Mostrando postagens com marcador Pulsar. Mostrar todas as postagens
Mostrando postagens com marcador Pulsar. Mostrar todas as postagens

sábado, 7 de maio de 2022

Um raro binário com a órbita mais curta conhecida

O clarão de uma estrela próxima atraiu os astrônomos do Massachusetts Institute of Technology (MIT) para um novo e misterioso sistema a 3.000 anos-luz da Terra.


© NASA (ilustração de um pulsar e da sua companheira estelar)

Este estranho objeto estelar parece ser um novo binário "viúva negra", ou seja, uma estrela de nêutrons com rotação rápida, ou pulsar, que está circulando e consumindo lentamente uma estrela companheira menor, como o homônimo aracnídeo faz ao seu companheiro. Os astrônomos conhecem cerca de duas dúzias de "binários de viúvas negras" na Via Láctea.

Este novo candidato, chamado ZTF J1406+1222, tem o período orbital mais curto até agora identificado, com o pulsar e a estrela companheira orbitam um ao outro a cada 62 minutos. O sistema é único, na medida em que parece abrigar uma terceira estrela distante, que orbita em torno das duas estrelas interiores com um período de 10.000 anos. 

Esta provável viúva negra tripla está levantando questões sobre como um tal sistema pode ter sido formado. Com base nas suas observações, a equipe do MIT propõe uma história de origem: tal como a maioria dos binários de viúvas negras, o sistema triplo provavelmente surgiu de uma densa constelação de estrelas velhas conhecida como aglomerado globular. Este aglomerado em particular pode ter-se dirigido para o centro da Via Láctea, onde a gravidade do buraco negro central foi suficiente para fragmentar o aglomerado, deixando intacta a viúva negra tripla. Este sistema flutua provavelmente na Via Láctea há mais tempo do que o Sol.

Os pesquisadores utilizaram uma nova abordagem para detectar o sistema triplo. Enquanto a maioria dos binários de viúvas negras são encontrados através dos raios gama e raios X emitidos pelo pulsar central, foi utilizada a luz visível, e especificamente o piscar da estrela companheira do binário, para detectar ZTF J1406+1222.

Os binários de viúvas negras são alimentados por pulsares, estrelas de nêutrons de rotação rápida que são os núcleos colapsados de estrelas massivas. Os pulsares têm um período de rotação vertiginoso, girando a cada poucos milissegundos e emitindo no processo flashes de raios gama e raios X altamente energéticos. Normalmente, os pulsares diminuem a sua rotação e morrem relativamente depressa à medida que queimam uma enorme quantidade de energia. 

Mas de vez em quando, uma estrela passageira pode dar uma nova vida ao pulsar. Quando uma estrela se aproxima, a gravidade do pulsar retira material da estrela, o que fornece nova energia à sua rotação. O pulsar "reciclado" começa então a radiar energia novamente que retira ainda mais material à estrela, eventualmente destruindo-a.

Todos os binários de viúvas negras até à data foram detectados através dos flashes de raios gama e raios X do pulsar. O ZTF J1406+1222 foi o primeiro sistema do gênero a ser detectado graças ao flash óptico da estrela companheira. Ao que parece, o lado diurno da estrela companheira, ou seja, o lado perpetuamente virado para o pulsar, pode ser muitas vezes mais quente do que o seu lado noturno, devido à constante radiação altamente energética que recebe do pulsar.

Os astrônomos examinaram dados ópticos obtidos pelo ZTF (Zwicky Transient Facility), um observatório no estado norte-americano da Califórnia que recolhe imagens de campo amplo do céu noturno. A equipe estudou o brilho das estrelas para ver se alguma estava mudando dramaticamente por um fator de 10 ou mais, numa escala de tempo de cerca de uma hora ou menos, sinais que indicam a presença de um pulsar em órbita íntima. A equipa foi capaz de discernir uma dúzia de binários de viúvas negras conhecidos, validando a precisão do novo método. Depois avistaram uma estrela cujo brilho mudava por um fator de 13, a cada 62 minutos, indicando que fazia provavelmente parte de um novo binário viúva negra, que rotularam de ZTF J1406+1222.

Procuraram a estrela em observações feitas pelo Gaia, um telescópio espacial operado pela ESA que mantém medições precisas da posição e movimento das estrelas no céu. Analisando medições da estrela para trás no tempo, graças aos dados do SDSS (Sloan Digital Sky Survey), foi descoberto que o binário estava sendo seguido por outra estrela distante. 

Curiosamente, os astrônomos não detectaram diretamente emissões de raios gama ou raios X do pulsar no binário, que é a forma típica de confirmação das viúvas negras. Portanto, o ZTF J1406+1222 é considerado um candidato a binário viúva negra, que a equipe espera confirmar com futuras observações. 

A equipe planeja continuar observando o novo sistema, bem como a aplicar a técnica óptica para iluminar mais estrelas de nêutrons e viúvas negras no céu. 

O estudo publicado na revista Nature.

Fonte: Massachusetts Institute of Technology

terça-feira, 1 de fevereiro de 2022

Descoberto um objeto incomum com campo magnético extremo

Uma equipe de mapeamento de ondas de rádio no Universo descobriu algo incomum que libera uma enorme explosão de energia três vezes por hora e que é diferente de qualquer objeto visto antes.

© ICRAR (ilustração de um magnetar)

Este objeto pode ser uma estrela de nêutrons ou uma anã branca, ou seja, núcleos colapsados de estrelas, com um campo magnético ultrapoderoso. Girando no espaço, o estranho objeto envia um feixe de radiação que atravessa a nossa linha de visão e, durante um minuto em cada vinte, é uma das fontes de rádio mais brilhantes do céu. 

O objeto transiente está a cerca de 4.000 anos-luz de distância e foi descoberto pelo estudante da Universidade Curtin, Tyrone O'Doherty, usando o telescópio MWA (Murchison Widefield Array) no "outback" australiano e uma nova técnica que desenvolveu. A Dra. Natasha Hurley-Walker, astrofísica do ICRAR (International Centre for Radio Astronomy Research) na Universidade Curtin, liderou a equipe que fez a descoberta. O telescópio MWA é um instrumento precursor do SKA (Square Kilometre Array), uma iniciativa global para construir os maiores radiotelescópios do mundo na Austrália Ocidental e na África do Sul.

Os transientes lentos, como supernovas, podem aparecer ao longo de alguns dias e desaparecer após alguns meses. Os transientes rápidos, como um tipo de estrela de nêutrons chamada pulsar, "ligam-se e desligam-se" em milissegundos ou segundos. Mas encontrar algo que se "ligasse" durante um minuto é realmente estranho.

O objeto misterioso é incrivelmente brilhante e menor do que o Sol, emitindo ondas de rádio altamente polarizadas, sugerindo que o objeto possui um campo magnético extremamente forte. As observações correspondem a um objeto astrofísico previsto chamado magnetar de período ultralongo. É um tipo de estrela de nêutrons com rotação lenta que se previu existir na teoria. Mas ninguém esperava detectar diretamente uma como esta, porque não era esperado que fosse tão brilhante. De alguma forma está convertendo energia magnética em ondas de rádio muito mais eficazmente do que qualquer outro astro visto antes. Mais detecções confirmará se este foi um acontecimento raro e único ou uma vasta nova população que nunca foi notado antes.

Um artigo foi publicado na revista Nature.

