Mostrando postagens com marcador Pulsar. Mostrar todas as postagens
Mostrando postagens com marcador Pulsar. Mostrar todas as postagens

quarta-feira, 24 de outubro de 2018

O mais jovem pulsar da Via Láctea expõe segredos de morte estelar

Cientistas confirmaram a identidade do mais jovem pulsar na Via Láctea usando dados do observatório de raios X Chandra da NASA. Este resultado pode fornecer aos astrônomos novas informações sobre como algumas estrelas terminam as suas vidas.

pulsar Kes 75

© Chandra/S. Reynolds/PanSTARRS (pulsar Kes 75)

Após algumas estrelas massivas ficarem sem combustível, entram em colapso e explodem como supernovas, deixando para trás "pepitas" estelares densas chamadas estrelas de nêutrons. As estrelas de nêutrons com uma rápida rotação e altamente magnetizadas produzem um feixe de radiação semelhante ao de um farol que são detectados como pulsos à medida que a rotação do pulsar "varre" o feixe através do céu.

Desde que Jocelyn Bell Burnell, Anthony Hewish e colegas descobriram os pulsares através da sua emissão de rádio na década de 1960, foram identificados mais de 2.000 destes objetos exóticos. No entanto, permanecem muitos mistérios sobre os pulsares, incluindo a sua diversidade de comportamentos e a natureza das estrelas que os formam.

Novos dados do Chandra estão ajudando a resolver algumas destas questões. Uma equipe de astrônomos confirmou que o remanescente de supernova Kes 75, localizado a cerca de 19.000 anos-luz da Terra, contém o mais jovem pulsar conhecido da Via Láctea.

A rápida rotação e o forte campo magnético do pulsar geraram um vento de matéria energética e partículas de antimatéria que fluem para longe do pulsar quase à velocidade da luz. Este vento pulsar criou uma grande bolha magnetizada de partículas altamente energéticas chamada nebulosa de vento pulsar, vista como a região azul que rodeia o pulsar.

Nesta composição do Kes 75, os raios X de alta energia observados pelo Chandra são de cor azul e destacam a nebulosa de vento pulsar em torno do pulsar, enquanto os raios X menos energéticos aparecem com tom roxo e mostram os detritos da explosão. Uma imagem óptica do SDSS (Sloan Digitized Sky Survey) revela estrelas no campo.

Os dados do Chandra obtidos em 2000, 2006, 2009 e 2016 mostram mudanças na nebulosa de vento pulsar com o passar do tempo. Entre 2000 e 2016, as observações do Chandra revelam que a orla externa da nebulosa de vento pulsar expande-se incrivelmente a 1 milhão de metros por segundo.

Esta alta velocidade pode ser devida à nebulosa de vento pulsar que se expande para um ambiente de densidade relativamente baixa. Especificamente, os astrônomos sugerem que está se expandindo para uma bolha gasosa soprada por níquel radioativo formado na explosão e expelido à medida que esta explodiu. Este níquel também alimentou a luz da supernova, à medida que se decompôs em gás ferroso difuso que encheu a bolha. Se assim for, isto fornece uma visão do núcleo da explosão estelar e dos elementos que criou.

A taxa de expansão também informa que Kes 75 explodiu há cerca de cinco séculos, a partir da perspetiva da Terra. Ao contrário de outros remanescentes de supernova desta época, como Tycho e Kepler, não existem evidências conhecidas de registos históricos de qualquer observação da explosão que deu origem a Kes 75.

Porque é que Kes 75 não foi vista da Terra? As observações do Chandra, juntamente com observações anteriores por outros telescópios, indicam que a poeira e o gás interestelar que preenchem a nossa Galáxia são muito densas na direção da estrela condenada. Este fator teria tornado a supernova demasiado fraca para observar da Terra há vários séculos atrás.

O brilho da nebulosa de vento pulsar diminuiu 10% entre 2000 e 2016, concentrado principalmente na região norte, com uma diminuição de 30% num nó brilhante. As rápidas mudanças observadas na nebulosa de vento pulsar Kes 75, bem como a sua estrutura incomum, apontam para a necessidade de modelos mais sofisticados da evolução das nebulosas de vento pulsar.

O artigo que descreve estes resultados foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 6 de julho de 2018

Até estrelas de nêutrons densas caem como uma pena

Aproveitando a extraordinária sensibilidade do GBT (Green Bank Telescope), os astrônomos fizeram o teste mais rigoroso, até agora, de uma das previsões de Albert Einstein sobre a gravidade.

ilustração do sistema triplo PSR J0337 1715

© NRAO/S. Dagnello (ilustração do sistema triplo PSR J0337+1715)

Ao rastrear precisamente as trajetórias de três estrelas num único sistema, duas estelas anãs brancas e uma estrela de nêutrons ultradensa, os pesquisadores determinaram que até as estrelas de nêutrons fenomenalmente compactas "caem" da mesma maneira que as suas homólogas menos densas, um aspeto da natureza chamado de "Princípio da Equivalência Forte" de Einstein.

A compreensão da gravidade de Einstein, conforme descrita na sua teoria geral da relatividade, prevê que todos os objetos caem à mesma proporção, independentemente da sua massa ou composição. Esta teoria foi amplamente testada aqui na Terra, mas será que ainda é verdadeira para alguns dos objetos mais massivos e densos do Universo, um aspeto da natureza conhecido como o Princípio da Equivalência? Uma equipe internacional de astrônomos deu a esta persistente questão o seu teste mais rigoroso de todos os tempos. Os seus achados mostram que o conhecimento de Einstein sobre a gravidade ainda prevalece, mesmo num dos cenários mais extremos que o Universo pode oferecer.

Retire todo o ar e um martelo e uma pena cairão à mesma velocidade, um conceito explorado por Galileu no final do século XVI e famosamente ilustrado na Lua pelo astronauta David Scott da Apollo 15.

Embora tivesse como base a física newtoniana, foi preciso a teoria da gravidade de Einstein para expressar como e porque é que isso acontece. As equações de Einstein passaram em todos os testes, desde cuidadosos estudos laboratoriais até observações de planetas no nosso Sistema Solar. Mas as alternativas à teoria geral da relatividade de Einstein preveem que objetos compactos com gravidade extremamente forte, como as estrelas de nêutrons, caem um pouco diferente dos objetos de menor massa. Esta diferença, preveem as teorias alternativas, seria devido à energia de ligação gravitacional do objeto compacto, a energia gravitacional que o mantém unido.

Em 2011, o GBT descobriu um laboratório natural para testar esta teoria em condições extremas: um sistema estelar triplo chamado PSR J0337+1715, localizado a cerca de 4.200 anos-luz da Terra. Este sistema contém uma estrela de nêutrons numa órbita de 1,6 dias com uma estrela anã branca, e o par orbita outra anã branca mais distante a cada 327 dias.

Desde a sua descoberta que o sistema triplo tem sido observado regularmente pelo GBT, pelo WSRT (Westerbork Synthesis Radio Telescope) nos Países Baixos e pelo Observatório de Arecibo em Porto Rico. O GBT passou mais de 400 horas observando este sistema, obtendo dados e calculando como cada objeto se move em relação aos outros.

Como é que estes telescópios conseguiram estudar este sistema? Esta estrela de nêutrons em particular é na verdade um pulsar. Muitos pulsares giram com uma consistência que rivaliza alguns dos relógios atômicos mais precisos da Terra. "Como um dos radiotelescópios mais sensíveis do mundo, o GBT está preparado para captar estes leves pulsos de ondas de rádio com o objetivo de estudar a física extrema," acrescenta Lynch. A estrela de nêutrons neste sistema gira 366 vezes por segundo.

É possível determinar a posição da estrela de nêutrons até algumas centenas de metros. É uma determinação realmente precisa de onde a estrela de nêutrons esteve e para onde está indo.

Se as alternativas à gravidade de Einstein estivessem corretas, então a estrela de nêutrons e a anã branca interior cairiam de forma diferente em relação à anã branca exterior. "A anã branca interior não é tão massiva nem tão compacta quanto a estrela de nêutrons e, portanto, tem menos energia de ligação gravitacional," comenta Scott Ransom, astrônomo do NRAO (National Radio Astronomy Observatory).

Através de meticulosas observações e de cálculos cuidadosos, a equipe foi capaz de testar a gravidade do sistema usando apenas os pulsos da estrela de nêutrons. Eles descobriram que qualquer diferença de aceleração entre a estrela de nêutrons e a anã branca interior é pequena demais para ser detectada.

Este resultado é dez vezes mais preciso do que o melhor teste anterior da gravidade, tornando as evidências do Princípio da Equivalência Forte de Einstein muito mais evidentes.

O resultados foram publicados num artigo na revista Nature.

Fonte: National Radio Astronomy Observatory

terça-feira, 29 de maio de 2018

Uma lupa para um pulsar

Em um sistema a 6.500 anos-luz de distância, um pulsar e uma anã marrom dançam chicoteando um ao outro a cada nove horas.

ilustração do pulsar e anã marrom

© Mark A. Garlick (ilustração do pulsar e anã marrom)

A dança deles não vai durar, além de seu feixe de ondas de rádio como um farol, o pulsar PSR B1957+20 está emitindo um vento feroz de partículas que lentamente explodem seu companheiro. Por essa razão, o pulsar ganhou o nome de “viúva negra”, ou seja, espécies de aranha que comem seu parceiro.

Mas antes que a refeição esteja completa, a anã marrom tem algo a nos oferecer: uma lupa que expõe o pulsar em detalhes incríveis.

O sistema inteiro é minúsculo: a anã marrom é do tamanho de Júpiter e o pulsar é apenas do tamanho de uma cidade pequena; a distância que os separa é aproximadamente cinco vezes a distância entre a Terra e a Lua. Do ponto de vista da Terra, a anã marrom é grande o suficiente para eclipsar o pulsar por 40 minutos toda vez que eles circulam um ao outro.

