Mostrando postagens com marcador Quasar. Mostrar todas as postagens
Mostrando postagens com marcador Quasar. Mostrar todas as postagens

sexta-feira, 9 de abril de 2021

Hubble avista quasares duplos em fusões galácticas

Observando 10 bilhões de anos no passado do Universo, os astrônomos com auxílio do telescópio espacial Hubble encontraram um par de quasares que estão tão próximos um do outro que parecem um único objeto em fotografias obtidas com telescópios no solo.

© NASA/ESA/J. Olmsted (ilustração da fusão de dois quasares)

Os pesquisadores pensam que os quasares estão tão próximos um do outro porque residem nos núcleos de duas galáxias em fusão. Um quasar é um farol brilhante de luz intensa do centro de uma galáxia distante que pode ofuscar toda a galáxia. É abastecido por um buraco negro supermassivo que absorve vorazmente matéria, liberando uma torrente de radiação.

Estima-se que no Universo distante, por cada 1.000 quasares, existe um quasar duplo. A descoberta destes quatro quasares fornece uma nova maneira de sondar colisões entre galáxias e a fusão de buracos negros supermassivos no início do Universo. Os quasares estão espalhados por todo o céu e eram mais abundantes há 10 bilhões de anos. Neste momento, haviam muitas fusões de galáxias, alimentando os buracos negros. Portanto, os astrônomos teorizam que deveriam haver muitos quasares duplos durante esta época.

Os astrônomos estão usando além do telescópio espacial Hubble, o observatório espacial Gaia da ESA e o SDSS (Sloan Digital Sky Survey), bem como vários telescópios terrestres, para compilar um censo robusto de pares de quasares no Universo primitivo.

Estas observações são importantes porque a função de um quasar nos encontros galácticos é parte crítica na formação da galáxia. À medida que duas galáxias próximas começam a se distorcer gravitacionalmente, a sua interação canaliza o material para os seus respectivos buracos negros, acendendo os seus quasares. Com o tempo, a radiação de alta intensidade dos quasares lança poderosos ventos galácticos, que varrem a maior parte do gás das galáxias em fusão. Privadas de gás, a formação estelar cessa e as galáxias evoluem para galáxias elípticas. 

Foram descobertos, até agora, mais de 100 quasares duplos em galáxias em fusão. No entanto, nenhum deles é tão antigo quanto os dois quasares duplos neste estudo. As imagens do Hubble mostram que os quasares de cada par estão separados por apenas cerca de 10.000 anos-luz. Em comparação, o nosso Sol está a 26.000 anos-luz do buraco negro supermassivo no centro da nossa Galáxia. 

Os pares de galáxias hospedeiras acabarão por se fundir e, em seguida, os quasares também irão coalescer, resultando num único buraco negro ainda mais massivo. Encontrá-los não foi fácil. O Hubble é o único telescópio com visão nítida o suficiente para perscrutar o Universo primitivo e distinguir dois quasares íntimos que estão tão distantes da Terra. No entanto, a resolução nítida do Hubble por si só não é boa o suficiente para encontrar estes faróis duplos. Os astrônomos primeiro precisaram de descobrir para onde apontar o Hubble a fim de os estudar. O desafio é que o céu está coberto por uma tapeçaria de quasares antigos que ganharam vida quando o Universo era jovem, apenas uma pequena fração dos quais são duplos. 

Para compilar um censo robusto de pares de quasares no Universo primitivo foi necessária uma técnica criativa e inovadora que exigiu a ajuda do satélite Gaia da ESA e do SDSS para compilar um grupo de potenciais candidatos para o Hubble observar. Localizado no Observatório de Apache Point, no estado norte-americano do Novo México, o telescópio Sloan produz mapas tridimensionais de objetos por todo o céu. 

Os astrônomos então recrutaram o observatório Gaia para ajudar a identificar potenciais candidatos a quasar duplo. O Gaia mede as posições, distâncias e movimentos de objetos celestes próximos com muita precisão. Mas a equipe desenvolveu uma aplicação nova e inovadora para o Gaia que podia ser usada para explorar o Universo distante. Usaram a base de dados do observatório para procurar quasares que imitam o movimento aparente de estrelas próximas. Os quasares aparecem como objetos singulares nos dados do Gaia. No entanto, o Gaia consegue captar uma "sacudidela" sutil e inesperada na posição aparente de alguns dos quasares que observa. 

Os quasares não se movem pelo espaço de forma mensurável, mas ao invés o seu movimento pode ser evidência de flutuações aleatórias de luz, pois cada membro do par de quasares varia em brilho. Os quasares cintilam em brilho em escalas de tempo de dias a meses, dependendo do calendário de alimentação dos seus buracos negros. Este brilho alternado entre o par de quasares é semelhante a ver um sinal de travessia de uma ferrovia à distância. À medida que as luzes de ambos os lados do sinal estacionário piscam alternadamente, dá a ilusão de passar entre uma e a outra lâmpada.