Fonte: International Centre for Radio Astronomy Research

quarta-feira, 14 de abril de 2021

Descoberto surtos de raios X no pulsar da Nebulosa do Caranguejo

Uma colaboração científica global usando dados do telescópio NICER (Neutron star Interior Composition Explorer) da NASA a bordo da Estação Espacial Internacional descobriu surtos de raios X que acompanham as explosões de rádio do pulsar situado na Nebulosa do Caranguejo.

© Hubble (Nebulosa do Caranguejo)

A descoberta mostra que estes surtos, chamados pulsos gigantes de rádio, liberam muito mais energia do que se suspeitava anteriormente. Um pulsar é um tipo de estrela de nêutons que gira rapidamente, o núcleo esmagado - do tamanho de uma cidade - de uma estrela que explodiu como uma supernova.

Uma estrela de nêutrons jovem e isolada pode girar dezenas de vezes por segundo, e o seu campo magnético circundante alimenta feixes de ondas de rádio, luz visível, raios X e raios gama. Se estes feixes passarem pela perspetiva da Terra, notam-se pulsos de emissão semelhantes aos de um relógio, sendo o objeto classificado como um pulsar. 

Dos mais de 2.800 pulsares catalogados, o pulsar da Nebulosa do Caranguejo é um dos poucos que emite pulsos gigantes de rádio, que ocorrem esporadicamente e podem ser centenas a milhares de vezes mais brilhantes do que os pulsos regulares. Após décadas de observações, apenas o pulsar da Nebulosa do Caranguejo demonstrou aumentar os seus pulsos gigantes de rádio com emissão de outras partes do espectro.

O novo estudo analisou a maior quantidade de dados simultâneos de raios X e rádio já recolhidos de um pulsar, estendendo por um fator de milhares a faixa de energia observada associada a este fenômeno. 

Localizado a cerca de 6.500 anos-luz de distância na direção da constelação de Touro, a Nebulosa do Caranguejo e o seu pulsar formaram-se numa supernova cuja luz atingiu a Terra em julho de 1054. 

A estrela de nêutrons gira 30 vezes por segundo, e em comprimentos de onda de raios X e rádio está entre os pulsares mais brilhantes do céu. Entre agosto de 2017 e agosto de 2019, astrônomos usaram o NICER para observar repetidamente o pulsar da Nebulosa do Caranguejo em raios X a energias de até 10.000 eV (elétrons-volt), ou milhares de vezes a energia da luz visível.

Enquanto o NICER observava, a equipe também estudava o objeto usando pelo menos um de dois radiotelescópios terrestres no Japão, a antena de 34 metros do Centro Espacial Kashima e a antena de 64 metros do Centro Espacial Usuda da JAXA (a agência espacial japonesa), ambos operando na frequência de 2 gigahertz.

Foram captadas atividade durante 3,7 milhões de rotações do pulsar e cerca de 26.000 pulsos gigantes de rádio. Os pulsos gigantes explodem rapidamente, atingindo milionésimos de segundo, e ocorrem de forma imprevisível. No entanto, quando ocorrem, coincidem com as pulsações regulares tipo-relógio do pulsar.

Os astrônomos combinaram todos os dados de raios X que coincidiam com os pulsos gigantes de rádio, revelando um aumento de raios X de cerca de 4% que ocorreu em sincronia com eles. É notavelmente semelhante ao aumento de 3% na luz visível também associada ao fenômeno, descoberto em 2003. 

Em comparação com a diferença de brilho entre os pulsares regulares do Caranguejo e os gigantes, estas mudanças são notavelmente pequenas e representam um desafio que os modelos teóricos têm de explicar. Assim sendo, sugere-se que os pulsos gigantes são uma manifestação de processos subjacentes que produzem emissões que abrangem o espetro eletromagnético, do rádio aos raios X. E como os raios X têm milhões de vezes a "força" das ondas de rádio, mesmo um aumento modesto representa uma grande contribuição de energia. 

Os pesquisadores concluíram que a energia total emitida associada a um pulso gigante é dezenas a centenas de vezes maior do que a estimada anteriormente apenas a partir de dados no rádio e no visível. 

"Ainda não entendemos como ou onde os pulsares produzem a sua emissão complexa e abrangente, e é gratificante ter contribuído com outra peça do puzzle de vários comprimentos de onda destes objetos fascinantes," disse o cientista Teruaki Enoto do RIKEN, Japão.

O novo estudo foi publicado na revista Science.

Fonte: NASA

segunda-feira, 22 de junho de 2020

Espiando o pulsar mais jovem descoberto até agora

Uma campanha de observação liderada pelo observatório espacial XMM-Newton da ESA revela o pulsar mais jovem alguma vez visto, o remanescente de uma estrela anteriormente massiva, que também é um magnetar, ostentando um campo magnético cerca de 100 milhões de vezes mais forte do que os imãs mais poderosos já construídos por humanos.


© ESA (ilustração de um magnetar)

Os pulsares são alguns dos objetos mais exóticos do Universo. Formam-se quando estrelas massivas terminam as suas vidas por meio de poderosas explosões de supernova e deixam para trás remanescentes estelares extremos: quentes, densos e altamente magnetizados. Às vezes, os pulsares também passam por períodos de atividade bastante alta, durante os quais emitem enormes quantidades de radiação energética em escalas de tempo de milissegundos a anos.

As explosões menores geralmente assinalam o início de um maior surto, quando a emissão de raios X se pode tornar mil vezes mais intensa. Uma campanha de vários instrumentos liderada pelo XMM-Newton captou agora uma explosão emanando do pulsar mais jovem alguma vez descoberto: Swift J1818.0−1607, que foi originalmente descoberto pelo Observatório Swift da NASA em março.

Este pulsar não é apenas o mais jovem dos 3.000 conhecidos na nossa Via Láctea, mas também pertence a uma categoria muito rara de pulsares: magnetares, os objetos cósmicos com os campos magnéticos mais fortes já medidos no Universo.

"Swift J1818.0−1607 fica a cerca de 15.000 anos-luz de distância, dentro da Via Láctea," diz o autor principal Paolo Esposito da Escola Universitária de Estudos Superiores de Pavia, Itália.

"Identificar algo tão jovem, logo após se formar no Universo, é extremamente empolgante. As pessoas na Terra poderiam ver a explosão de supernova que formou este magnetar jovem há cerca de 240 anos, bem no meio das revoluções americana e francesa."

Este magnetar é um dos objetos do seu tipo com mais rápida rotação conhecida, girando uma vez a cada 1,36 segundos, apesar de conter a massa de dois sóis num remanescente estelar que mede apenas 25 km de diâmetro.

Imediatamente após a descoberta, os astrônomos examinaram este objeto em mais detalhe com o XMM-Newton, com os satélites Swift e NuSTAR da NASA e com o Radiotelescópio da Sardenha na Itália.

Ao contrário da maioria dos magnetares, que são observáveis apenas em raios X, as observações revelaram que Swift J1818.0−1607 é um dos poucos que também mostra emissão pulsada no rádio.

O fato de poder ser observado tanto em raios X como no rádio fornece uma pista importante para um debate científico em andamento sobre a natureza de um tipo específico de remanescente estelares: os pulsares.

Um tipo de pulsar especialmente magnetizado, pensa-se que os magnetares sejam incomuns no Universo, sendo detectados apenas cerca de 30 deles, e supõe-se que sejam distintos de outros tipos de pulsar que aparecem fortemente nas emissões de rádio.