É esta geometria afortunada que dá à anã marrom seu poder de ampliação. O casulo de plasma ao redor da anã marrom tem um efeito de concentrar o feixe do farol do pulsar, quando tudo está alinhado, nota-se o pulso de ondas de rádio passando pelo plasma, que concentra a radiação.

Não era óbvio que isso deveria acontecer. Mas, em 2014, Robert Main (Universidade de Toronto) e seus colegas observaram uma órbita completa de 9,2 horas usando o telescópio de 305 metros William E. Gordon no Observatório de Arecibo. Pouco antes e logo após cada eclipse do pulsar, eles notaram a emissão dos pulsos de rádio. Além disso, os pulsos se iluminaram de maneiras diferentes em frequências diferentes, exatamente como esperado para um evento de lente.

  A emissão dos dois polos do pulsar não é amplificada igualmente. Há momentos em que a emissão de um polo é grandemente aumentada, enquanto o outro não é afetado. Em outras palavras, a "lente" gasosa ao redor da anã marrom às vezes aumentava a emissão do polo norte do pulsar e às vezes do seu polo sul, resolvendo duas áreas de emissão a apenas 10 km além de 6.500 anos-luz de distância. Isso equivale a decifrar uma pulga na superfície de Plutão usando telescópios baseados na Terra.

Esta não é a primeira vez que os astrônomos viram as lentes de plasma. Outros exemplos incluem quasares distantes e o pulsar da Nebulosa do Caranguejo. No entanto, levou 30 anos entre a descoberta do PSR B1957+20 e a detecção de suas lentes. Tudo se resume ao aumento do poder de computação que permitiu aos astrônomos examinar as mudanças nas escalas de microssegundos em várias frequências de rádio.

Os pulsares são usados para iluminar o Universo invisível!

Os resultados foram divulgados na revista Nature.

Fonte: Sky & Telescope

quarta-feira, 16 de maio de 2018

Descoberto pulsar de raios X em órbita recorde

Cientistas que analisavam os primeiros dados da missão NICER (Neutron star Interior Composition Explorer) da NASA encontraram duas estrelas que giram em torno uma da outra a cada 38 minutos.

ilustração de um pulsar e uma anã branca

© Goddard Space Flight Center (ilustração de um pulsar e uma anã branca)

Uma das estrelas do sistema chamado IGR J17062–6143 (J17062, abreviado) é uma estrela superdensa e de rápida rotação a que chamamos pulsar. A descoberta confere ao par estelar o recorde do período orbital mais curto para uma determinada classe de sistema binário de pulsares.

Os dados do NICER também mostram que as estrelas do par J17062 estão apenas separadas por 300.000 quilômetros, menos do que a distância entre a Terra e a Lua. Com base no rapidíssimo período orbital e na separação do par, os cientistas envolvidos num novo estudo do sistema pensam que a segunda estrela é uma anã branca pobre em hidrogênio.

"Não é possível para uma estrela rica em hidrogênio, como o nosso Sol, ser a companheira do pulsar," comenta Tod Strohmayer, astrofísico do Goddard Space Flight Center. "Não conseguimos fazer encaixar uma estrela como essa numa órbita tão pequena."

Uma observação prévia de 20 minutos pelo RXTE (Rossi X-ray Timing Explorer) em 2008 só conseguiu estabelecer um limite inferior para o período orbital de J17062. O NICER, instalado a bordo da Estação Espacial Internacional em junho passado, pôde observar o sistema por períodos muito mais longos. Em agosto, o instrumento focou-se em J17062 por mais de sete horas ao longo de 5,3 dias. Combinando observações adicionais em outubro e novembro, a equipe de cientistas foi capaz de confirmar o período orbital recorde para um sistema binário contendo um AMXP (Accreting Millisecond X-ray Pulsar).

Quando uma estrela massiva passa a supernova, o seu núcleo colapsa num buraco negro ou numa estrela de nêutrons, pequena e superdensa, do tamanho de uma cidade, mas com mais massa do que o Sol. As estrelas de nêutrons são tão quentes que a luz que irradiam passa a porção incandescente do espetro visível e ultravioleta até aos raios X. Um pulsar é uma estrela de nêutrons que gira rapidamente.

A observação de J17062 executada em 2008 pelo RXTE descobriu pulsos recorrentes de raios X 163 vezes por segundo. Estes pulsos marcam a localização de pontos quentes ao redor dos polos magnéticos do pulsar, o que permitiu a determinação de quão rapidamente gira. O pulsar de J17062 gira a cerca de 9.800 rotações por minuto.

Pontos quentes formam-se quando o intenso campo gravitacional de uma estrela de nêutrons retira material de uma companheira estelar - em J17062, da anã branca - e é colocado num disco de acreção. A matéria no disco espirala para dentro, eventualmente chegando à superfície. As estrelas de nêutrons têm campos magnéticos fortes, de modo que o material aterra na superfície de forma desigual, viajando ao longo do campo magnético até aos polos onde produz os pontos quentes.

O constante bombardeamento de gás em queda faz com que os pulsares de acreção girem mais rapidamente. Enquanto giram, os pontos quentes entram e saem da vista de instrumentos de raios X como o NICER, que regista as flutuações. Alguns pulsares giram mais de 700 vezes por segundo. As flutuações de raios X dos pulsares são tão previsíveis que o SEXTANT (Station Explorer for X-ray Timing and Navigation Technology) já mostrou que podem servir como faróis para navegação autônoma em futuras naves espaciais.

Com o tempo, o material da estrela doadora é acumulado à superfície da estrela de nêutrons. Assim que a pressão desta camada cresce até ao ponto em que os seus átomos se fundem, ocorre uma reação termonuclear descontrolada, liberando a energia equivalente a 100 bombas de 15 megatoneladas que explodem sobre cada centímetro quadrado. Os raios X de tais explosões também pode ser captados pelo NICER, embora ainda não tenham sido vistas em J17062.

Os pesquisadores foram capazes de determinar que as estrelas de J17062 giram em torno uma da outra numa órbita circular, o que é comum para os AMXPs. A estrela doadora, anã branca, é um "peso leve", com mais ou menos 1,5% da massa do Sol. O pulsar tem muito mais massa, cerca de 1,4 massas solares, o que significa que as estrelas orbitam um ponto a cerca de 3.000 km do pulsar. É quase como se a estrela doadora orbitasse um pulsar estacionário, mas o NICER é sensível o suficiente para detectar a pequena flutuação na emissão de raios X do pulsar devido à atração gravitacional da anã branca.

"A distância entre nós e o pulsar não é constante," comenta Strohmayer. "Varia devido a este movimento orbital. Quando o pulsar está mais próximo, a emissão de raios X leva um pouco menos a chegar até nós do que quando está mais distante. O atraso é pequeno, apenas cerca de 8 milissegundos para a órbita de J17062, mas está bem dentro das capacidades de uma máquina sensível como o NICER."

A missão do NICER é fornecer medições de alta precisão para melhor estudar a física e o comportamento das estrelas de nêutrons. Outros dados do instrumento forneceram resultados sobre as explosões termonucleares de um objeto e exploraram o que acontece com o disco de acreção durante estes eventos.

"As estrelas de nêutrons são verdadeiros laboratórios de física nuclear, do ponto de vista terrestre," comenta Zaven Arzoumanian, astrofísico Goddard Space Flight Center e cientista chefe do NICER. "Não podemos recriar as condições das estrelas de nêutrons em qualquer parte do nosso Sistema Solar. Um dos principais objetivos do NICER é estudar a física subatômica que não é acessível em nenhum outro lugar."

Os resultados do estudo foram publicados na revista The Astrophysical Journal Letters.

Fonte: Goddard Space Flight Center

sexta-feira, 6 de abril de 2018

O centro da nossa galáxia pode conter milhares de buracos negros

Sabemos há muito tempo que um buraco negro supermassivo com mais de 4 milhões de vezes a massa do Sol se esconde no centro da Via Láctea.

ilustração de milhares de buracos negros

© Columbia University (ilustração de milhares de buracos negros)

Agora, um estudo afirma que o buraco negro não está sozinho. Potencialmente, cerca de 10.000 buracos negros de massa estelar podem estar em sua companhia. A população de buracos negros corresponderia às previsões teóricas de que objetos enormes deveriam acabar no centro da nossa galáxia.

De fato, o núcleo da Via Láctea já é um lugar lotado, onde enorme quantidade de poeira e gás bloqueiam nossa visão sob luz visível. A única maneira de investigar o núcleo envolto da nossa galáxia é explorando o espectro em comprimentos de onda rádio ou raios X ou gama. Charles Hailey (Universidade de Colúmbia) e seus colegas decidiram explorar em raios X, baseando seus resultados em 12 dias de observações que o observatório Chandra coletou nos últimos 12 anos.

A equipe analisou 92 fontes que permanecem não resolvidas nos comprimentos de onda dos raios X, parecendo pontos de luz; 26 destes estão dentro de 3 anos-luz do buraco negro supermassivo. Para cada uma destas fontes, o Chandra captou pelo menos 100 fótons durante as observações.

Então, os astrônomos observaram a quantidade de radiação emitida por estas fontes em diferentes energias: é como projetar luz através de um prisma para ver um arco-íris, mas neste caso o arco-íris é em comprimentos de onda de raios X. E, surpreendentemente, os astrônomos descobriram que 12 das 26 fontes mais próximas do buraco negro supermassivo tendem a ter arco-íris de raios X “mais azuis”, ou seja, elas são relativamente mais brilhantes em altas energias de raios X.

A maioria dos emissores de raios X no centro de nossa galáxia são anãs brancas que sugam gás de companheiras estelares comuns, irradiando arco-íris de raios X "vermelhos" no processo. Mas as novas fontes de raios X “azuis” parecem ser binárias com algo mais massivo - seja estrelas de nêutrons ou buracos negros - tornadas visíveis pelo fluxo de gás emissor de raios X que as alimenta.

centro galáctico e fontes de raios X

© Chandra/C. Hailey/Nature (centro galáctico e fontes de raios X)

Uma imagem do Chandra em raios X do centro galáctico é sobreposta por círculos em torno de fontes de raios X. Círculos vermelhos indicam anãs brancas binárias, que normalmente emitem mais raios X de baixa energia, enquanto círculos cianos indicam prováveis binários de buracos negros, que emitem relativamente mais raios X de alta energia. O círculo amarelo e verde representa uma região entre 0,7 e 3 anos-luz do buraco negro.