A equipe também obteve observações de acompanhamento com os telescópios Gemini, onde a espectroscopia espacialmente resolvida deles pode rejeitar sem ambiguidades intrusos devido a sobreposições casuais de sistemas quasar-estrela não associados, onde a estrela no plano da frente está por coincidência alinhada com o quasar de fundo. 

Embora a equipe esteja convencida do seu resultado, dizem que há uma pequena chance de que os instantâneos do Hubble captaram imagens duplas do mesmo quasar, uma ilusão provocada por lentes gravitacionais. Este fenômeno ocorre quando a gravidade de uma grande galáxia em primeiro plano divide e amplia a luz de um quasar de fundo em duas imagens espelhadas. No entanto, os astrônomos pensam que este cenário é altamente improvável porque o Hubble não detectou nenhuma galáxia em primeiro plano perto dos dois pares de quasares. 

As fusões galácticas eram mais abundantes há bilhões de anos, mas algumas ainda acontecem hoje. Um exemplo é a NGC 6240, um sistema próximo de galáxias em fusão que possui dois e provavelmente até três buracos negros supermassivos.

© Hubble (NGC 6240)

Uma fusão galáctica ainda mais próxima ocorrerá daqui a alguns bilhões de anos, quando a nossa própria Galáxia, a Via Láctea, colidir com a vizinha Galáxia de Andrômeda. A disputa galáctica provavelmente alimentaria os buracos negros supermassivos no núcleo de cada galáxia, acendendo-os como quasares. 

Os telescópios futuros podem fornecer mais informações sobre estes sistemas em fusão. O telescópio espacial James Webb da NASA, um observatório infravermelho com lançamento previsto para ainda este ano, vai estudar as galáxias hospedeiras dos quasares, e mostrar as assinaturas de fusões galácticas, como a distribuição da luz das estrelas e as longas correntes de gás extraídas das galáxias em interação.

Os resultados foram publicados na revista Nature Astronomy.

Fonte: Space Telescope Science Institute

segunda-feira, 8 de março de 2021

Descoberto quasar mais distante com poderosas emissões rádio

Com a ajuda do Very Large Telescope (VLT) do ESO, os astrônomos descobriram e estudaram em detalhes a fonte de emissão rádio mais distante conhecida até hoje, um quasar com forte emissão rádio (um objeto brilhante com jatos poderosos que emitem nos comprimentos de onda do rádio) tão distante que a sua luz demorou 13 bilhões de anos para chegar até nós.

© ESO/M. Kornmesser (ilustração do quasar P172+18)

A descoberta pode fornecer pistas importantes para ajudar os astrônomos a entender o Universo primordial. Os quasares são objetos muito brilhantes que se encontram no centro de algumas galáxias e que são alimentados por buracos negros supermassivos. À medida que consomem o gás que os rodeia, os buracos negros liberam energia, permitindo assim aos astrônomos detectá-los, mesmo quando se encontram muito distantes.

O quasar recém-descoberto, P172+18, está tão distante que a luz dele viajou por cerca de 13 bilhões de anos para chegar até nós, ou seja, nós o vemos como era quando o Universo tinha cerca de 780 milhões de anos. 

Embora quasares mais distantes tenham sido descobertos, esta é a primeira vez que os astrônomos foram capazes de identificar as assinaturas reveladoras de jatos de rádio em um quasar no início da história do Universo.

Apenas cerca de 10% dos quasares, os que emitem fortemente no rádio, têm jatos que brilham intensamente nas frequências rádio. As ondas de rádio usadas na astronomia têm frequências entre cerca de 300 MHz e 300 GHz. 

O P172+18 é alimentado por um buraco negro com cerca de 300 milhões de vezes a massa do nosso Sol, que consome gás a uma taxa extraordinária. “O buraco negro está devorando matéria muito rapidamente, crescendo em massa a uma das taxas mais altas já observadas,” explica a astrônoma Chiara Mazzucchelli, bolsista do ESO no Chile, que liderou a descoberta junto com Eduardo Bañados do Instituto Max Planck de Astronomia, na Alemanha.

Os astrônomos pensam que existe uma ligação entre o rápido crescimento de buracos negros supermassivos e os poderosos jatos de rádio detectados em quasares como o P172+18. Acredita-se que os jatos sejam capazes de perturbar o gás ao redor do buraco negro, aumentando a taxa à qual o gás é capturado. Portanto, o estudo de quasares com forte emissão rádio pode nos fornecer pistas importantes sobre como é que os buracos negros no Universo primordial cresceram tão rapidamente para tamanhos supermassivos após o Big Bang.