Mas os pesquisadores de raios X suspeitam há muito tempo que os magnetares podem ser bem mais comuns do que esta visão sugere. Esta nova descoberta apoia a ideia de que, em vez de serem exóticos, podem formar uma fração substancial dos pulsares encontrados na Via Láctea.

Além disso, pode não haver uma diversidade de pulsares tão ampla quanto se pensava inicialmente. Os fenômenos distintos mostrados pelos magnetares também podem ocorrer em outros tipos de pulsares, assim como Swift J1818.0−1607 exibe características (emissão de rádio) geralmente não atribuídas aos magnetares.

Exemplos de eventos transientes incluem explosões de raios gama, explosões de supernova superluminosas e os misteriosos FRBs (Fast Radio Bursts). Estes eventos energéticos estão potencialmente ligados à formação e existência de objetos jovens e fortemente magnetizados, como Swift J1818.0−1607.

"Para inferir a idade deste magnetar, os pesquisadores precisaram de medições de alta resolução a longo prazo, tanto do ritmo de rotação, tanto de como a rotação muda ao longo do tempo," acrescenta o cientista Norbert Schartel, do projeto XMM-Newton da ESA.

"O instrumento EPIC (European Photon Imaging Camera) do XMM-Newton observou Swift J1818.0−1607 apenas três dias após a sua descoberta, permitindo a extração de uma imagem precisa da sua emissão de raios X e propiciando a caracterização com mais detalhe de suas propriedades espectrais e de rotação."

"Este tipo de investigação é extremamente importante para entender mais sobre o conteúdo estelar da Via Láctea e para revelar a complexidade dos fenômenos que ocorrem em todo o Universo."

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: ESA

sexta-feira, 12 de junho de 2020

A pedra angular da Teoria da Relatividade Geral de Einstein

Uma colaboração internacional de cientistas registou a confirmação mais precisa, até agora, de uma das pedras angulares da Teoria da Relatividade Geral de Einstein, "a universalidade da queda livre".


© Guillaume Voisin (ilustração do pulsar com duas anãs brancas)

A nova pesquisa mostra que a teoria é válida para objetos fortemente autogravitantes, como estrelas de nêutrons. Usando um radiotelescópio, os cientistas podem observar com muita precisão o sinal produzido pelos pulsares, um tipo de estrela de nêutrons e testar a validade da teoria da gravidade de Einstein para estes objetos extremos. Em particular, a equipe analisou os sinais de um pulsar chamado PSR J0337+1715 registados pelo grande radiotelescópio de Nançay, localizado no coração de Sologne (França).

A universalidade do princípio de queda livre afirma que dois corpos ao caírem num campo gravitacional sofrem a mesma aceleração independentemente da sua composição. Isto foi demonstrado pela primeira vez por Galileu, que teria largado objetos de diferentes massas do topo da Torre de Pisa para verificar se ambos alcançavam o chão simultaneamente.

Este princípio também está no cerne da teoria da relatividade geral de Einstein. No entanto, algumas dicas, como a inconsistência entre a mecânica quântica e a relatividade geral, ou o enigma do domínio da matéria escura e da energia escura na composição do Universo, levaram muitos físicos a pensar que a relatividade geral pode não ser, afinal, a teoria final da gravidade.

As observações do Pulsar J0337+1715, que é uma estrela de nêutrons com um núcleo estelar que tem 1,44 vezes a massa do Sol e que colapsou numa esfera com apenas 25 km de diâmetro, mostra que orbita duas anãs brancas que são muito mais fracas em termos de campo gravitacional. As descobertas demonstram que a universalidade do princípio da queda livre está correta.

O Dr. Guillaume Voisin, da Universidade de Manchester, que liderou o estudo, disse: "O pulsar emite um feixe de ondas de rádio que varre o espaço. A cada volta, cria um flash de rádio que é registado com alta precisão pelo radiotelescópio de Nançay. À medida que o pulsar se move na sua órbita, o tempo de chegada da luz à Terra muda. É a medição precisa e a modelagem matemática, com uma precisão de nanossegundos, desses tempos de chegada, que permite aos cientistas inferir com precisão requintada o movimento da estrela de nêutrons.

"Acima de tudo, é a configuração única desse sistema, semelhante ao sistema Terra-Lua-Sol, com a presença de uma segunda companheira (desempenhando o papel do Sol) em direção à qual as duas outras estrelas orbitam, que permitiu executar uma versão estelar da famosa experiência de Galileu na Torre de Pisa. Dois corpos de composições diferentes caem com a mesma aceleração no campo gravitacional de um terceiro corpo."

As medições foram obtidas por uma equipe colaborativa da Universidade de Manchester, do Observatório de Paris, do CNRS Francês (Centre National de la Recherche Scientifique), do LPC2E (Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace), e do Instituto Max Planck para Radioastronomia. O pulsar orbita duas anãs brancas, uma das quais orbita o pulsar em apenas 1,6 dias a uma distância cerca de 10 vezes inferior à distância Mercúrio-Sol. Esse sistema binário, um pouco como a Terra e a Lua no Sistema Solar, orbita uma terceira estrela, uma anã branca com 40% da massa do Sol, localizada pouco mais da distância que separa o sistema Terra-Lua do Sol.

No Sistema Solar, a Lunar-laser ranging experiment permitiu verificar que a Lua e a Terra são identicamente afetadas pelo campo de gravidade do Sol, conforme previsto pela universalidade da queda livre (o movimento orbital é uma forma de queda livre). No entanto, sabe-se que alguns desvios à universalidade podem ocorrer apenas para corpos fortemente autogravitantes, como estrelas de nêutrons, que são objetos cuja massa é composta significativamente da sua própria energia gravitacional graças à famosa relação E=mc² de Einstein. A nova experiência de pulsar realizada pela equipe preenche a lacuna deixada pelos testes do Sistema Solar, onde nenhum objeto é fortemente autogravitante, nem mesmo o Sol.

Demonstrou-se que o campo gravitacional extremo do pulsar não pode diferir em mais de 1,8 partes por milhão (com um nível de confiança de 95%) da previsão da relatividade geral. Esse resultado é a confirmação mais precisa de que a universalidade da queda livre é válida mesmo na presença de um objeto cuja massa é em grande parte devida ao seu próprio campo de gravidade, apoiando assim a Teoria da Relatividade Geral de Einstein.

As descobertas foram publicadas no periódico Astronomy & Astrophysics.

Fonte: Max Planck Institute for Radio Astronomy

sábado, 6 de junho de 2020

Fonte de raios X desperta perto de uma galáxia não tão distante

Uma nova fonte ultravioleta de raios X despertou entre nossos vizinhos galácticos, as Nuvens de Magalhães, depois de 26 anos adormecida.


© NASA/JPL-Caltech (ilustração de um pulsar de raios X ultra luminoso)

Este é o segundo objeto mais próximo conhecido até hoje, com um brilho superior a um milhão de sóis.    O objeto, conhecido como RX J0209.6-7427, foi detectado pela primeira vez em 1993 durante uma explosão com a duração de 6 meses. Embora tenha sido inicialmente identificado como um binário de raio X de tipo Be, a sua verdadeira natureza permaneceu um mistério, já que se manteve em estado adormecido durante os 26 anos seguintes, voltando a brilhar em novembro do ano passado.