Hailey e seus colegas argumentam que as fontes não exibem as explosões características dos binários de estrelas de nêutrons, então eles são mais propensos a serem buracos negros. O monitoramento a longo prazo do centro galáctico encontrou quase todos os binários de estrelas de nêutrons por suas explosões, então deve ser o binário do buraco negro que permanece, em órbita silenciosa de seus companheiros estelares e se alimentando apenas de gás emissor suficiente de raios X que foram fracamente vistos.

Se este é o caso, então estes buracos negros binários seriam a ponta de um iceberg. Muitos buracos negros isolados poderiam existir no centro da galáxia, que não poderiam ser vistos de forma alguma. Se eles se formarem exatamente onde estão, então poderá haver mais de 10.000 buracos negros no núcleo da galáxia!

O que talvez seja mais surpreendente é que estas fontes de raios X não são novas; elas estão no catálogo de fontes descobertas pelo Chandra. Mas, pode ser que nem todas estas fontes sejam buracos negros. Além disso, eles podem não ter se formado em suas órbitas atuais. Os astrônomos têm procurado por estrelas de nêutrons rapidamente rotativas, conhecidas como pulsares de milisegundo no centro da galáxia, que se acredita serem capturados por aglomerados estelares globulares.

Uma das razões pelas quais estes pulsares são tão importantes é que eles poderiam ser os responsáveis pela quantidade estranhamente grande de raios gama que o telescópio Fermi observou irradiando do centro galáctico. Enquanto alguns astrônomos sugeriram que o sinal poderia ser a tão esperada assinatura de partículas de matéria escura, os pulsares de milissegundos apresentam uma opção menos exótica.

Entretanto, sondar o centro galáctico em comprimentos de onda de rádio é como procurar peixes em um turbulento e escuro rio; correntes de plasma muitas vezes obscurecem a vista.

Hailey e sua equipe reconhecem que até metade de suas novas fontes de raios X azuis poderiam ser os pulsares de milissegundos procurados. Isso significaria que haveria menos buracos negros isolados, talvez apenas algumas centenas em vez de milhares. Mesmo assim, isso ainda é uma enorme quantidade de remanescentes estelares que se escondem no centro da nossa galáxia.

Um estudo sobre a pesquisa foi publicado na revista Nature.

Fonte: Sky & Telescope

segunda-feira, 19 de março de 2018

A Nebulosa do Caranguejo em ultravioleta

A Nebulosa do Caranguejo, também catalogada como M1, NGC 1952, Taurus A) é um remanescente de supernova localizado a cerca de 6.500 anos-luz de distância da Terra na constelação de Touro.

XMM-Newton (ultraviolet) Image of the Crab Nebula

© XMM-Newton (Nebulosa do Caranguejo em ultravioleta)

No centro da nebulosa há um pulsar, o remanescente de uma estrela que explodiu para formar a nebulosa. O pulsar gira em torno de 30 vezes por segundo, varrendo um feixe de ondas de rádio através da Galáxia.

Alguns dos materiais que cercam o pulsar foram ejetados antes da estrela explodir, e o resto foi expulso durante a supernova. O vento do pulsar escapa a alta velocidade, criando uma estrutura dinâmica ao interagir com o material ejetado.

A nebulosa está em expansão com velocidade aproximadamente de 1.500 km/s, como revelado por imagens tiradas alguns anos antes. Ao delinear isso, é possível identificar o ano em que a estrela explodiu, coincidindo com observações de astrônomos chineses em 1054 de uma estrela brilhante o suficiente para ser vista durante a luz do dia.

A imagem mostrada aqui está em luz ultravioleta obtida pelo telescópio XMM-Newton da ESA, que tem examinado o céu desde o ano 2000.

Embora o XMM-Newton seja principalmente um telescópio para observar raios X, o Monitor Óptico permite que as observações ópticas e ultravioletas sejam feitas simultaneamente com observações de raios X.

A imagem é uma composição de 75 imagens individuais efetuadas entre 2001 e 2015. Poucas imagens ultravioletas da Nebulosa do Caranguejo estavam disponíveis antes desta.

Parece que a emissão ultravioleta vem da “radiação sincrotrônica”, criada quando as partículas atômicas se espelham em torno de linhas do campo magnético.

A imagem XMM-Newton revela “aberturas” que recuam os lados leste e oeste da nebulosa. Pensa-se que um toróide magnetizado de material cercou a estrela antes de explodir, o que bloqueou as partículas de alta velocidade e, portanto, a radiação sincrotrônica.

As aberturas também são evidentes em imagens de rádio, embora a abertura oriental seja melhor definida devido aos aspectos intrincados em torno das bordas da imagem de rádio.

Esta imagem foi realizada como parte do estudo detalhado em vários comprimentos de onda da Nebulosa do Caranguejo, com imagens também tomadas em raios X, ondas de rádio, infravermelhas e ópticas.

Uma nova composição da Nebulosa do Caranguejo que inclui dados do Chandra, Spitzer e Hubble também foi lançada na semana passada, conforme imagem vista a seguir.

A Crab Walks Through Time

© Chandra/Spitzer/Hubble (Nebulosa do Caranguejo)

Fonte: ESA

sexta-feira, 22 de dezembro de 2017

Exoplanetas habitáveis ao redor de pulsares são teoricamente possíveis

É teoricamente possível que existem planetas habitáveis ​​em torno dos pulsares.

ilustração de exoplaneta em torno de pulsar

© University of Cambridge (ilustração de exoplaneta em torno de pulsar)

Estes planetas devem ter uma atmosfera enorme que converta os raios X mortais e partículas de alta energia do pulsar em calor.

Os pulsares são conhecidos por suas condições extremas. São estrelas de nêutrons de apenas 10 a 30 quilômetros de diâmetro. Eles têm enormes campos magnéticos, acumularam matéria e regularmente emanam grandes quantidades de raios X e outras partículas energéticas. No entanto, Alessandro Patruno (Universidade de Leiden e ASTRON) e Mihkel Kama (Universidade de Leiden e Universidade de Cambridge) sugerem que poderia haver vida na proximidade destas estrelas.

É a primeira vez que os astrônomos tentam calcular as chamadas zonas habitáveis ​​perto das estrelas de nêutrons. Os cálculos mostram que a zona habitável em torno de uma estrela de nêutrons pode ser tão grande quanto a distância da Terra ao nosso Sol. Uma premissa importante é que o planeta deve ser uma super-Terra com uma massa entre uma e dez vezes da nossa Terra. Um planeta menor perderá sua atmosfera dentro de cerca de mil anos. Além disso, a atmosfera deve ser um milhão de vezes mais espessa que a da Terra. As condições na superfície do planeta podem parecer as do mar profundo na Terra.

Os astrônomos estudaram o pulsar PSR B1257+12 a cerca de 2.300 anos-luz de distância na constelação de Virgem. Eles usaram o telescópio espacial Chandra especialmente feito para observar os raios X. Três planetas orbitam o pulsar. Dois deles são super-Terras com uma massa de quatro a cinco vezes da Terra. Os planetas orbitam bastante perto do pulsar. "De acordo com nossos cálculos, a temperatura dos planetas pode ser adequada para a presença de água líquida em sua superfície. No entanto, ainda não sabemos se as duas super-Terras têm a atmosfera extremamente densa," disse Patruno.

No futuro, os astrônomos pretendem observar o pulsar com mais detalhes e compará-los com outros pulsares. O telescópio ALMA do European Southern Observatory (ESO) seria capaz de mostrar discos de poeira em torno das estrelas de nêutrons. Estes discos são bons precursores de planetas.

Provavelmente a Via Láctea contém cerca de 1 bilhão de estrelas de nêutrons, dos quais cerca de 200.000 pulsares. Até agora, 3.000 pulsares foram estudados e apenas 5 planetas com pulsares foram encontrados. O PSR B1257+12 é um pulsar muito estudado. Em 1992, os primeiros exoplanetas foram descobertos em torno deste objeto.

Um artigo foi publicado na revista Astronomy & Astrophysics.

Fonte: Netherlands Institute for Radio Astronomy

sábado, 18 de novembro de 2017

Pulsares podem revelar ondas gravitacionais de nanohertz

A evidência de ondas gravitacionais a partir de buracos negros supermassivos binários poderia ser detectada em anomalias de frequência em pulsares nos próximos 10 anos, de acordo com pesquisadores da Alemanha, do Reino Unido e dos EUA.

NGC 3115

© Chandra/VLT (NGC 3115)

Distorções no espaço-tempo causadas pela passagem de ondas gravitacionais devem alterar temporariamente a distância entre a Terra e certos pulsares altamente regulares, afetando os períodos dos pulsos de rádio recebidos.

A recente observação de ondas gravitacionais pelos experimentos LIGO e Virgo representa um dos mais importantes avanços astronômicos das últimas décadas. Mas, embora não exista mais o potencial deste novo olho no cosmos, existem algumas fontes de ondas gravitacionais às quais a técnica será sempre cega.

Os interferômetros a laser terrestres, como LIGO e Virgo, são sensíveis a frequências de ondas gravitacionais entre 10 Hz e 10 kHz, uma faixa que corresponde aproximadamente ao espectro auditivo humano. Algumas fontes astronômicas produzem sinais muito abaixo da parte inferior deste intervalo. Quando duas galáxias colidem e se fundem, por exemplo, os buracos negros gigantes em seus respectivos centros podem acabar orbitando um ao outro como um binário de buraco negro supermassivo (SMBHB). Mesmo que os objetos sejam destinados, em última instância, a coalescer, estas relações podem durar bilhões de anos, com ondas gravitacionais emitidas continuamente em frequências tão baixas quanto 1 nHz (nanohertz).