O P172+18 foi inicialmente reconhecido como um quasar distante, após ter sido previamente identificado como uma fonte de rádio, no telescópio Magalhães no Observatório Las Campanas no Chile por Bañados e Mazzucchelli. “Assim que obtivemos os dados, fizemos uma inspeção visual e soubemos imediatamente que havíamos descoberto o quasar de alta potência mais distante que se conhecia até agora,” disse Bañados.

No entanto, devido ao curto tempo de observação, a equipe não conseguiu obter dados suficientes para estudar o objeto com detalhe. Seguiram-se assim uma quantidade de observações obtidas com outros telescópios, incluindo o instrumento X-shooter montado no VLT do ESO, que permitiram investigar melhor as características do quasar, incluindo a determinação de propriedades-chave, como a massa do buraco negro e quão rápido ele está consumindo a matéria que o circunda.

Outros telescópios que contribuíram para este estudo incluem o Very Large Array do Observatório Nacional de Radioastronomia e o telescópio Keck, nos EUA. Observações obtidas com infraestruturas como o ALMA e com o futuro Extremely Large Telescope (ELT) do ESO poderão ajudar a descobrir e estudar mais destes objetos primitivos do Universo em detalhes. 

Esta pesquisa foi apresentada num artigo intitulado “The discovery of a highly accreting, radio-loud quasar at z=6.82” publicado no periódico The Astrophysical Journal.

Fonte: ESO

domingo, 17 de janeiro de 2021

Descoberta de quasar estabelece novo recorde de distância

Uma equipe internacional de astrônomos descobriu o quasar que é até à data o mais distante, localizado a mais de 13 bilhões de anos-luz da Terra alimentado por um buraco negro supermassivo mais de 1,6 bilhões de vezes mais massivo do que o Sol e mais de 1.000 vezes mais brilhante do que a Via Láctea.

© NOIRLab/J. da Silva (ilustração do quasar J0313–1806)

O quasar, chamado J0313–1806, é visto quando o Universo tinha apenas 670 milhões de anos e está fornecendo informações valiosas sobre como as galáxias massivas e os buracos negros supermassivos nos seus núcleos se formaram no início do Universo. 

A nova descoberta bate o recorde anterior de distância para um quasar, estabelecido há três anos. As observações com o ALMA (Atacama Large Millimeter/submillimeter Array) no Chile confirmaram a medição da distância com alta precisão. 

Os quasares ocorrem quando a poderosa gravidade de um buraco negro supermassivo no núcleo de uma galáxia atrai o material circundante que forma um disco orbital de material superaquecido em torno do buraco negro. O processo libera uma quantidade enorme de energia, tornando o quasar extremamente brilhante, muitas vezes ofuscando o resto da galáxia. O buraco negro no centro de J0313-1806 é duas vezes mais massivo do que o recordista anterior. 

A enorme massa do buraco negro de J0313-1806, num momento tão precoce na história do Universo, descarta dois modelos teóricos de como estes objetos se formaram. No primeiro destes dois modelos, as estrelas massivas individuais explodem como supernovas e colapsam em buracos negros que então coalescem em buracos negros maiores. No segundo, densos aglomerados de estrelas colapsam num enorme buraco negro. 

No entanto, em ambos os casos, o processo leva demasiado tempo para produzir um buraco negro tão massivo quanto o de J0313-1806 no momento em que o vemos. Neste caso, é um mecanismo que envolve grandes quantidades de gás hidrogênio frio e primordial que colapsa diretamente para um buraco negro primordial.

As observações de J0313-1806 pelo ALMA forneceram detalhes tentadores sobre a galáxia hospedeira do quasar, que está formando novas estrelas a um ritmo 200 vezes maior do que o da Via Láctea. 

Esta é uma taxa de formação estelar relativamente alta em galáxias de idade semelhante, e indica que a galáxia hospedeira do quasar está crescendo muito depressa. O brilho do quasar indica que o buraco negro está engolindo o equivalente a 25 sóis todos os anos. 

A energia liberada por esta alimentação rápida provavelmente está gerando um poderoso fluxo de gás ionizado que é visto se movendo a cerca de 20% da velocidade da luz. Pensa-se que tais fluxos sejam o que, em última análise, para a formação de estrelas na galáxia.

Provavelmente estes buracos negros supermassivos foram a razão pela qual muitas das grandes galáxias pararam de formar estrelas em algum ponto. Este quasar é a primeira evidência de que a extinção pode ter acontecido em tempos muito antigos. Este processo também deixará o buraco negro sem nada para se abastecer e interromperá o seu crescimento. 

Além do ALMA, os astrônomos usaram o telescópio Magellan Baade de 6,5 metros, o telescópio Gemini Norte e o Observatório W. M. Keck, ambos no Havaí, e o telescópio Gemini Sul no Chile. Os astrônomos planejam continuar estudando J0313-1806 e outros quasares com telescópios terrestres e espaciais.