Uma equipe de cientistas indianos usou o AstroSat, o primeiro observatório espacial dedicado da Índia, para revelar a natureza extrema da fonte e detectou pela primeira vez pulsações de raios X no objeto. Isto permitiu classificar o objeto como um pulsar de raios X ultra luminoso (ULXP).

O pulsar está localizado na Ponte de Magalhães, um fluxo de gás e de estrelas que liga as nuvens de Magalhães (duas das galáxias mais próximas da Terra e que são dos objetos mais distantes visíveis a olho nu). A nova fonte de raios X é o segundo ULXP mais próximo, a seguir a um outro descoberto na Via Láctea em 2018, e é apenas o oitavo objeto deste tipo que se conhece.

As fontes de raios X ultra luminosas observam-se como pontos únicos no céu, mas têm um brilho que se pode comparar ao de uma galáxia. “Segundo a teoria convencional, para brilharem com tanta intensidade, os ULXPs devem ser discos de acreção brilhantes em torno de buracos negros”, disse Amar Deo Chandra, principal autor deste estudo. “No entanto, as recentes descobertas de pulsações nestes objetos sugerem que eles podem possuir estrelas de nêutrons no núcleo.”

Uma estrela de nêutrons é o remanescente de uma estrela morta que contém tanta matéria como o Sol, mas compactada num raio minúsculo de apenas 10 km. Calcula-se que a estrela de nêutrons deste objeto deva girar muito rapidamente, cerca de 100 vezes por segundo, emitindo pulsos de raios X energéticos a partir dos seus polos magnéticos, conduzindo-o a uma nova classificação de pulsar de raios X.

O grupo de astrônomos, do IISER Kolkata, do IUCAA Pune e do UM-DAE CEBS (Center for Excellence in Basic Sciences) de Mumbai, descobriu ainda que o pulsar pode até estar acelerando, disparando fulgurações de raios X. Considera-se que isto acontece quando a estrela de nêutrons captura material de uma estrela companheira, injetando energia no sistema e acelerando a rotação.    A escassez de fontes semelhantes torna essencial a detecção e o estudo de novos ULXPs.

“Este é apenas o oitavo ULXP detectado e o primeiro próximo das nuvens de Magalhães,” acrescenta Chandra. “Isto levanta a interessante possibilidade de uma fração significativa das fontes de raios X ultra luminosas poderem ser estrelas de nêutrons em acreção a taxas acima do limite de Eddington, e não buracos negros, como se pensava.”

A descoberta foi publicada no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

terça-feira, 2 de junho de 2020

Flocos de neve estelares

Quase como flocos de neve, as estrelas do aglomerado globular NGC 6441 brilham pacificamente no céu noturno, a cerca de 13.000 anos-luz do centro galáctico da Via Láctea.


© Hubble/G. Piotto (NGC 6441)

É difícil discernir o número exato de estrelas neste aglomerado. Estima-se que juntas as estrelas pesem 1,6 milhões de vezes a massa do Sol, tornando o NGC 6441 um dos aglomerados globulares mais massivos e luminosos da Via Láctea.

aglomerado globular NGC 6441 possui quatro pulsares, cada um completando uma única rotação em alguns milissegundos. Também escondido dentro deste aglomerado está o JaFu 2, uma nebulosa planetária. Apesar do nome, isso tem pouco a ver com planetas. Uma fase na evolução das estrelas de massa intermediária, as nebulosas planetárias duram apenas algumas dezenas de milhares de anos, um piscar de olhos nas escalas de tempo astronômicas.

Existem cerca de 150 aglomerados globulares conhecidos na Via Láctea. Aglomerados globulares contêm algumas das primeiras estrelas a serem produzidas em uma galáxia, mas os detalhes de suas origens e evolução ainda iludem os astrônomos.

Fonte: NASA

sexta-feira, 13 de dezembro de 2019

Um novo método de medir buracos negros

Os buracos negros supermassivos são os maiores buracos negros, com massas que podem exceder bilhões de sóis.


© Chris Marsden (mapa do agrupamento de galáxias com buracos negros ativos)

Apenas esta primavera foi divulgada a primeira imagem do buraco negro supermassivo no centro da galáxia M87, e os pesquisadores recentemente avistaram o maior buraco negro supermassivo conhecido. Apesar destes esforços inovadores, descobrir como estes buracos negros moldam e estruturam uma galáxia continua a ser um desafio, porque a maioria delas está demasiada longe para os telescópios atuais as resolverem com precisão.

Um estudo descreve uma nova maneira de "pesar" buracos negros supermassivos no centro das galáxias usando galáxias vizinhas como representantes. A pesquisa foi uma colaboração global envolvendo pesquisadores de instituições do Reino Unido, Itália, Alemanha, Chile e Estados Unidos.

A obtenção de uma estimativa precisa da massa de um buraco negro supermassivo é geralmente feita medindo a velocidade da poeira e do gás que gira ao seu redor. Isto requer telescópios extremamente sensíveis usando uma análise complexa e só pode ser feito para buracos negros grandes o suficiente para serem resolvidos relativamente perto da Terra. No entanto, se esta massa estiver correlacionada com outras propriedades da galáxia hospedeira, aquelas que podem ser medidas mesmo quando o buraco negro é menor ou está mais distante, é possível usar estas outras propriedades como "representantes" da massa.

No entanto, como explica Mariangela Bernardi da Universidade da Pensilvânia, EUA: "Percebemos que existe um viés na amostra vizinha usada para calibrar as massas. Os objetos para os quais atualmente podemos medir massas não parecem ser típicos. O nosso trabalho sugeriu que os buracos negros supermassivos não são, em média, tão grandes quanto se pensava anteriormente."

Para verificar esta diferença de massa, os cientistas desenvolveram uma maneira nova e muito diferente de estimar as massas dos buracos negros. Usaram o fato de que, enquanto um buraco negro é cercado pela sua galáxia hospedeira, a própria galáxia é cercada por um "halo" ainda maior de matéria escura. Sabe-se que galáxias cercadas por halos mais massivos se agrupam com outras galáxias grandes e massivas. Como existem buracos negros mais massivos em galáxias mais massivas com halos mais massivos, a força deste agrupamento na verdade "pesa" os halos de matéria escura e, por conseguinte, as massas dos buracos negros nos seus centros.

Esta nova medição também sugere que os buracos negros supermassivos são menos massivos do que se pensava anteriormente e podem explicar por que é que algumas experiências em andamento não produziram os resultados esperados. Como exemplo, os pulsares, remanescentes de estrelas que explodiram, brilham como faróis que giram centenas de vezes por segundo. A luz dos pulsares é emitida em intervalos incrivelmente curtos e regulares, à medida que o feixe varre a Terra repetidamente. Os pesquisadores estão atualmente à procura de ondas gravitacionais produzidas pela colisão de dois buracos negros supermassivos, que devem fazer com que estes feixes oscilem na direção da Terra e para longe da Terra, à medida que a onda passa e afeta o campo dos pulsos.

Nos próximos 10 anos, espera-se que novos telescópios sejam capazes de obter medições de massa mais precisas para buracos negros e proporcionem uma oportunidade para o novo método seja testado em conjuntos maiores de dados. Instalações como o ELT (Extremely Large Telescope), com 39 metros, com conclusão para 2025, podem permitir que os cientistas meçam buracos negros menores e mais distantes e as suas galáxias hospedeiras diretamente.