Escrevendo na Nature Astronomy, Chiara Mingarelli do Max Planck Institute for Radio Technology, na Alemanha, e do Instituto de Tecnologia da Califórnia nos EUA, calculou a probabilidade de que tal SMBHB fosse detectado contra a onda gravitacional de fundo com uma variedade de condições possíveis. O grupo baseou sua análise em um catálogo de mais de cinco mil galáxias "locais" adequadamente identificadas pela Two Micron All-Sky Survey (neste contexto, "local" significa cerca de 730 milhões de anos-luz da Terra). Os pesquisadores então usaram os resultados de simulações cosmológicas realizadas pelo projeto Illustris para estimar que cerca de 100 destas galáxias provavelmente conterão SMBHBs.

Atualmente as medições de tempo disponíveis em pulsares foram suficientes para revelar ondas gravitacionais em menos de 1% de simulações probabilísticas com base nestas fontes locais, o que ajuda a explicar a falta de resultados positivos obtidos até o momento. Projetando a adição de dezenas de novos pulsares ao conjunto de temporização durante a próxima década e assumindo que a onda gravitacional de fundo possa ser subtraída, os pesquisadores descobriram que as ondas gravitacionais contínuas de pelo menos um SMBHB poderiam ser detectadas nos próximos 10 anos.

Fonte: Max Planck Institute for Radio Technology

sábado, 9 de setembro de 2017

Telescópios extremos descobrem segundo pulsar mais rápido

Ao acompanhar as misteriosas fontes altamente energéticas traçadas pelo telescópio espacial de raios gama Fermi da NASA, o radiotelescópio LOFAR (Low Frequency Array), na Holanda, identificou um pulsar girando a mais de 42.000 revoluções por minuto, tornando-se no segundo mais rápido conhecido.

porção do céu em raios gama e localização do LOFAR

© NASA/Fermi/ASTRON (porção do céu em raios gama e localização do LOFAR)

O topo desta composição mostra uma porção do céu em raios gama pelo Fermi, que destaca a localização de dois pulsares identificados pelo LOFAR. Em baixo está o LOFAR perto de Exloo, Holanda, que contém as antenas principais do complexo.

Os pulsares são os núcleos de estrelas massivas que explodiram como supernovas. Neste remanescente estelar, também chamado de estrela de nêutrons, a massa equivalente a meio milhão de Terras é esmagada numa bola giratória magnetizada não maior que uma grande cidade. O campo magnético rotativo alimenta feixes de ondas de rádio, luz visível, raios X e raios gama. Se o percurso do feixe, por coincidência, é apontado para a Terra, os pulsos regulares de emissão podem ser observados e o objeto é classificado como um pulsar.

"Aproximadamente um-terço das fontes de raios gama encontradas pelo Fermi não foram detectadas em outros comprimentos de onda," afirma Elizabeth Ferrara, do Goddard Space Flight Center. "Muitas destas fontes não associadas podem ser pulsares, mas muitas vezes precisamos de fazer observações de acompanhamento no rádio para detectar e provar os pulsos. Há uma sinergia real nas extremidades do espectro eletromagnético e nós estamos à caça dela."

O novo objeto, chamado PSR J0952–0607, ou simplesmente J0952, está classificado como um pulsar de milissegundo e está localizado entre 3.200 a 5.700 anos-luz de distância na direção da constelação do Sextante. O pulsar contém cerca de 1,4 vezes a massa do Sol e é orbitado a cada 6,4 horas por uma estrela companheira que foi reduzida a menos de 20 vezes a massa do planeta Júpiter.

Em algum momento da história deste sistema, a matéria começou a fluir da companheira para o pulsar, aumentando gradualmente a sua rotação para 707 rotações por segundo, ou mais de 42.000 rpm, e aumentando consideravelmente as suas emissões. Eventualmente, o pulsar começou a evaporar a sua companheira e este processo ainda ocorre hoje. Devido à sua semelhança com as aranhas que consomem os seus companheiros, os sistemas como J0952 são chamados viúvas negras ou pulsares vermelhos, dependendo do que resta da estrela companheira. A maioria dos sistemas conhecidos destes tipos foram encontrados seguindo fontes não associadas do Fermi.

A descoberta do LOFAR também sugere o potencial de encontrar uma nova população de pulsares ultrarrápidos.

"O LOFAR detectou os pulsos de J0952 a frequências rádio na casa dos 135 MHz, que é cerca de 45% menos do que as frequências mais baixas das pesquisas convencionais no rádio," comenta Cees Bassa do ASTRON (Netherlands Institute for Radio Astronomy). "Nós descobrimos que J0952 tem um espectro de rádio íngreme, o que significa que os seus pulsos de rádio desaparecem muito rapidamente a frequências mais altas. Teria sido um desafio encontrá-lo sem o LOFAR."

Os teóricos dizem que os pulsares podem girar até 72.000 rpm antes de se quebrarem. No entanto, a rotação mais rápida conhecida, efetuada pelo objeto PSR J1748–2446ad que atinge quase 43.000 rpm, está a apenas 60% do máximo teórico. Talvez os pulsares com períodos de rotação mais rápidos simplesmente não se possam formar. Mas a diferença entre a teoria e a observação também pode resultar da dificuldade em detectar os pulsares mais rápidos.

"Existem evidências crescentes de que os pulsares de rotação mais veloz tendem a ter os espectros mais íngremes," afirma Ziggy Pleunis, estudante de doutoramento da Universidade McGill em Montreal. O primeiro pulsar de milissegundo descoberto com o LOFAR, que foi encontrado por Pleunis, é J1552+5437, que gira a mais de 25.000 rpm e também exibe um espectro íngreme. "Uma vez que as pesquisas LOFAR são mais sensíveis a estes pulsares rádio de espectro íngreme, podemos descobrir que os pulsares ainda mais rápidos existem e que escaparam à descoberta por levantamentos a frequências mais altas," explicou.

Durante os seus nove anos em órbita, o Fermi desempenhou uma função na descoberta de mais de 100 pulsares, seja através de detecção direta de pulsos de raios gama, seja pelo seguimento rádio de fontes não associadas.

O LOFAR é um radiotelescópio composto por uma rede internacional de antenas desenhadas para observar o Universo em frequências de 10 a 250 MHz. Operado pelo ASTRON, a rede inclui estações na Holanda, Alemanha, Suécia, Reino Unido, França, Polónia e Irlanda.

Os achados foram relatados num artigo publicado na revista The Astrophysical Journal Letters.

Fonte: Goddard Space Flight Center

quarta-feira, 29 de março de 2017

Estrelas nascidas em ventos de buracos negros supermassivos

A vizinha da Via Láctea, Andrômeda, contém uma fonte predominante de emissão de raios X altamente energéticos, mas a sua identidade permanecia misteriosa até agora.

Galáxia de Andrômeda

© Jacob Bers (Galáxia de Andrômeda)

Relatado num novo estudo, a missão NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA localizou um objeto responsável por esta radiação de alta energia.

Segundo os pesquisadores, o objeto Swift J0042.6+4112 é um possível pulsar, o remanescente denso, altamente magnetizado e giratório de uma estrela moribunda. Esta interpretação é baseada na sua emissão de raios X altamente energéticos, que o NuSTAR é excepcionalmente capaz de medir. O espectro do objeto é muito semelhante aos pulsares conhecidos da Via Láctea.

Está provavelmente localizado num sistema binário, onde material de uma companheira estelar é puxado para o pulsar, ejetando radiação altamente energética à medida que este material aquece.

"Nós não sabíamos o que era até que olhamos para ele com o NuSTAR," comenta Mihoko Yukita, autor principal de um estudo sobre o objeto, da Universidade Johns Hopkins em Baltimore, EUA.

Este candidato a pulsar é visto como um ponto azul na imagem da Galáxia de Andrômeda, também conhecida como M31, obtida pelo NuSTAR em raios X, onde a cor azul é escolhida para representar os raios X mais energéticos. É mais brilhante, em raios X altamente energéticos, do que qualquer outro objeto na galáxia.

O estudo reúne muitas observações diferentes do objeto obtidas por várias missões. Em 2013, o satélite Swift da NASA reportou-o como uma fonte altamente energética, mas a sua classificação era desconhecida, pois existem muitos objetos que emitem raios X de baixa energia na região. A emissão de raios X de baixa energia, do objeto, ao que parece é uma fonte identificada pela primeira vez na década de 1970 pelo Observatório Einstein da NASA. Outros observatórios, como o Chandra da NASA e o XMM-Newton da ESA, também já a haviam detectada. No entanto, foi só com este estudo mais recente do NuSTAR, auxiliado por dados do satélite Swift, que os cientistas perceberam que era o mesmo objeto, pois este provável pulsar domina a radiação altamente energética de raios X em Andrômeda.

Tradicionalmente, os astrõnomos pensam que a alimentação ativa de buracos negros, mais massivos que os pulsares, geralmente domina a radiação altamente energética de raios X das galáxias. À medida que o gás espirala para cada vez mais perto do buraco negro, numa estrutura chamada disco de acreção, este material é aquecido a temperaturas extremamente altas e emite radiação altamente energética. Este pulsar, que tem uma massa menor do que qualquer um dos buracos negros de Andrômeda, é mais brilhante em energias altas do que toda a população de buracos negros da galáxia.

Até o buraco negro supermassivo no centro de Andrômeda não tem emissão altamente energética de raios X associada. É inesperado que um único pulsar, ao invés, domine a galáxia em raios X altamente energéticos.

"O NuSTAR fez-nos perceber a importância geral dos sistemas pulsares como componentes de galáxias que emitem raios X e a possibilidade de que os raios X altamente energéticos de Andrômeda sejam dominados por um único sistema pulsar só acrescenta a esta imagem emergente," comenta Ann Hornschemeier, do Goddard Space Flight Center da NASA.

Andrômeda é uma galáxia espiral ligeiramente maior que a Via Láctea. Encontra-se a 2,5 milhões de anos-luz da nossa Galáxia, o que é considerado muito próximo, dada a escala mais ampla do Universo. Os observadores do céu podem ver Andrômeda sem telescópio em noites escuras e limpas.