Os cientistas apresentaram os seus achados na reunião da Sociedade Astronômica Americana, realizada virtualmente, e num artigo científico aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

terça-feira, 1 de dezembro de 2020

Um buraco negro pode dizimar uma galáxia?

Pensa-se que os buracos negros mais famintos devoram tanto material circundante que acabam com a "vida" da sua galáxia hospedeira.

© NASA/Daniel Rutter (ilustração da galáxia chamada CQ4479)

Este processo de voraz alimentação é tão intenso que cria um objeto altamente energético chamado quasar - um dos objetos mais brilhantes do Universo - à medida que a matéria giratória é sugada para dentro do buraco negro.

Agora, os pesquisadores descobriram uma galáxia que está sobrevivendo às forças vorazes do buraco negro, continuando a gerar novas estrelas, cerca de 100 estrelas do tamanho do Sol por ano. 

A descoberta de um telescópio num avião, o SOFIA (Stratospheric Observatory for Infrared Astronomy), pode ajudar a explicar como é que as galáxias massivas surgiram, embora o Universo hoje seja dominado por galáxias que já não formam mais estrelas. 

O SOFIA, um projeto conjunto da NASA e do Centro Aeroespacial Alemão, DLR, estudou uma galáxia extremamente distante, localizado a mais de 5,25 bilhões de anos-luz de distância, chamada CQ4479. No seu núcleo está um tipo especial de quasar chamado de "quasar frio", que foi descoberto recentemente por Allison Kirkpatrick, professora assistente da Universidade do Kansas. 

Neste tipo de quasar, o buraco negro ativo ainda está se abastecendo com material da sua galáxia hospedeira, mas a intensa energia do quasar não destruiu todo o gás frio, de modo que as estrelas podem continuar se formando e a galáxia continua viva. 

Esta é a primeira vez que os pesquisadores observam em detalhe um quasar frio, medindo diretamente o crescimento do buraco negro, o ritmo da formação estelar e quanto gás frio resta para abastecer a galáxia. Se este crescimento em conjunto continuar, o buraco negro e as estrelas em seu redor triplicariam de massa antes que a galáxia chegue ao fim da sua vida.

Os quasares são os objetos mais brilhantes e distantes do Universo, e se formam quando um buraco negro especialmente ativo consome grandes quantidades de material da galáxia circundante, criando fortes forças gravitacionais. À medida que mais e mais material gira cada vez mais depressa em direção ao centro do buraco negro, o material é aquecido e brilha intensamente. 

Um quasar produz tanta energia que muitas vezes ofusca tudo em seu redor, obliterando tentativas de observar a sua galáxia hospedeira. As teorias atuais preveem que esta energia aquece ou expulsa o gás frio necessário para formar estrelas, impedindo o nascimento estelar e causando um golpe letal no crescimento de uma galáxia. 

Mas o SOFIA revela que há um período relativamente curto em que o nascimento estelar da galáxia pode continuar enquanto o "banquete" do buraco negro alimenta as poderosas forças do quasar. 

Em vez de observar diretamente as estrelas recém-nascidas, o SOFIA usou o telescópio de 2,5 metros para detectar a radiação infravermelha irradiada da poeira aquecida pelo processo de formação estelar. 

Usando dados recolhidos pelo instrumento HAWC+ (High-resolution Airborne Wideband Camera-Plus) do SOFIA, os cientistas foram capazes de estimar a quantidade de formação estelar ao longo dos últimos 100 milhões de anos. 

A curta janela de tempo conjunto do crescimento do buraco negro e da formação estelar representa uma fase inicial na morte de uma galáxia, em que esta ainda não sucumbiu aos efeitos devastadores do quasar. 

São necessárias mais investigações com o SOFIA para saber se muitas outras galáxias passam por uma fase semelhante de crescimento conjunto do buraco negro e da formação estelar antes de finalmente chegarem ao fim da sua vida. As observações futuras com o telescópio espacial James Webb, com lançamento previsto para 2021, podem descobrir como os quasares afetam a forma geral das suas galáxias hospedeiras.

Os resultados foram publicados no periódico The Astrophysical Journal.

Fonte: NASA

segunda-feira, 7 de setembro de 2020

Mecanismo universal para a ejeção de matéria pelos buracos negros

Os buracos negros podem expulsar mil vezes mais matéria do que capturam.