Este trabalho permitirá um estudo mais detalhado da ligação entre o crescimento dos buracos negros supermassivos e a evolução das galáxias.

Um estudo sobre o método foi publicado na Nature Astronomy.

Fonte: University of Pennsylvania

terça-feira, 12 de novembro de 2019

NICER avista explosão recorde de raios X

O telescópio NICER (Neutron star Interior Composition Explorer) da NASA, na Estação Espacial Internacional, detectou um pico repentino de raios X por volta das 22:04 do dia 20 de agosto.


© Goddard Space Flight Center/Chris Smith (ilustração da explosão de raios X do Tipo I)

A explosão foi provocada por um enorme flash termonuclear à superfície de um pulsar, os remanescentes esmagados de uma estrela que há muito tempo explodiu como supernova.

O surto de raios X, o mais brilhante visto até agora pelo NICER, veio de um objeto chamado SAX J1808.4-3658 (J1808, de forma abreviada). As observações revelam muitos fenômenos que nunca foram vistos juntos numa única explosão. Além disso, o surto em diminuição aumentou novamente e brevemente de brilho por razões que os astrônomos ainda não conseguem explicar.

A explosão de raios X do Tipo I liberou tanta energia em 20 segundos quanto o Sol em quase 10 dias. Os detalhes que o NICER capturou desta erupção recorde ajudarão os astrônomos a entender melhor os processos físicos que impulsionam surtos termonucleares deste e de outros pulsares explosivos.

Os pulsares são uma espécie de estrela de nêutrons, o núcleo compacto deixado para trás quando uma estrela massiva fica sem combustível, colapsa sob si própria e explode. Os pulsares podem girar rapidamente e hospedar pontos quentes emissores de raios X nos seus polos magnéticos. À medida que o objeto gira, varre os seus pontos quentes na nossa linha de visão, produzindo pulsos regulares de radiação altamente energética.

O J1808 está localizado a aproximadamente 11.000 anos-luz de distância na direção da constelação de Sagitário. Ele gira 401 vezes por segundo e é membro de um sistema binário. A sua companheira é uma anã marron, um objeto maior do que um planeta gigante gasoso, mas pequeno demais para ser uma estrela. Um fluxo constante de hidrogênio gasoso flui da companheira para a estrela de nêutrons e acumula-se numa vasta estrutura de armazenamento chamada disco de acreção.

O gás nos discos de acreção não se move para dentro facilmente. Mas a cada poucos anos, os discos em torno de pulsares como J1808 tornam-se tão densos que uma grande quantidade de gás é ionizado ou despojado dos seus elétrons. Isto dificulta a movimentação da luz pelo disco. A energia aprisionada inicia um processo descontrolado de aquecimento e ionização que retém ainda mais energia. O gás torna-se mais resistente ao fluxo e começa a espiralar para dentro, caindo finalmente no pulsar.

A "chuva" de hidrogênio até à superfície forma um "mar" global quente e cada vez mais profundo. Na base desta camada, as temperaturas e as pressões aumentam até que os núcleos do hidrogênio se fundem para formar núcleos de hélio, o que produz energia, um processo em funcionamento no núcleo do nosso Sol.

Quando a camada de hélio tem alguns metros de profundidade, as condições permitem que os núcleos de hélio se fundam em carbono. Então, o hélio entra em erupção explosiva e lança uma bola de fogo termonuclear por toda a superfície do pulsar.

O limite de Eddington descreve a intensidade máxima de radiação que uma estrela pode ter antes que a radiação faça com que se expanda. Este ponto depende fortemente da composição do material acima da fonte de emissão.

"O nosso estudo explora este conceito de longa data de uma nova maneira," disse Deepto Chakrabarty, professor de física no MIT (Massachusetts Institute of Technology) em Cambridge. "Aparentemente, estamos vendo o limite de Eddington para duas composições diferentes na mesma explosão de raios X. Esta é uma maneira muito poderosa e direta de acompanhar as reações de queima nuclear subjacentes ao evento."

Ao início da explosão, os dados do NICER mostram que o brilho dos raios X diminuiu durante quase um segundo antes de aumentar novamente num ritmo mais lento. Os cientistas interpretam esta "paralisação" como o momento em que a energia da explosão se acumulou o suficiente para fazer explodir a camada de hidrogênio do pulsar para o espaço.

A bola de fogo continuou crescendo por mais dois segundos e, em seguida, atingiu o seu pico, explodindo a camada de hélio mais massiva. O hélio expandiu-se mais rapidamente, ultrapassou a camada de hidrogênio antes que pudesse dissipar-se e, em seguida, diminuiu de velocidade, parou e assentou-se à superfície do pulsar. Após esta fase, o pulsar aumentou novamente de brilho, cerca de 20%, mas apenas brevemente, por razões que ainda não são compreendidas.

Durante esta recente atividade do J1808, o NICER detectou outra explosão de raios X, muito mais fraca, que não exibiu nenhuma das principais características observadas no evento de 20 de agosto.

Além de detectar a expansão de diferentes camadas, as observações da explosão pelo NICER revelam raios X refletidos pelo disco de acreção e registram o piscar das "oscilações de rajada", sinais de raios X que aumentam e diminuem na frequência de rotação do pulsar, mas que ocorrem em locais da superfície diferentes dos pontos quentes responsáveis pelos seus pulsos normais de raios X.

O artigo que descreve estas descobertas foi publicado na revista The Astrophysical Journal Letters.

Fonte: NASA

terça-feira, 24 de setembro de 2019

Pulsos de raios gama de estrela de nêutrons que gira muito rápido

Uma equipe internacional liderada pelo Instituto Max Planck para Física Gravitacional (Instituto Albert Einstein em Hannover) descobriu que o pulsar de rádio J0952-0607 também emite radiação gama pulsada.


© NASA/Cruz deWilde (pulsar e a sua pequena companheira estelar)

O J0952-0607 gira 707 vezes por segundo e é o segundo na lista de estrelas de nêutrons de rápida rotação. Através da análise de 8,5 anos de dados do telescópio espacial de raios gama Fermi da NASA, observações de rádio do LOFAR dos últimos dois anos, observações de dois grandes telescópios ópticos, e dados de ondas gravitacionais dos detectores LIGO, a equipe usou uma abordagem variada para estudar em detalhe o sistema binário do pulsar e da sua companheira leve. O estudo mostra que os sistemas pulsares extremos estão escondidos nos catálogos Fermi e motiva pesquisas adicionais. Apesar de muito extensa, a análise também levanta novas questões não respondidas sobre este sistema.

Os pulsares são os restos compactos de explosões estelares que possuem fortes campos magnéticos e que giram muito depressa. Emitem radiação como um farol cósmico e podem ser observados como pulsares de rádio e/ou pulsares de raios gama, dependendo da sua orientação para a Terra.

O PSR J0952-0607 foi descoberto pela primeira vez em 2017 por observações de rádio de uma fonte identificada pelo telescópio espacial de raios gama Fermi como possivelmente um pulsar. Não foram detectadas pulsações de raios gama nos dados do LAT (Large Area Telescope) a bordo do Fermi.