"Uma vez que não podemos sair da nossa Galáxia e estudá-la de forma imparcial, Andrômeda é o mais próximo que temos parecido com olhar num espelho," conclui Hornschemeier.

O estudo foi publicado na revista The Astrophysical Journal.

Fonte: Jet Propulsion Laboratory

terça-feira, 21 de fevereiro de 2017

O pulsar mais brilhante e distante do Universo

O XMM-Newton da ESA descobriu um pulsar, o remanescente giratório de uma estrela anteriormente massiva, que é mil vezes mais brilhante do que se pensava ser possível.

NGC 4945

© Josef Pöpsel/Beate Behle (NGC 5907)

O pulsar é também o mais distante do seu tipo já detectado, tendo a sua luz viajado 50 milhões de anos-luz antes de ser detectada pelo XMM-Newton.

Os pulsares são estrelas de nêutrons giratórias e magnetizadas que varrem pulsos regulares de radiação em dois feixes simétricos através do cosmos. Se devidamente alinhados com a Terra, estes feixes são como um farol que parece ligar e desligar-se à medida que gira. São remanescentes de estrelas gigantes que explodiram como poderosas supernovas no final da sua vida natural, antes de se tornarem "cadáveres" estelares pequenos e extraordinariamente densos.

Esta fonte de raios X é a mais luminosa do seu tipo já detectada até o momento: é 10 vezes mais brilhante do que o anterior detentor do recorde. Num segundo, emite a mesma quantidade de energia liberada pelo nosso Sol em 3,5 anos.

pulsar NGC 5907 X-1

© XMM-Newton/Chandra/SDSS (pulsar NGC 5907 X-1)

O pulsar identificado como NGC 5907 X-1, na galáxia espiral NGC 5907. A imagem tem dados de emissão de raios X (azul/branco) obtidos pelo XMM-Newton da ESA e pelo observatório de raios X Chandra da NASA, e dados ópticos - galáxia e estrelas de fundo - do SDSS (Sloan Digital Sky Survey). A inserção mostra a pulsação de raios X da estrela de nêutrons giratória.

O XMM-Newton observou o objeto várias vezes ao longo dos últimos 13 anos, sendo a descoberta o resultado de uma busca sistemática por pulsares nos dados de arquivo, e foi o seu pulso periódico de 1,13 segundos que saltou à vista.

O sinal também foi identificado em dados de arquivo do NuSTAR da NASA, fornecendo informações adicionais.

"Antes, pensava-se que apenas os buracos negros com pelo menos 10 vezes a massa do nosso Sol, alimentando-se das suas companheiras estelares, podiam alcançar tais luminosidades extraordinárias, mas as pulsações rápidas e regulares desta fonte são as impressões digitais de estrelas de nêutrons e distinguem-se claramente dos buracos negros," comenta Gian Luca Israel, do INAF-Observatório Astronômico de Roma, Itália.

Os dados de arquivo também revelaram que a rotação do pulsar mudou ao longo do tempo, de 1,43 segundos em 2003 para 1,13 segundos em 2014. A mesma aceleração relativa, na rotação da Terra, encurtaria o dia por cinco horas no mesmo período de tempo.

"Só uma estrela de nêutrons é compacta o suficiente para se manter unida enquanto gira tão depressa," acrescenta Gian Luca.

Embora não seja incomum para a rotação de uma estrela de nêutrons mudar, neste caso o aumento tão elevado está provavelmente relacionado com o rápido consumo de massa de uma companheira.

"Este objeto é realmente um desafio para a nossa compreensão atual do processo de acreção para estrelas de alta luminosidade," realça Gian Luca. "É 1.000 vezes mais luminosa do que se pensava ser possível para uma estrela de nêutrons com acreção, de modo que algo mais é necessário nos nossos modelos, a fim de poderem explicar a quantidade enorme de energia liberada pelo objeto."

Os cientistas pensam que deve haver um campo magnético forte e complexo perto da sua superfície, de tal forma que a acreção na superfície da estrela de nêutrons é possível enquanto ainda gera a alta luminosidade.

"A descoberta deste objeto muito incomum, de longe o mais extremo já descoberto em termos de distância, luminosidade e aumento da sua rotação, estabelece um novo recorde para o XMM-Newton, e está  mudando as nossas ideias de como estes objetos realmente 'trabalham'," conclui Norbert Schartel, cientista do projeto XMM-Newton da ESA.

A descoberta foi publicada na revista Science.

Fonte: ESA

segunda-feira, 13 de fevereiro de 2017

Encontrada uma nova classe de buracos negros

Alguns buracos negros são pequenos. Alguns buracos negros são gigantes. Mas estranhamente, na luta cósmica entre estrelas passageiras inocentes e buracos negros vorazes, os cientistas nunca encontraram um buraco negro de tamanho médio. Até agora.

aglomerado globular 47 Tucanae

© Hubble (aglomerado globular 47 Tucanae)

O aglomerado de estrelas 47 Tucanae (NGC 104), localizado a cerca de 13.000 a 16.000 anos-luz da Terra, é uma densa bola de estrelas. Centenas de milhares de estrelas compactadas em um espaço de 120 anos-luz emitem raios X e raios gama, mas até a data, nenhum buraco negro havia sido encontrado neste aglomerado globular. O centro parecia consistente para a possibilidade de encontrar um, mas uma falta de eventos de ruptura de maré e um emaranhado de estrelas dificultou a identificação de qualquer buraco negro escondido.

O Harvard-Smithsonian Center for Astrophysics voltou-se para duas táticas para encontrar o buraco negro em vez disso. Na primeira, foi observado o movimento das estrelas no aglomerado, e compararam a taxa de rotação com o que aconteceria se um buraco negro estivesse presente. Na segunda, foi observado a posição dos pulsares no aglomerado globular.

Os buracos negros são os objetos mais densos do Universo. Mas as estrelas de nêutrons (que incluem os pulsares) são objetos também densos, como ambos podem resultar de eventos semelhantes em que uma estrela gigante se torna uma supernova e seu núcleo denso estelar colapsa (embora alguns outros mecanismos podem criar buracos negros).

Se os pulsares fossem os maiores objetos do aglomerado globular, estariam mais próximos do núcleo e atuariam como principais atrativos gravitacionais. Mas, os pulsares estão espalhados pelo aglomeradoao invés de se reunir no centro do aglomerado.

Tudo isso sugere que um buraco negro de 2.200 massas solares está no centro de 47 Tucanae. Até agora, porém, os astrônomos normalmente só encontraram buracos negros de menos de 100 ou acima de 10.000 massas solares. Acredita-se que estes buracos negros de massa intermediária sejam sementes de buracos negros supermasivos. À medida que os buracos negros se abastecem, ganham massa.

Os buracos negros de massa intermediária podem formar-se a partir de várias estrelas em um aglomerado denso em colapso, com os buracos negros resultantes se fundindo e criando um buraco negro maior. Eles também poderiam ser buracos negros que acumulam massa ao longo do tempo; e, de fato, 47 Tucanae tem 12 bilhões de anos de idade, dando tempo suficiente para absorver matéria. Há também um cenário em que, logo após o Big Bang, certas áreas do Universo em expansão eram tão densas que formaram buracos negros pouco depois do evento.

Encontrar mais buracos negros de médio porte pode ser difícil. Os buracos negros, especialmente os maiores, tipicamente limpam sua área de detritos. Mas se uma estrela infeliz cruzar com um, o evento resultante poderia ser detectado, permitindo a observação de um buraco negro de massa intermediária em ação.

A pesquisa foi publicada na revista Nature.

Fonte: Astronomy

sábado, 11 de fevereiro de 2017

Descoberto misterioso pulsar de anã branca

Um sistema binário exótico foi identificado como um elusivo pulsar de anã branca, o primeiro do seu gênero a ser descoberto no Universo.

ilustração de um pulsar de anã branca

© U. de Warwick/Mark Garlick (ilustração de um pulsar de anã branca)

Os professores Tom Marsh e Boris Gänsicke do Grupo de Astrofísica da Universidade de Warwick, com o Dr. David Buckley do Observatório Astronômico da África do Sul, identificaram a estrela AR Scorpii (AR Sco) como a primeira versão de anã branca de um pulsar, objetos descobertos na década de 1960 e associados com astros muito diferentes chamados estrelas de nêutrons.

O pulsar de anã branca tem escapado aos olhares dos astrônomos durante mais de meio século.

A estrela AR Sco contém um remanescente estelar de rápida rotação chamado anã branca, que chicoteia a sua vizinha, uma anã vermelha, com poderosos feixes de partículas elétricas e radiação, fazendo com que todo o sistema brilhe e desvaneça dramaticamente a cada dois minutos.

A pesquisa mais recente estabelece que o chicote de energia da AR Sco é um feixe focalizado, que emite radiação concentrada numa única direção, tal como um acelerador de partículas, algo que é totalmente único no Universo conhecido.

A estrela AR Sco situa-se na direção da constelação de Escorpião, a 380 anos-luz da Terra, um vizinho próximo em termos astronômicos. A anã branca AR Sco é do tamanho da Terra, mas tem 200.000 vezes a sua massa e encontra-se numa órbita de 3,6 horas com uma estrela fria que tem 1/3 da massa do Sol.

Com um campo eletromagnético 100 milhões de vezes mais poderoso do que o da Terra, e girando num período ligeiramente inferior a 2 minutos, AR Sco produz feixes de radiação e partículas, parecidos aos de um farol, que bombardeiam a face da anã vermelha mais fria.

Tal como os cientistas descobriram anteriormente, este poderoso efeito de farol acelera elétrons na atmosfera da anã vermelha até perto da velocidade da luz, um efeito nunca antes observado em tipos semelhantes de estrelas binárias. A anã vermelha é assim alimentada pela energia cinética da sua vizinha giratória.

A distância entre as duas estrelas é de cerca de 1,4 milhões de quilômetros, o equivalente a três vezes a distância entre a Lua e a Terra.