© Adam Block/Judy Schmidt (NGC 4151)

O mecanismo que rege tanto a expulsão quanto a captura é o “disco de acreção”, constituído por uma grande quantidade de gás e poeira que espirala em torno do buraco negro, alcança velocidades extremamente elevadas, se aquece e emite luz e outras formas de radiação eletromagnética. Uma parte do material em movimento orbital é puxada em direção ao centro, desaparecendo atrás do chamado “horizonte de eventos”, a fronteira a partir da qual nem a matéria e nem a luz conseguem escapar. Outra parte, muito maior, é empurrada para fora e para longe pela própria pressão da radiação emitida pelo disco. 

Acredita-se que no centro de todas as galáxias existe um buraco negro supermassivo. Mas nem todas ainda têm, ou tiveram no passado, discos de acreção. As que têm são chamadas de galáxias de núcleos ativos. O modelo tradicional distingue duas fases no material acumulado na região central das galáxias de núcleos ativos: uma parte formada por gás ionizado em alta velocidade, composta pelo material ejetado pelo núcleo (outflow); e outra formada por moléculas, com velocidade menor, que pode vir a alimentar o núcleo. 

Um novo modelo, que integra as duas fases em um cenário único, foi proposto agora pelo pesquisador Daniel May, pós-doutorando do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP). “Verificamos que a fase molecular, que parece ter uma dinâmica completamente diferente da fase ionizada, também faz parte do outflow. Isso significa que há muito mais matéria sendo soprada para longe do centro. E que o núcleo ativo tem um papel muito mais importante na estruturação da galáxia como um todo,” diz May à Agência FAPESP. 

Recebeu apoio da FAPESP por meio das bolsas de doutorado e pós-doutorado concedidas ao pesquisador. João Steiner, professor titular do IAG-USP, que também assina o artigo, foi o orientador do doutoramento e é o supervisor do pós-doutoramento de May. 

O padrão foi identificado pelo pesquisador a partir do estudo de duas galáxias de núcleos ativos: a NGC 1068, investigada por ele em 2017, e a NGC 4151, investigada em 2020. A sigla NGC refere-se ao New General Catalogue of Nebulae and Clusters of Stars (Novo Catálogo Geral de Nebulosas e Aglomerados de Estrelas), estabelecido no final do século 19. “Usando uma metodologia de tratamento de imagem muito meticulosa, identificamos o mesmo padrão em duas galáxias bastante diferentes. Hoje em dia, a maioria dos astrônomos está interessada em estudar amostras muito grandes de dados. Nosso trabalho seguiu o caminho oposto. Pesquisamos de forma quase artesanal as características individuais desses dois objetos,” relata May. 

“Nosso estudo sugere que, inicialmente, uma nuvem de gás molecular na região central da galáxia colapse e ative o seu núcleo, formando o disco de acreção. Os fótons emitidos pelo disco, que alcança um patamar de temperatura da ordem de milhão de graus, empurram a maior parte do gás para fora e para longe, enquanto uma parte menor é incorporada pelo próprio disco e, eventualmente, imerge no buraco negro. À medida que essa nuvem vai sendo soprada pelo disco, formam-se as duas fases distintas: a ionizada, devido à exposição ao disco; e a molecular, que fica à sombra da sua radiação. O que descobrimos foi que a parte molecular está totalmente vinculada à parte ionizada que compõe o outflow. Conseguimos relacionar as duas fases do gás, que antes eram concebidas como desconexas, e encaixar suas morfologias em um único cenário,” resume o pesquisador. 

O gás ionizado surge da fragmentação desse gás molecular. Enquanto se fragmenta, este vai sendo empurrado para fora, formando uma bolha quente em expansão, que atinge raios da ordem de 300 anos-luz. Para efeito de comparação, vale lembrar que esse raio é quase 70 vezes maior do que a distância da Terra a Proxima Centauri, a estrela que está mais perto do Sistema Solar. 

“Quando observamos a região central dessas duas galáxias, enxergamos essa enorme bolha de perfil, delineada por suas paredes de moléculas. Vemos essas paredes se fragmentando e o gás ionizado sendo empurrado para fora. O disco de acreção aparece como um ponto extremamente brilhante. Mas toda a informação que nos chega dele cai dentro de um pixel, de modo que não temos resolução suficiente para diferenciar suas possíveis partes. O buraco negro é conhecido apenas por meio de seus efeitos,” explica o pesquisador. 

No Universo antigo, havia muito mais gás disponível, de modo que o efeito de um processo como o descrito por ele era bem mais intenso. O que o pesquisador observou em galáxias relativamente próximas, como a NGC 1068 e a NGC 4151, é uma forma branda do que ocorreu em galáxias muito distantes, cujos núcleos ativos no passado remoto são detectados hoje na forma de quasares.

O estudo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Agência FAPESP

quarta-feira, 1 de julho de 2020

Colisão de buracos negros pode ter "explodido com luz"

Quando dois buracos negros espiralam um em direção ao outro e finalmente colidem, emitem ondulações no espaço e no tempo chamadas ondas gravitacionais.


