandora.

Fonte: NASA