O professor Tom Marsh comenta: "Os novos dados mostram que a luz da AR Sco é altamente polarizada, mostrando que o campo magnético controla a emissão de todo o sistema, um comportamento idêntico dos pulsares associados às mais tradicionais estrelas de nêutrons."

O professor Boris Gänsicke realça: "AR Sco é como um dínamo gigante: um imã, do tamanho da Terra, com um campo cerca de 10.000 vezes mais forte do que qualquer campo que possamos produzir em laboratório e que gira a cada dois minutos. Isto produz uma enorme corrente elétrica na estrela companheira, que então gera as variações na luz que detectamos."

Esta pesquisa foi recentemente publicada na revista Nature Astronomy.

Fonte: University of Warwick

sábado, 4 de fevereiro de 2017

Explicado o misterioso comportamento do objeto "Rapid Burster"

Cientistas, observando uma curiosa estrela de nêutrons num sistema binário conhecido como "Rapid Burster", podem ter resolvido um mistério de 40 anos em torno das suas intrigantes explosões de raios X.

ilustração do processo de acreção sobre a estrela de nêutrons

© ESA/ATG medialab (ilustração do processo de acreção sobre a estrela de nêutrons)

Estas quatro imagens mostram o processo de acreção sobre a estrela de nêutrons no sistema binário MXB 1730-335, também conhecido como "Rapid Burster". Neste sistema binário, a atração gravitacional da estrela de nêutrons remove gás da sua companheira estelar (uma estrela de baixa massa não apresentada nas imagens); o gás forma um disco de acreção e espirala em direção à estrela de nêutrons. Antes da explosão, o campo magnético de alta rotação da estrela de nêutrons impede o avanço do gás que flui da estrela companheira e, efetivamente, cria uma divisão interna no centro de disco (imagem 1). Durante esta fase, apenas pequenas quantidades de gás vazam para a estrela de nêutrons. No entanto, à medida que o gás continua fluindo e se acumulando perto deste limite, gira cada vez mais depressa (imagem 2) e eventualmente alcança a velocidade de rotação do campo magnético (imagens 3 e 4). O gás atinge então a estrela de nêutrons todo de uma só vez, dando origem à emissão dramática de explosões de tipo-II.

Eles descobriram que o seu campo magnético cria uma divisão em torno da estrela, impedindo-a de se alimentar da matéria da sua companheira estelar. O gás acumula-se até que, sob certas condições, atinge a estrela de nêutrons de uma só vez, produzindo flashes intensos de raios X. A descoberta foi feita com telescópios espaciais incluindo o XMM-Newton da ESA.

Descoberto na década de 1970, o "Rapid Burster" é um sistema binário compreendido por uma estrela de baixa massa no seu auge e uma estrela de nêutrons, o remanescente compacto da morte de uma estrela massiva. Em tal par estelar, a atração gravitacional do denso remanescente rouba algum do gás da outra estrela; o gás forma um disco de acreção e espirala em direção à estrela de nêutrons.

Como resultado deste processo de acreção, a maioria dos binários com estrelas de nêutrons libera continuamente grandes quantidades de raios X, pontuados por flashes adicionais de raios X a cada poucas horas ou dias. Os cientistas podem explicar essas explosões do "tipo-I", em termos de reações nucleares deflagradas no gás em queda, principalmente hidrogênio, quando este se acumula à superfície da estrela de nêutrons.

Mas "Rapid Burster" é uma fonte peculiar: quando está mais brilhante, emite estes flashes de raios X e, durante períodos de emissão mais fraca, exibe explosões muito mais elusivas do "tipo-II", liberações súbitas, erráticas e extremamente intensas de raios X.

Em contraste com as explosões de tipo-I, que parecem não representar uma liberação significativa de energia em relação ao que normalmente é emitido pela estrela de nêutrons em acreção, as explosões de tipo-II liberam enormes quantidades de energia durante períodos caracterizados pela ocorrência de muito pouca emissão (a liberação de energia de uma explosão, em relação ao processo normal de acreção, é dezenas a centenas de vezes superior nas explosões de tipo-II do que nas explosões de tipo-I).

Apesar de quarenta anos de pesquisas, as explosões de tipo-II só foram detectadas em outra fonte além de "Rapid Burster". Conhecido como "Bursting Pulsar" e descoberto na década de 1990, este sistema binário abriga uma estrela de baixa massa e uma estrela de nêutrons altamente magnetizada e de rápida rotação, ou seja, um pulsar, que exibe apenas pulsos do tipo-II.

Devido à escassez de fontes que exibem este fenômeno, há muito tempo que se debatem os mecanismos físicos subjacentes, mas um novo estudo de "Rapid Burster" fornece uma primeira evidência do que está ocorrerendo.

"'Rapid Burster' é o sistema arquetípico para investigar as explosões do tipo-II, é onde foram observadas pela primeira vez e a única fonte que mostra flashes do tipo-I e tipo-II," afirma Jakob van den Eijnden, estudante de doutoramento do Instituto Anton Pannekoek para Astronomia em Amesterdam, Holanda.

Neste estudo, Jakob e colegas organizaram uma campanha de observação usando três telescópios espaciais de raios X para saber mais sobre este sistema.

Sob a coordenação de Tullio Bagnoli, também do mesmo instituto, a equipe conseguiu observar a fonte explodindo ao longo de alguns dias em outubro de 2015 com uma combinação do NuSTAR e Swift da NASA e o XMM-Newton da ESA.

Primeiro, monitoraram a fonte com o Swift, cronometrando as observações para um período em que esperavam a ocorrência de uma série de explosões do tipo-II. Em seguida, logo após a detecção da primeira explosão, os cientistas colocaram os outros observatórios em movimento, usando o XMM-Newton para medir os raios X emitidos diretamente pela superfície da estrela de nêutrons ou pelo gás no disco de acreção, e o NuSTAR para detectar raios X de mais alta energia, que são emitidos pela estrela de nêutrons e refletidos para fora do disco.

Com estes dados, os cientistas examinaram a estrutura do disco de acreção para entender o que acontece antes, durante e depois destas copiosas libertações de raios X.

De acordo com um modelo, as explosões do tipo-II ocorrem porque o campo magnético em rápida rotação da estrela de nêutrons mantém o gás que flui da estrela companheira, impedindo com que se aproxime da estrela de nêutrons e, efetivamente, criando uma divisão interna no centro do disco. Contudo, à medida que o gás continua fluindo e se acumulando neste limite, gira cada vez mais depressa e eventualmente alcança a velocidade de rotação do campo magnético.

"É como se lançássemos algo para um carrossel que gira muito depressa: o objeto seria expelido, a menos que fosse atirado à mesma velocidade que a máquina," explica Jakob.

"Um ato de equilíbrio semelhante ocorre entre o gás em queda e o campo magnético giratório: desde que o gás não tenha a velocidade certa, não pode alcançar a estrela de nêutrons e só pode acumular-se na orla. Quando atinge a velocidade certa, grande parte do gás está acumulado e atinge a estrela de nêutrons de uma só vez, dando origem à dramática emissão das explosões de tipo-II."

Este modelo prevê que, enquanto o material está a ser acumulado, deverá formar-se uma lacuna entre a estrela de nêutrons e a orla do disco de acreção.

Em outros modelos, os flashes intensos são explicados como decorrentes de instabilidades no fluxo do gás em acreção ou de efeitos relativistas gerais. Em qualquer um destes dois cenários, os flashes têm que ocorrer muito mais perto da estrela de nêutrons e não dão origem a uma divisão.

"Uma lacuna foi exatamente o que encontramos em 'Rapid Burster'," comenta Nathalie Degenaar, pesquisdora do mesmo instituto e orientadora de doutoramento de Jakob. "Isto sugere fortemente que as explosões do tipo-II são provocadas pelo campo magnético."

As observações indicam a existência de um intervalo de aproximadamente 90 km entre a estrela de nêutrons e a orla interna do disco de acreção. Embora nada impressionante em termos de escalas cósmicas, o tamanho da lacuna é muito maior do que a própria estrela de nêutrons, que tem um raio de aproximadamente 10 km.

Este achado está em conformidade com os resultados de um estudo anterior publicado por Nathalie e colaboradores, que observaram uma divisão semelhante ao redor de "Bursting Pulsar", a outra fonte conhecida que produz explosões do tipo-II.

No novo estudo de "Rapid Burster", os cientistas também mediram a força do campo magnético da estrela de nêutrons: com 6,2 x 108 G (gauss), é cerca de bilhões de vezes mais forte do que o da Terra e, mais importante, mais de cinco vezes mais forte do que o de outras estrelas de nêutrons com uma companheira de baixa massa estelar.

Isto pode indicar uma jovem idade para este sistema binário, sugerindo que o processo de acreção não ocorreu ainda durante tempo suficiente para amortecer o campo magnético, como se pensa ter acontecido em sistemas semelhantes.

Se esta estrela de nêutrons é realmente tão jovem quanto o seu forte campo magnético parece indicar, então espera-se que gire muito mais devagar do que as suas homólogas mais velhas: as medições futuras da rotação da estrela podem ajudar a confirmar este cenário incomum.

"Este resultado é um grande passo na resolução de um puzzle com quarenta anos na astronomia de estrelas de nêutrons, ao mesmo tempo que revela novos detalhes sobre a interação entre campos magnéticos e discos de acreção nestes objetos exóticos," conclui Norbert Scharterl, cientista do projeto XMM-Newton na ESA.

Um artigo sobre o assunto foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: ESA

sábado, 21 de janeiro de 2017

As caudas de dois pulsares

Como faróis cósmicos que varrem o Universo com rajadas de energia, os pulsares fascinam e nos confundem desde que foram descobertos há 50 anos atrás.

ilustração das caudas de um pulsar

© Nahks Tr'Ehnl (ilustração das caudas de um pulsar)

Em dois estudos, equipes internacionais de astrônomos sugerem que imagens recentes de dois pulsares, obtidas pelo observatório de raios X Chandra da NASA, Geminga e B0355+54, podem ajudar a iluminar as assinaturas distintivas dos pulsares, bem como a sua geometria muitas vezes desconcertante.