© Caltech/R. Hurt (ilustração de buraco negro e disco circundante de gás)

Considerando que os buracos negros não emitem luz, não se espera que estes eventos tenham brilho, ou radiação eletromagnética. Mas alguns teóricos criaram maneiras pelas quais uma fusão de buracos negros pode explodir com luz. Agora, pela primeira vez, os astrônomos viram evidências de um destes cenários de produção de luz.

Com a ajuda do ZTF (Zwicky Transient Facility) do Caltech e localizado no Observatório Palomar perto de San Diego, EUA, os cientistas descobriram o que poderá ser um surto de luz de um par de buracos negros. A fusão dos buracos negros foi testemunhada pela primeira vez pelo LIGO (Laser Interferometer Gravitational-wave Observatory) e pelo detector europeu Virgo no dia 21 de maio de 2019, num evento chamado S190521g. À medida que os buracos negros se fundiam, agitando o espaço e o tempo, liberaram ondas gravitacionais.

Enquanto isto acontecia, o ZTF realizava o seu levantamento robótico do céu que captava todos os tipos de objetos que liberam luz, entram em erupção ou de outro modo variam no céu noturno. Uma liberação de luz que o levantamento captou, gerada por um buraco negro supermassivo ativo e distante, ou quasar, chamado J1249+3449, foi identificado na região do evento de ondas gravitacionais S190521g.

"Este buraco negro supermassivo era já ativo anos antes deste surto mais abrupto," diz Matthew Graham, professor de astronomia no Caltech e cientista do projeto ZTF. "O surto ocorreu na escala de tempo certa e no local certo, para coincidir com o evento de ondas gravitacionais. No nosso estudo, concluímos que o surto provavelmente foi o resultado de uma fusão de buracos negros, mas não podemos descartar completamente outras possibilidades."

Como é que dois buracos negros em fusão podem liberar luz? No cenário delineado por Graham e colegas, dois buracos negros parceiros estavam aninhados dentro de um disco ao redor de um buraco negro muito maior. No centro da maioria das galáxias, esconde-se um buraco negro supermassivo. É rodeado por um aglomerado de estrelas e remanescentes estelares, incluindo buracos negros.

Depois da fusão dos buracos negros, o novo buraco negro, agora maior, é lançado numa direção aleatória e varre o gás no disco. A reação do gás devido ao movimento brusco do buraco negro que cria o clarão brilhante, visível com telescópios.

Prevê-se que tal surto comece dias ou semanas após a liberação inicial de ondas gravitacionais produzidas durante a fusão. Neste caso, o ZTF não captou o evento imediatamente, mas quando os cientistas voltaram para examinar as imagens de arquivo do ZTF meses depois, encontraram um sinal que começou dias após o evento de ondas gravitacionais de maio de 2019. O ZTF observou o surto desaparecendo lentamente ao longo de um período de um mês.

Tentou-se obter uma visão mais detalhada da luz do buraco negro supermassivo, ou seja, um espectro da luz, mas quando foi observado, a liberação de luz já havia desaparecido. Um espectro teria fornecido mais apoio à ideia de que o surto tinha vindo da fusão de buracos negros dentro do disco do buraco negro supermassivo. No entanto, os pesquisadores dizem que foram capazes de descartar outras possíveis causas para o surto observado, incluindo uma supernova ou um evento de perturbação de marés, que ocorre quando um buraco negro essencialmente engloba uma estrela.

Além disso, a equipe afirma que não é provável que o surto de luz tenha ocorrido devido aos fenômenos habituais do buraco negro supermassivo, que regularmente se alimenta do disco circundante. Usando o CRTS (Catalina Real-Time Transient Survey), liderado pelo Caltech, foram capazes de avaliar o comportamento do buraco negro ao longo dos últimos 15 anos e descobriram que a sua atividade era relativamente normal até maio de 2019, quando se intensificou repentinamente.

"Os buracos negros supermassivos como este têm erupções a toda a hora. Não são objetos silenciosos, mas o momento, tamanho e localização deste surto foi espetacular," diz Mansi Kasliwal, professor assistente de astronomia no Caltech. "A razão pela qual a busca por explosões como esta é tão importante é que ajuda bastante a responder as questões da astrofísica e da cosmologia. Se pudermos fazer isto novamente e detectar a luz das fusões de outros buracos negros, podemos definir melhor os locais de origem destes objetos e aprender mais sobre as suas origens."

O buraco negro recém-formado deverá provocar outro surto nos próximos anos. O processo de fusão deu ao objeto um impulso que deverá fazer com que este entre novamente no disco do buraco negro supermassivo, produzindo outra liberação de luz que o ZTF deverá conseguir observar.

O novo estudo foi publicado no periódico Physical Review Letters.