Observações com os radiotelescópios LOFAR identificaram uma fonte de rádio pulsante e juntamente com as observações por telescópios ópticos permitiram medir algumas propriedades do pulsar. Está orbitando o centro de massa comum em 6,2 horas com uma estrela companheira que tem apenas 1/50 da massa do nosso Sol. O pulsar tem a mais rápida rotação na nossa Galáxia para além dos densos ambientes dos aglomerados globulares.

Usando estas informações anteriores do sistema binário, Lars Nieder, estudante de doutoramento no Instituto Albert Einstein em Hannover, decidiu verificar se o pulsar também emitia raios gama pulsados. "Esta investigação é extremamente desafiadora porque o telescópio espacial de raios gama Fermi apenas registou o equivalente a cerca de 200 raios gama oriundos do pulsar fraco nos seus 8,5 anos de observações. Durante este período, o próprio pulsar girou 220 bilhões de vezes, ou seja, apenas foi observado um raio gama a cada bilhões de rotações!", explicou Nieder.

Isto requer vasculhar os dados com uma resolução muito fina para não perder nenhum sinal possível. O poder de computação necessário é enorme. A busca muito sensível por pulsações leves de raios gama levaria 24 anos a ser concluída num único núcleo de computador. Ao usarem o complexo computacional do Instituto Albert Einstein em Hannover, terminaram em apenas 2 dias.

A solução derivada continha outra surpresa, porque era impossível detectar pulsos de raios gama da estrela de nêutrons nos dados anteriores a julho de 2011. A razão pela qual o pulsar parece apenas mostrar pulsos após esta data é desconhecida. As variações na quantidade de raios gama emitidos podem ser uma razão, mas o pulsar é tão tênue que não foi possível testar esta hipótese com precisão suficiente. Alterações na órbita do pulsar, vistas em sistemas similares, também podem fornecer uma explicação, mas não havia sequer uma pista nos dados de que isto estava acontecendo.

A equipe também usou observações com o NTT (New Technology Telescope) do ESO em La Silla e com o GTC (Gran Telescopio Canarias) em La Palma para examinar a estrela companheira do pulsar. Muito provavelmente tem bloqueio de marés em relação ao pulsar, como a Lua em relação à Terra, de modo que um lado está sempre virado para o pulsar e é aquecido pela sua radiação. Embora a estrela companheira orbite o sistema de massa do binário, o seu lado "diurno" mais quente e o seu lado "noturno" mais frio são visíveis da Terra e o brilho e a cor observada variam.

Estas observações criam outro enigma. Embora as observações rádio apontem para uma distância de aproximadamente 4.400 anos-luz, as observações ópticas implicam uma distância cerca de três vezes maior. Se o sistema estivesse relativamente próximo da Terra, apresentaria uma companheira extremamente compacta e densa, nunca antes vista, enquanto as distâncias maiores são compatíveis com as densidades de companheiras pulsares semelhantes conhecidas. Uma explicação para esta discrepância pode ser a existência de ondas de choque no vento de partículas do pulsar, que podem levar a um aquecimento diferente da companheira. Mais observações de raios gama com o LAT do Fermi devem ajudar a responder a esta pergunta.

Outro grupo de pesquisadores do Instituto Albert Einstein procurou a emissão contínua de ondas gravitacionais do pulsar usando dados da primeira (O1) e da segunda (O2) campanhas de observação do LIGO. Os pulsares podem emitir ondas gravitacionais quando possuem pequenas "colinas" ou "inchaços" à sua superfície. A pesquisa não detectou ondas gravitacionais, o que significa que a forma do pulsar deve estar muito próxima de uma esfera perfeita, com as maiores deformações não excedendo frações de um milímetro.

A compreensão dos pulsares em rápida rotação é importante porque são sondas da física extrema. A rapidez com que as estrelas de nêutrons podem girar antes de se separarem devido às forças centrípetas é desconhecida e depende de física nuclear desconhecida. Os pulsares de milissegundo como J0952-0607 giram tão depressa porque foram acelerados pela acreção de matéria da sua companheira. Pensa-se que este processo enterre o campo magnético do pulsar. Com observações de raios gama a longo prazo, notou-se que J0952-0607 possui um dos dez campos magnéticos mais baixos já medidos para um pulsar, consistente com as expectativas teóricas.

Os astrônomos estão utilizando o projeto de computação distribuída de ciência cidadã, Einstein@Home, para procurar sistemas binários com pulsares de raios gama em outras fontes do LAT do Fermi para propiciar mais descobertas empolgantes no futuro.

O estudo foi publicado no periódico The Astrophysical Journal.

Fonte: Albert Einstein Institute

sexta-feira, 20 de setembro de 2019

Detectada estrela de nêutrons quase massiva demais para existir

Usando o GBT (Green Bank Telescope), astrônomos descobriram a estrela de nêutrons mais massiva até agora, um pulsar de rápida rotação a aproximadamente 4.600 anos-luz da Terra.


© NRAO/B. Saxton (ilustração de um pulsar)

Este objeto recorde está no limite da existência, aproximando-se da massa máxima teoricamente possível para uma estrela de nêutrons.

As estrelas de nêutrons, remanescentes compactos de estrelas massivas transformadas em supernovas, são os um dos objetos mais densos do Universo conhecido, depois dos buracos negros. Somente um cubo de açúcar de material de uma estrela de nêutrons pesaria 100 milhões de toneladas aqui na Terra, o equivalente a toda a população humana. Embora estes objetos são estudados há já décadas, permanecem muitos mistérios sobre a natureza dos seus interiores: será que os nêutrons esmagados se tornam "superfluidos" e fluem livremente? Será que se decompõem numa sopa de quarks subatômicos ou de outras partículas exóticas? Qual é o ponto de inflexão em que a gravidade vence a matéria e forma um buraco negro?

Uma equipe de astrônomos usou o GBT para nos levar mais perto das respostas.

Os cientistas, membros do NANOGrav Physics Frontiers Center, descobriram que um pulsar de milissegundo, chamado J0740+6620, é a estrela de nêutrons mais massiva já medida, acumulando 2,17 vezes a massa do nosso Sol numa esfera com apenas 30 km de diâmetro. Esta medição está perto dos limites de quão grande e compacto um único objeto se pode tornar sem se esmagar a ele próprio num buraco negro. Trabalhos recentes envolvendo ondas gravitacionais observadas pelo LIGO durante a colisão de estrelas de nêutrons sugerem que o valor de 2,17 massas solares pode estar muito perto deste limite.

Os pulsares recebem este nome devido aos feixes gêmeos de ondas rádio que emitem dos seus polos magnéticos. Estes feixes varrem o espaço de maneira semelhante a um farol. Alguns giram centenas de vezes por segundo. Dado que os pulsares giram com velocidade e regularidade fenomenais, os astrônomos podem usá-los como equivalentes cósmicos dos relógios atômicos. Esta cronometragem precisa auxilia no estudo da natureza do espaço-tempo, e na medida das massas de objetos estelares e na melhoraria da sua compreensão da relatividade geral.

No caso deste sistema binário, que é visto quase de lado da perspetiva da Terra, esta precisão cósmica forneceu um percurso para os astrônomos calcularem a massa das duas estrelas.

À medida que o pulsar passa por trás da sua anã branca companheira, há um atraso sutil (na ordem dos 10 milionésimos de segundo) no tempo de chegada dos sinais. Este fenômeno é conhecido como "Atraso de Shapiro". Em essência, a gravidade da anã branca distorce levemente o espaço ao seu redor, de acordo com a teoria geral da relatividade de Einstein. Esta distorção significa que os pulsos da estrela de nêutrons giratória têm que viajar um pouco mais enquanto se desviam das distorções do espaço-tempo provocadas pela anã branca.