Os pulsares são um gênero de estrela de nêutrons que nascem em explosões de supernova quando as estrelas massivas desmoronam. Descobertas inicialmente graças a feixes de emissão de rádio, parecidos a faróis, as pesquisas mais recentes descobriram que os pulsares energéticos também produzem feixes de raios gama altamente energéticos.

Curiosamente, os feixes raramente se combinam, afirma Bettina Posselt, pesquisadora em astronomia e astrofísica da Universidade Estatal da Pensilvânia, EUA. As formas dos pulsos rádio e raios gama observados são muitas vezes bastante diferentes e alguns dos objetos mostram apenas ou um tipo de pulso ou o outro. Estas diferenças geraram debate sobre o modelo de pulsar.

"Não se sabe totalmente o porquê de haverem variações entre diferentes pulsares," comenta Posselt. "Uma das principais ideias é que as diferenças de pulso têm muito a ver com a geometria, e também dependem da rotação e de como os eixos magnéticos do pulsar estão orientados em relação à nossa linha de visão."

As imagens do Chandra estão fornecendo o seu olhar mais próximo sobre a geometria distinta dos ventos de partículas carregadas que irradiam raios X e outros comprimentos de onda dos objetos. Os pulsares giram ritmicamente enquanto viajam pelo espaço a velocidades que atingem centenas de quilômetros por segundo. As nebulosas de vento pulsar (sigla PWN, inglês para Pulsar Wind Nebulae) são produzidas quando as partículas energéticas que fluem dos pulsares são disparadas ao longo dos campos magnéticos da estrela, formando toros (anéis) em torno do plano equatorial do pulsar e percorrem o eixo de rotação, muitas vezes formando caudas longas à medida que os pulsares rapidamente cortam através do meio interestelar.

"Este é um dos resultados mais agradáveis do nosso estudo mais amplo das nebulosas de vento pulsar," comenta Roger W. Romani, professor de astrofísica na Universidade de Stanford e pesquisador principal do projeto PWN do Chandra. "Ao tornar visível a estrutura tridimensional destes ventos, mostramos como podemos chegar ao plasma injetado pelo pulsar no centro. A fantástica acuidade de raios X do Chandra foi essencial para este estudo, possibilitando obter as exposições profundas que tornaram estas tênues estruturas visíveis."

  caudas de Geminga e B0355 54

© NASA/Nahks Tr'Ehnl (caudas de Geminga e B0355+54)

Pode ser vista uma espetacular PWN ao redor do pulsar Geminga. Geminga, um dos pulsares mais próximos, a apenas 800 anos-luz de distância da Terra, tem três caudas invulgares. Os fluxos de partículas expelidos dos alegados polos de Geminga, ou caudas laterais, estendem-se por mais de meio ano-luz, mais de 1.000 vezes a distância entre o Sol e Plutão. Outra cauda, mais curta, também é emanada do pulsar.

Uma imagem muito diferente pode ser vista no pulsar chamado B0355+54, que está a cerca de 3.000 anos-luz da Terra. A cauda deste pulsar tem um tampão de emissão, seguido por uma cauda dupla e estreita que se prolonga por quase cinco anos-luz.

Enquanto Geminga mostra pulsos no espectro de raios gama, mas permanece silencioso no rádio, B0355+54 é um dos pulsares de rádio mais brilhantes, mas não apresenta raios gama.

O eixo de rotação dos pulsares e suas orientações magnéticas influenciam nas emissões que podemos ver a partir da Terra.

Segundo Posselt, Geminga pode ter polos magnéticos muito perto da parte superior e inferior do objeto, e polos de rotação quase alinhados, tal como a Terra. Um dos polos magnéticos de B0355+54 pode estar orientado diretamente para a Terra. Como a emissão de rádio ocorre perto do local dos polos magnéticos, as ondas de rádio podem apontar ao longo da direção dos jatos. A emissão de raios gama, por outro lado, é produzida a maiores altitudes e numa região maior, permitindo com que os respetivos pulsos varram áreas maiores do céu.

"Para Geminga, vemos os brilhantes pulsos de raios gama e a orla do toro da nebulosa de vento pulsar, mas os feixes de rádio perto dos jatos apontam para os lados e permanecem invisíveis," realça Posselt.

As caudas laterais, fortemente dobradas, fornecem pistas sobre a geometria do pulsar, que pode ser comparada com a dos jatos produzidos por aviões, ou com frentes de choque parecidas com aquelas criadas por uma bala enquanto viaja pelo ar.

Oleg Kargaltsev, professor assistente de física da Universidade George Washington, que trabalhou no estudo de B0355+54, disse que a orientação de B0355+54 desempenha também uma função no modo como os astrônomos vêm o pulsar.

"Para B0355+54, um jato aponta diretamente para nós, de modo que detectamos os brilhantes pulsos de rádio enquanto a maioria da emissão de raios gama é direcionada no plano do céu e falha a Terra," explica Kargaltsev. Isto implica que a direção do eixo de rotação do pulsar está alinhada com a nossa perspetiva e que o pulsar está se movendo perpendicularmente ao seu eixo de rotação."

Noel Klingler, assistente de pesquisa em física, da Universidade George Washington, e autor principal do artigo sobre B0355+54, acrescentou que os ângulos entre os três vetores - o eixo de rotação, a linha de visão e a velocidade - são diferentes para pulsares diferentes, afetando assim as aparências das suas nebulosas.

"Em particular, pode ser complicado detectar uma PWN de um pulsar movendo-se perto da linha de visão e tendo um pequeno ângulo entre o eixo de rotação e a nossa perspetiva," comenta Klingler.

Na interpretação da frente de choque dos dados de raios X de Geminga, as suas duas longas caudas e o seu espectro incomum podem sugerir que as partículas são aceleradas até quase à velocidade da luz por um processo chamado aceleração de Fermi. A aceleração de Fermi ocorre na interseção entre o vento pulsar e o material interestelar.

Apesar de diferentes interpretações permaneceram em estudo para a geometria de Geminga, Posselt realça que as imagens do pulsar pelo Chandra estão ajudando os astrofísicos a usar pulsares como laboratórios de física de partículas. O estudo destes objetos dá aos astrofísicos a oportunidade de investigar a física de partículas em condições que seriam impossíveis de reproduzir num acelerador de partículas aqui na Terra.

"Em ambos os cenários, Geminga fornece emocionantes novas restrições sobre a física de aceleração em nebulosas de vento pulsar e sobre a sua interação com a matéria interestelar circundante," conclui.

As descobertas foram divulgadas na atual edição da revista The Astrophysical Journal.

Fonte: Pennsylvania State University

domingo, 11 de setembro de 2016

O mais lento pulsar já detectado

Usando o observatório de raios X Chandra da NASA e outros observatórios de raios X, astrônomos encontraram evidências de um dos pulsares mais extremos já detectado.

RCW 103

© Chandra/DSS (RCW 103)

A fonte exibe propriedades de uma estrela de nêutrons altamente magnetizada, ou magnetar, mas o seu período de rotação deduzido é milhares de vezes maior do que qualquer pulsar já observado.

Durante décadas, os astrônomos sabem que existe, uma fonte compacta densa no centro de RCW 103, os restos de uma explosão de supernova localizado a cerca de 9.000 anos-luz da Terra. Esta imagem composta mostra RCW 103 e sua fonte central, conhecida oficialmente como 1E 161.348-5055, ou simplesmente IE 1613, em três faixas de luz de raios X detectadas pelo Chandra. Nesta imagem, os raios X de energia mais baixos estão em vermelho, os raios X intermediários estão em verde, e os raios X de energia mais elevadas estão em azul. A fonte de raios X azul brilhante no meio do RCW 103 é 1E 1613. Os dados de raios X foram combinadas com uma imagem óptica do Digitized Sky Survey (DSS).

Observadores tinham previamente acordado que 1E 1613 é uma estrela de nêutrons, uma estrela extremamente densa criada pela supernova que produziu RCW 103. No entanto, a variação regular no brilho de raios X da fonte, com um período de cerca de seis horas e meia, apresentou um quebra-cabeça. Todos os modelos propostos tiveram problemas para explicar esta periodicidade lenta, mas as principais ideias eram que qualquer estrela de nêutrons que gira muito lentamente por causa de um mecanismo inexplicável, ou uma estrela de nêutrons mais rápida que está em órbita com uma estrela normal num sistema binário.

Em 22 de junho, 2016, um instrumento a bordo do telescópio Swift da NASA captou o lançamento de uma breve explosão de raios X de 1E 1613. A detecção do Swift chamou a atenção dos astrônomos, porque a fonte exibiu flutuações extremamente rápidas em uma escala de tempo de milissegundos, semelhante a outros magnetars conhecidos. Esses objetos exóticos possuem os mais poderosos campos magnéticos no Universo, trilhões de vezes maiores que os observados no Sol, e pode entrar em erupção com enormes quantidades de energia.

Uma equipe de astrônomos liderados por Nanda Rea, da Universidade de Amsterdam utilizou rapidamente outros dois telescópios em órbita, o Chandra e NuSTAR (Nuclear Spectroscopic Telescope Array) para acompanhar as observações.

Novos dados deste trio de telescópios de alta energia, e os dados de arquivo de Chandra, Swift e XMM-Newton da ESA, confirmou que 1E 1613 tem as propriedades de um magnetar, tornando-se apenas o 30º conhecido. Estas propriedades incluem as quantidades relativas de raios X produzidos em diferentes energias e a forma como a estrela de nêutrons se esfriou após a explosão em 2016 e outra explosão vista em 1999. A explicação do sistema binário é considerada improvável porque os novos dados mostram que a resistência da variação periódica em raios x muda dramaticamente tanto com a energia dos raios X quanto com o tempo. No entanto, este comportamento é típico em magnetares.

Mas o mistério da rotação lenta permaneceu. A fonte está girando uma vez a cada 24.000 segundos (6,67 horas), muito mais lenta do que os magnetares mais lentos conhecidos até agora, que giram em torno de uma vez a cada 10 segundos. Isso tornaria a mais lent estrela de nêutrons já detectada.