Fonte: California Institute of Technology

segunda-feira, 20 de abril de 2020

Gemini detecta o vento mais energético de um quasar distante

Pesquisadores que usam o telescópio Gemini Norte em Maunakea, Havaí, detectaram o vento mais energético de qualquer quasar já medido.


© Gemini Observatory (ilustração de um quasar)

Este fluxo transporta energia suficiente para impactar dramaticamente a formação estelar numa galáxia inteira. A tempestade extragalática permaneceu escondida, mas à vista de todos, durante 15 anos, antes de ser revelada por modelos computacionais inovadores e novos dados do Observatório Gemini.

Este poderoso fluxo está se movendo para a sua galáxia hospedeira a quase 13% da velocidade da luz e origina de um quasar conhecido como SDSS J135246.37+423923.5, que fica a aproximadamente 10 bilhões de anos-luz da Terra.

"Embora ventos de alta velocidade já tenham sido observados anteriormente em quasares, estes carregavam apenas uma quantidade relativamente pequena de massa," explica Sarah Gallagher, astrônoma da Universidade Western (Canadá) que liderou as observações com o Gemini. "O fluxo deste quasar, em comparação, varre uma quantidade enorme de massa a velocidades incríveis. Este vento é muito poderoso e não sabemos como é que o quasar pode lançar algo tão substancial."

Além de medir o fluxo de SDSS J135246.37+423923.5, a equipe também foi capaz de inferir a massa do buraco negro supermassivo que alimenta o quasar. Este objeto monstruoso é 8,6 bilhões de vezes mais massivo que o Sol, cerca de 2.000 vezes a massa do buraco negro no centro da nossa Via Láctea e 50% mais massivo do que o famoso buraco negro da galáxia M87.

O quasar aqui estudado detém agora o recorde de vento mais energético medido até agora, com um vento mais energético do que aqueles relatados recentemente em um outro estudo de 13 quasares.

Os quasares, também conhecidos como objetos quasi-estelares, são um tipo de objeto astrofísico extraordinariamente luminoso que reside nos centros de galáxias massivas. Consistindo de um buraco negro supermassivo rodeado por um disco brilhante de gás, os quasares podem ofuscar todas as estrelas da sua galáxia hospedeira e podem impulsionar ventos poderosos o suficiente para influenciar galáxias inteiras.

O fluxo é tão espesso que é difícil detectar a assinatura do próprio quasar em comprimentos de onda visíveis. Apesar da obstrução, a equipe conseguiu ter uma visão clara do quasar usando o instrumento GNIRS (Gemini Near-Infrared Spectrograph) acoplado ao Gemini Norte para observar em comprimentos de onda infravermelhos. Usando uma combinação de espetros de alta qualidade do Gemini e uma abordagem pioneira de modelagem por computador, os astrônomos descobriram a natureza do fluxo do objeto, que provou ser notavelmente mais energético do que qualquer outro fluxo de quasar medido anteriormente.

A descoberta da equipe levanta questões importantes e também sugere que poderão ser descobertos mais destes quasares.

Este resultado foi publicado na revista The Astrophysical Journal.

Fonte: Gemini Observatory

sábado, 11 de abril de 2020

Algo está à espreita no coração do quasar 3C 279

Há um ano, a Colaboração EHT (Event Horizon Telescope) publicou a primeira imagem de um buraco negro na radiogaláxia vizinha M87.


© MPIfR (estrutura do jato de 3C 279)

Agora, a colaboração extraiu novas informações dos dados do EHT sobre o quasar distante 3C 279: observaram os melhores detalhes, até agora, do jato relativista que se pensa originar das proximidades de um buraco negro supermassivo. Na sua análise, liderada pelo astrônomo Jae-Young Kim do Instituto Max Planck para Radioastronomia em Bonn, Alemanha, estudaram a morfologia em fina escala do jato perto da base onde se pensa que a emissão altamente variável de raios gama tenha origem. A técnica usada para a observação do jato é chamada VLBI (Very Long Baseline Interferometry). Grande parte do desenvolvimento do VLBI foi liderado pela divisão de Radioastronomia/VLBI do Instituto Max Planck para Radioastronomia.

A colaboração EHT continua extraindo informações dos excelentes dados recolhidos na sua campanha global em abril de 2017. O alvo das observações foi o quasar 3C 279, uma galáxia na direção da constelação de Virgem que os cientistas classificaram como quasar porque um ponto de luz no seu centro brilha intensamente e cintila à medida que enormes quantidades de gás e estrelas caem no buraco negro gigante. O buraco negro tem aproximadamente um  bilhão de vezes a massa do Sol. Está destruindo o gás e as estrelas que se aproximam num disco de acreção inferido e que está lançando para fora parte do gás em dois jatos finos de plasma semelhantes a mangueiras a velocidades próximas da da luz.