Os astrônomos podem usar este atraso cronológico para calcular a massa da anã branca. Uma vez conhecida a massa de um dos corpos em co-órbita, a determinação precisa da massa do outro é um processo relativamente simples.

A pesquisa propunha observar este sistema em dois pontos especiais das suas órbitas mútuas para calcular com precisão a massa da estrela de nêutrons.

As estrelas de nêutrons têm este ponto de inflexão, onde as suas densidades interiores se tornam tão extremas que a força da gravidade supera a capacidade dos nêutrons em resistir a um colapso gravitacional. Cada estrela de nêutrons mais massiva que for encontrada aproxima-se da identificação deste ponto crítico e propiciando compreender a física da matéria a estas densidades surpreendentes.

Um artigo foi aceito para publicação na revista Nature Astronomy.

Fonte: Green Bank Observatory

sexta-feira, 12 de julho de 2019

Dois buracos negros supermassivos em rota de colisão

Astrônomos descobriram um par distante de buracos negros titânicos em rota de colisão.


© A. Goulding (par de buracos negros supermassivos em rota de colisão)

A massa de cada buraco negro é superior a 800 milhões de vezes a do nosso Sol.

À medida que os dois se aproximam gradualmente numa espiral da morte, vão começar a liberar ondas gravitacionais que ondulam através do espaço-tempo. Estas ondulações cósmicas vão juntar-se ao ruído de fundo, ainda não detectado, das ondas gravitacionais de outros buracos negros supermassivos. Mesmo antes da colisão, as ondas gravitacionais que emanam do par de buracos negros supermassivos superam aquelas anteriormente detectadas pelas fusões de buracos negros e estrelas de nêutrons muito menores.

Os dois buracos negros supermassivos são especialmente interessantes porque estão a cerca de 2,5 bilhões de anos-luz da Terra. Coincidentemente, é aproximadamente o mesmo tempo que os astrônomos estimam que os buracos negros devem levar para começar a produzir as poderosas ondas gravitacionais.

No Universo atual, os buracos negros já estão emitindo estas ondas gravitacionais, mas, mesmo à velocidade da luz, as ondas só chegarão na Terra daqui a bilhões de anos. No entanto, esta descoberta pode ajudar os cientistas a estimar quantos buracos negros supermassivos próximos estão emitindo ondas gravitacionais que podemos detectar agora.

A detecção do fundo de ondas gravitacionais ajudaria a responder algumas das maiores incógnitas da astronomia, como a frequência com que as galáxias se fundem e se os pares de buracos negros supermassivos sequer se fundem ou se ficam presos numa valsa quase infinita em torno um do outro.

Os buracos negros supermassivos podem conter milhões ou até bilhões de vezes a massa do nosso Sol. Quase todas as galáxias, incluindo a nossa própria Via Láctea, contêm pelo menos um destes gigantes no seu núcleo. Quando as galáxias se fundem, os seus buracos negros supermassivos encontram-se e começam a orbitar-se um ao outro. Com o tempo, esta órbita fica mais restrita enquanto o gás e as estrelas passam entre os buracos negros e roubam energia.

No entanto, assim que os buracos negros supermassivos se aproximam demais, este roubo energético praticamente interrompe. Algumas teorias sugerem que ficam a mais ou menos 1 parsec (aproximadamente 3,2 anos-luz). Esta desaceleração dura quase indefinidamente e é conhecida como o "problema do parsec final". Neste cenário, apenas grupos muito raros de três ou mais buracos negros supermassivos resultam em fusões.

Os astrônomos não podem apenas procurar pares estagnados, porque muito antes dos buracos negros ficarem separados por 1 parsec, já estão demasiado perto um do outro para os distinguirmos como dois objetos separados. Além disso, só produzem ondas gravitacionais fortes quando superarem o obstáculo final do último parsec e ficarem ainda mais íntimos, sendo que os recém-descobertos buracos negros supermassivos estão separados por cerca de 430 parsecs.

Se o problema do parsec final não for, na realidade, um problema, então os astrônomos esperam que o Universo esteja repleto com o clamor de ondas gravitacionais de pares de buracos negros supermassivos no processo de fusão. Este ruído é chamado de fundo de ondas gravitacionais, onde o volume do barulho ajuda a estimar quantos buracos negros supermassivos existem.

Se dois buracos negros supermassivos colidirem e se combinarem, o evento enviará um trovão estrondoso que diminuirá o som de fundo, mas "ouvi-lo" não será tarefa fácil.

As ondas gravitacionais reveladoras geradas pela fusão de buracos negros supermassivos estão fora das frequências observáveis atualmente por experiências como o LIGO e Virgo, que já detectaram as fusões muito menores entre buracos negros e estrelas de nêutrons. Os cientistas que caçam ondas gravitacionais maiores, como originárias de colisões entre buracos negros supermassivos, dependem de conjuntos de estrelas especiais chamadas pulsares que agem como metrônomos, enviando ondas de rádio num ritmo constante. Se uma onda gravitacional passageira esticar ou comprimir o espaço entre a Terra e o pulsar, o ritmo ficará ligeiramente diferente.

A detecção do fundo de ondas gravitacionais, usando um destes pulsares, requer paciência e uma abundância de estrelas monitoradas. O ritmo de um único pulsar pode ser perturbado por apenas algumas centenas de nanossegundos ao longo de uma década. Quanto mais alto for o ruído de fundo, maiores serão as perturbações de temporização e mais rápida será a detecção.

Os dois titãs cósmicos foram detectados com o telescópio espacial Hubble. Embora os buracos negros supermassivos não sejam diretamente visíveis através de um telescópio óptico como o Hubble, são rodeados por aglomerados brilhantes de estrelas luminosas e gás quente atraídos pela poderosa atração gravitacional. Para o seu tempo na história, a galáxia que abriga o recém-descoberto par de buracos negros supermassivos é basicamente a galáxia mais luminosa do Universo. Além disso, o núcleo da galáxia está lançando duas plumas de gás extraordinariamente colossais. Quando apontaram o Hubble a fim de descobrir as origens das suas espetaculares nuvens de gás, os pesquisadores descobriram que o sistema não continha um, mas dois buracos negros.

A descoberta fornece um ponto de ancoragem para estimar quantas fusões de buracos negros supermassivos estão dentro da distância de detecção da Terra. As estimativas anteriores basearam-se em modelos computacionais da frequência de fusões galácticas, em vez de observações reais de pares de buracos negros supermassivos.

Com base nos dados, estima-se que existam cerca de 112 buracos negros supermassivos próximos emitindo ondas gravitacionais. A primeira detecção do fundo de ondas gravitacionais de fusões de buracos negros supermassivos deve, portanto, surgir dentro de cinco anos. Se esta detecção não for feita, poderá ser evidência de que o problema do parsec final é intransponível. Os astrônomos estão atualmente analisando outras galáxias parecidas àquela que abriga o novo binário composto por dois buracos negros supermassivos.

Um artigo foi publicado na revista The Astrophysical Journal Letters.