Os astrônomos esperam que uma única estrela de nêutrons estará girando rapidamente após o seu nascimento na explosão de supernova e, então, diminui ao longo do tempo, uma vez que perde energia. No entanto, os pesquisadores estimam que a estrela magnética dentro de RCW 103 tem cerca de 2.000 anos de idade, não havendo tempo suficiente para o pulsar abrandar o seu período por meios convencionais.

Enquanto ainda não está claro por que 1E 1613 está girando muito lentamente, os cientistas têm algumas ideias. Um cenário principal é que os restos da estrela que explodiu colapsou para linhas do campo magnético em torno da estrela de nêutrons, fazendo-a girar mais lentamente com o tempo. Pesquisas estão sendo feitas para outros magnetares girando muito lentamente para estudar esta ideia com mais detalhes.

Outro grupo, liderado por Antonino D'Aì no Instituto Nacional de Astrofísica (INAF) em Palermo, Itália, monitorou 1E 1613 em raios X usando o Swift e à luz do infravermelho próximo e visível usando o telescópio de 2,2 metros no Europeu Southern Observatory (ESO) em La Silla, Chile, para procurar qualquer contrapartida de baixa energia à explosão de raios X. Eles também concluíram que 1E 1613 é um magnetar com um período de rotação muito lento.

Um artigo descrevendo os resultados da equipe de Rea aparece no periódico Astrophysical Journal Letters. Um artigo descrevendo os resultados da equipe de D'Aì foi aceito para publicação no periódico Monthly Notices da Royal Astronomical Society.

Fonte: NASA

sexta-feira, 19 de agosto de 2016

Supernova ejetada das páginas da História

Um novo olhar sobre os detritos de uma estrela que explodiu na nossa Galáxia ajudou os astrônomos a reexaminar quando a supernova realmente aconteceu. Observações recentes do remanescente de supernova chamado G11.2-0.3, com o observatório de raios X Chandra da NASA, arrancaram a sua ligação a um evento registado pelos chineses no ano 386.

remanescente de supernova G11.2-0.3

© Chandra/DSS (remanescente de supernova G11.2-0.3)

Esta imagem mais recente de G11.2-0.3 mostra raios X de baixa energia em vermelho, raios X de energia moderada em verde, e raios X altamente energéticos detectados pelo Chandra em azul. Os dados de raios-  foram sobrepostos num campo óptico do DSS (Digitized Sky Survey), que mostra estrelas no primeiro plano.

As supernovas históricas e seus remanescentes podem ter ligações tanto em observações astronômicas atuais, bem como em registos históricos do evento. Uma vez que pode ser difícil determinar, a partir de observações recentes do remanescente, exatamente quando é que a supernova ocorreu, as supernovas históricas fornecem informações importantes sobre estas cronologias estelares. Os detritos estelares podem dizer-nos muito sobre a natureza da estrela que explodiu, mas a interpretação torna-se muito mais simples tendo uma idade conhecida.

Novos dados de G11.2-0.3 pelo Chandra mostram a existência de nuvens densas de gás situadas ao longo da linha de visão entre o remanescente de supernova e a Terra. As observações infravermelhas com o telescópio Hale de 5 metros do Observatório Palomar já tinham indicado anteriormente que partes do remanescente eram fortemente obscurecidas por poeira. Isto significa que a supernova responsável por este objeto teria sido simplesmente demasiado fraca para poder ser vista a olho nu no ano 386. Isto deixa a natureza do evento observado nesse ano como um mistério.

A nova imagem de G11.2-0.3 foi divulgada em conjunto com o workshop desta semana intitulado "A Ciência do Chandra para a Próxima Década", que teve lugar em Cambridge, no estado americano de Massachusetts. Apesar do workshop se focar na ciência inovadora e emocionante que o Chandra poderá concluir nos próximos dez anos, G11.2-0.3 é um exemplo de como este grande observatório nos ajuda a entender melhor a história complexa do Universo e dos objetos aí presentes.

Aproveitando as operações bem-sucedidas do Chandra desde que foi lançado para o espaço em 1999, os astrônomos foram capazes de comparar observações de G11.2-0.3 realizadas em 2000 com aquelas obtidas em 2003 e mais recentemente em 2013. Esta longa linha de base permitiu aos cientistas medir o quão rápido o remanescente está em expansão. Usando estes dados para extrapolar o passado, determinaram que a estrela que criou G11.2-0.3 explodiu entre 1.400 e 2.400 anos, da perspetiva da Terra.

Os dados anteriores de outros observatórios haviam mostrado que este remanescente era o produto de uma supernova criada a partir do colapso e explosão de uma estrela massiva. A cronologia revista da explosão, com base nos dados recentes do Chandra, sugere que G11.2-0.3 é uma das mais jovens supernovas na Via Láctea. A supernova mais jovem, Cassiopeia A, tem também uma idade determinada a partir da expansão do seu remanescente e, tal como G11.2-0.3, não foi observada durante a data estimada da sua explosão, 1680, devido ao obscurecimento da poeira. Até agora, a Nebulosa do Caranguejo, o remanescente de supernova observado no ano 1054, permanece o único firmemente identificado de uma enorme explosão estelar na Via Láctea.

Embora a imagem do Chandra pareça mostrar que o remanescente tem uma forma muito circular e simétrica, os detalhes dos dados indicam que o gás para onde o remanescente está se expandindo é irregular. Devido a isto, os pesquisadores propõem que a estrela que explodiu tenha perdido quase todas as suas regiões exteriores, quer seja num vento assimétrico de gás soprado para longe da estrela, quer seja numa interação com uma estrela companheira. Pensam que a estrela mais pequena, deixada para trás, teria então soprado gás para longe a uma velocidade ainda superior, varrendo gás anteriormente perdido no vento e formando a concha densa. A estrela teria então explodido, produzindo o remanescente de supernova G11.2-0.3 visto hoje.

A explosão da supernova também produziu um pulsar, uma estrela de nêutrons que gira rapidamente, e uma nebulosa de vento de pulsar, aqui vista como a emissão azulada de raios X no centro do remanescente. A combinação da rápida rotação do pulsar com o forte campo magnético gera um campo eletromagnético intenso que produz jatos de matéria e antimatéria que se afastam dos polos norte e sul do pulsar, e um vento intenso que flui para fora ao longo do seu equador.

O artigo que descreve estes resultados foi publicado na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 9 de julho de 2016

O coração pulsante da Nebulosa do Caranguejo

Esta nova imagem do telescópio espacial Hubble revela o coração de um dos remanescentes de supernovas mais visualmente atraente, a Nebulosa do Caranguejo. No centro desta nebulosa, uma estrela falecida dá vida ao gás que a rodeia.

núcleo da Nebulosa do Caranguejo

© Hubble/J. Hester/M. Weisskopf (núcleo da Nebulosa do Caranguejo)

A Nebulosa do Caranguejo, que fica a 6.500 anos-luz de distância na constelação de Touro, é o resultado de uma supernova, ou seja, uma explosão colossal que foi o ato final de uma estrela massiva. Durante esta explosão maior parte do material que formava a estrela foi lançada no espaço a enormes velocidades, formando uma nuvem de gás em expansão conhecida como um remanescente de supernova.

Esta visão extraordinária da nebulosa é uma que nunca foi vista antes. Ao contrário de muitas imagens populares deste objeto conhecido, que destacam os filamentos espetaculares nas regiões exteriores, esta imagem mostra apenas a parte interior da nebulosa e combina três imagens de alta resolução obtidas em torno de dez anos de diferença.

No centro da Nebulosa do Caranguejo encontra-se o que resta do núcleo mais íntimo da estrela original, agora um objeto estranho e exótico conhecido como estrela de nêutrons. Feito inteiramente de partículas subatômicas chamadas nêutrons, uma estrela de nêutrons tem aproximadamente a mesma massa que o Sol, mas comprimida em uma esfera apenas algumas dezenas de quilômetros de diâmetro. Uma estrela de nêutrons típica gira incrivelmente rápida a cerca de 30 vezes por segundo.

A região em torno de uma estrela de nêutrons é uma vitrine para processos físicos extremos. O movimento rápido do material mais próximo à estrela é revelado pelo arco-íris sutil de cores nesta imagem, o efeito arco-íris é devido ao movimento de material ao longo do tempo entre uma imagem e outra.

O telescópio espacial Hubble também capta os detalhes intrincados do gás ionizado, mostrado em vermelho nesta imagem, que forma uma miscelânea caótica de cavidades e filamentos. Dentro desta concha de gás ionizado um brilho azul fantasmagórico rodeia a estrela de nêutrons. Este brilho é a radiação emitida por elétrons espiralando no poderoso campo magnético em torno da estrela a velocidades próximas à da luz. O intenso campo magnético da estrela está canalizando gás e poeira caindo para os polos da estrela, onde é ejetado com imensas velocidades. Dois jatos simétricos de material são transmitidas a partir dos polos, varrendo para o espaço enquanto a estrela gira. Este efeito é parecido como um feixe de farol, onde os jatos apontam periodicamente em direção à Terra, caracterizando uma fonte pulsante de luz no céu. Assim, esses objetos são conhecidos como pulsares.

A explosão de supernova a partir do qual a Nebulosa do Caranguejo nasceu foi um das primeiras a serem registradas na história humana. A história começou no ano de 1054 dC, quando uma nova estrela se tornou visível no céu noturno. A nova estrela foi o objeto mais brilhante durante à noite, perdendo apenas para a Lua. Na época, os astrônomos chineses e japoneses registraram o evento, e monitorando a nova estrela notou-se que o seu brilho desvaneceu-se gradualmente até que, depois de vários anos, tornou-se invisível a olho nu. Consequentemente, a Nebulosa do Caranguejo é um objeto de valor inestimável para o estudo de restos de supernovas, permitindo aos astrônomos sondar as vidas e mortes de estrelas com mais detalhes.

Fonte: ESA