Fonte: Princeton University

sábado, 23 de março de 2019

Pulsar que acelera através do espaço

Os astrônomos encontraram um pulsar que viaja pelo espaço a quase 4 milhões de quilômetros por hora, tão rápido que poderia percorrer a distância entre a Terra e a Lua em apenas seis minutos.


© NASA/NRAO/J. English (remanescente de supernova CTB 1)

O remanescente de supernova CTB 1 assemelha-se a uma bolha fantasmagórica nesta imagem, que combina novas observações do VLA (Very Large Array) (1,5 gigahertz, laranja, perto do centro) com observações mais antigas do Canadian Galactic Plane Survey do DRAO (Dominion Radio Astrophysical Observatory) (1,42 gigahertz, magenta e amarelo; 408 megahertz, verde) e dados infravermelhos (azul). Os dados do VLA revelam claramente a cauda brilhante e reta do pulsar J0002+6216 e a borda curva da concha do remanescente. O CTB 1 tem cerca de meio-grau, o tamanho aparente de uma Lua Cheia.

A descoberta foi feita usando o telescópio espacial de raios gama Fermi da NASA e o VLA (Karl G. Jansky Very Large Array).

Os pulsares são estrelas de nêutrons superdensas e de rápida rotação deixadas para trás quando uma estrela massiva explode. A PSR J0002+6216 (J0002, abreviado), ostenta uma cauda de emissão de rádio que aponta diretamente para os destroços em expansão de uma recente explosão de supernova.
O pulsar J0002 foi descoberto em 2017 por um projeto de cientistas cidadãos chamado Einstein@Home, que usa o tempo nos computadores de voluntários para processar dados de raios gama do Fermi. Graças ao tempo de processamento, coletivamente superior a 10.000 anos, o projeto identificou até à data 23 pulsares de raios gama.

Localizado a mais ou menos 6.500 anos-luz de distância na direção da constelação de Cassiopeia, o J0002 gira 8,7 vezes por segundo, produzindo um pulso de raios gama a cada rotação.

O pulsar fica a cerca de 53 anos-luz do centro do remanescente de supernova CTB 1. O seu movimento rápido através do gás interestelar resulta em ondas de choque que produzem a cauda de energia magnética e partículas aceleradas detectadas no rádio com o VLA. A cauda estende-se por 13 anos-luz e aponta claramente para o centro de CTB 1.

Usando dados do Fermi e uma técnica chamada tempo do pulsar, a equipe foi capaz de medir com que rapidez e em que direção o pulsar se move ao longo da nossa linha de visão.

O resultado apoia a ideia de que o pulsar foi expulso a alta velocidade pela supernova responsável por CTB 1, que ocorreu há aproximadamente 10.000 anos.

O J0002 está acelerando pelo espaço cinco vezes mais depressa do que o pulsar médio e mais depressa do que 99% daqueles com velocidades medidas. Eventualmente acabará por escapar da nossa Galáxia.

Inicialmente, os destroços em expansão da supernova teriam sido movidos para fora mais depressa do que J0002, mas ao longo de milhares de anos a interação da concha com o gás interestelar produziu um arrasto que gradualmente diminui este movimento. Entretanto, o pulsar, comportando-se mais como uma bala de canhão, atravessou o remanescente, escapando cerca de 5.000 anos após a explosão.

Exatamente como o pulsar foi acelerado a uma velocidade tão alta durante a explosão de supernova, ainda não está claro, e um estudo mais aprofundado do J0002 ajudará a esclarecer o processo. Um mecanismo possível envolve instabilidades na estrela em colapso, formando uma região de matéria lenta e densa que sobrevive o tempo suficiente para servir como "rebocador gravitacional", acelerando a estrela de nêutrons nascente na sua direção.

A equipe planeja efetuar observações adicionais usando o VLA, o VLBA (Very Long Baseline Array) e o observatório de raios X Chandra da NASA.

Os astrônomos apresentaram os seus achados na reunião da Divisão de Astrofísica de Alta Energia da Sociedade Astronômica Americana em Monterey, Califórnia.

O artigo que descreve os resultados foi submetido para publicação numa edição futura da revista The Astrophysical Journal Letters.

Fonte: NASA

segunda-feira, 29 de outubro de 2018

Descoberto o pulsar mais lento conhecido

Um pulsar com aproximadamente 14 milhões de anos, com a rotação mais lenta já identificada, foi descoberto por uma estudante de doutoramento da Universidade de Manchester.

ilustração de um pulsar

© NASA (ilustração de um pulsar)

Chia Min Tan, estudante de doutoramento no Centro para Astrofísica Jodrell Bank, da Escola de Física e Astronomia de Manchester, fazia parte de uma equipe internacional que incluía outros astrônomos de Manchester, do ASTRON e da Universidade de Amesterdã.

A equipe realizou as observações usando o LOFAR (Low-Frequency Array), cujo núcleo está localizado na Holanda.

Os pulsares são estrelas de nêutrons que giram rapidamente e que produzem radiação eletromagnética em feixes que emanam dos seus polos magnéticos. Estes "faróis cósmicos" nascem quando uma estrela massiva explode numa supernova. Depois de tal explosão, fica para trás uma estrela de nêutrons superdensa e giratória com um diâmetro de apenas 20 quilômetros.

O pulsar com a rotação mais rápida conhecida, até à data, gira uma vez a cada 1,4 milissegundos, ou seja, 716 vezes por segundo ou 42.960 por minuto.

Até agora, o pulsar mais lento conhecido tinha um período de rotação de 8,5 segundos. Este novo pulsar, localizado na direção da constelação de Cassiopeia a cerca de 5.200 anos-luz da Terra, gira a uma taxa muito mais lenta de 23,5 segundos.

O que torna a descoberta ainda mais improvável é que a emissão de rádio dura apenas 200 milissegundos dos 23,5 segundos do período de rotação.

A emissão de rádio que vem de um pulsar age como um farol cósmico e só podemos ver o sinal se o feixe de rádio estiver voltado na nossa direção. Neste caso, o feixe é tão estreito que podia ter facilmente falhado a Terra.

"Os pulsares de rotação lenta são ainda mais difíceis de serem detectados. É incrível pensar que este pulsar gira mais de 15.000 vezes mais lentamente do que o pulsar mais rápido conhecido. Esperamos encontrar mais com o LOFAR," disse Chia Min Tan.

Os astrônomos descobriram este novo pulsar durante o levantamento LOTAAS (LOFAR Tied-Array All-Sky Survey). Esta campanha procura pulsares no céu do hemisfério norte. Cada instantâneo da pesquisa tem a duração aproximada de uma hora. Este valor é superior ao usado em levantamentos anteriores e forneceu a sensibilidade necessária para descobrir este pulsar surpreendente.

Os astrônomos não só "ouviram" os pulsos regulares do sinal do pulsar, como também "viram" o pulsar no levantamento de imagens do LOFAR. O pulsar tem aproximadamente 14 milhões de anos, mas ainda possui um forte campo magnético.

O próximo passo dos astrônomos é continuar utilizando o LOFAR para encontrar novos pulsares. Também planejam observar a sua nova descoberta com o telescópio espacial XMM-Newton. "Este telescópio está desenhado para detectar raios X. Se o pulsar superlento for detectado como uma fonte de raios X, então teremos importantes informações sobre a sua história e origem," concluiu Chia Min Tan.

A descoberta foi publicada na revista The Astrophysical Journal.

Fonte: University of Manchester