Agora, os telescópios ligados mostram os detalhes mais nítidos de sempre, até uma resolução superior a meio ano-luz, para melhor ver o jato até ao disco de acreção esperado e para ver o jato e o disco em ação. Os dados analisados recentemente mostram que o jato normalmente direito tem uma forma torcida inesperada na sua base e, pela primeira vez, vemos características perpendiculares ao jato, que primeiro podiam ser interpretadas como o disco de acreção a partir do qual os jatos são ejetados dos polos. Comparando imagens dos dias subsequentes, nota-se que alteram os seus detalhes finos, sondando a ejeção do jato, mudanças que antes eram vistas apenas em simulações numéricas.

"Os jatos relativísticos mostram movimentos aparentemente superluminais, como uma espécie de ilusão de ótica, mas isto, perpendicular à expetativa, é novo e requer análise cuidadosa," acrescenta Jae-Young Kim.

Thomas Krichbaum, que projetou as observações da fonte em 2016 como pesquisador principal do projeto, realça a desafiadora interpretação dos dados: "É difícil conciliar o movimento de direção transversal do jato com o simples entendimento de um jato relativista de propagação externa. Isto sugere a presença de instabilidades de propagação do plasma num jato dobrado ou de uma rotação interna do jato. O 3C 279 foi a primeira fonte na astronomia a mostrar movimentos superluminais e hoje, quase cinquenta anos depois, ainda nos reserva algumas surpresas."

Os telescópios que contribuíram para este resultado foram o ALMA (Atacama Large Millimeter/submillimeter Array), o APEX (Atacama Pathfinder EXperiment), o telescópio IRAM (Institute for Radio Astronomy in the Millimeter Range) de 30 metros, o telescópio James Clerk Maxwell, o LMT (Large Milimeter Telescope), o SMA (Submillimeter Array), o SMT (Submillimeter Telescope) e o SPT (South Pole Telescope).

Os telescópios trabalham juntos usando uma técnica chamada VLBI (Very Long Baseline Interferometry). Isto sincroniza instalações espalhadas pelo mundo e explora a rotação do nosso planeta para formar um enorme telescópio do tamanho da Terra. O método VLBI permite que o EHT atinja uma resolução de 20 microssegundos de arco, o equivalente a identificar uma laranja na Terra, vista por um astronauta na Lua. A análise de dados, para transformar dados brutos numa imagem, exigiu computadores específicos, hospedados pelo Instituto Max Planck para Radioastronomia e pelo Observatório Haystack do Massachusetts Institute of Technology (MIT).

A campanha de observação março/abril de 2020 do EHT foi cancelada devido à pandemia de CoViD-19. A Colaboração EHT está determinada, nas etapas seguintes, fazendo novas observações e analisando dados existentes.

Os astrônomos esperam ansiosamente as observações com a rede expandida para 11 observatórios do EHT em março de 2021.

Os resultados foram publicados no periódico Astronomy & Astrophysics.

Fonte: Max Planck Institute for Radio Astronomy

domingo, 5 de abril de 2020

Tsunamis de quasares dilaceram galáxias

Usando as capacidades únicas do telescópio espacial Hubble da NASA, uma equipe de astrônomos descobriu os fluxos mais energéticos alguma vez vistos no Universo. São emanados por quasares e atravessam o espaço interestelar como tsunamis, causando estragos nas galáxias onde vivem.


© STScI (ilustração de galáxia distante com um quasar ativo no seu centro)

Os quasares são objetos celestes extremamente remotos, emitindo quantidades excepcionalmente grandes de energia. Os quasares contêm buracos negros supermassivos alimentados por matéria em queda que pode brilhar 1.000 vezes mais do que as galáxias hospedeiras com centenas de bilhões de estrelas.

À medida que o buraco negro devora matéria, o gás quente envolve e emite radiação intensa, criando o quasar. Os ventos, impulsionados pela pressão da radiação nas proximidades do buraco negro, empurram o material para longe do centro da galáxia. Estes fluxos aceleram para velocidades a uma fração da velocidade da luz.

"Nenhum outro fenômeno transporta mais energia mecânica. Ao longo da vida útil de 10 milhões de anos, estes fluxos produzem um milhão de vezes mais energia do que uma explosão de raios gama," explicou o pesquisador Nahum Arav, da Virginia Tech em Blacksburg, EUA. "Os ventos estão empurrarando centenas de massas solares cada ano. A quantidade de energia mecânica que estes fluxos transportam é várias centenas de vezes maior do que a luminosidade de toda a Via Láctea."

Os ventos do quasar atravessam o disco da galáxia. O material que de outra forma teria formado novas estrelas é violentamente varrido da galáxia, provocando a interrupção do nascimento estelar. A radiação empurra o gás e a poeira para distâncias muito maiores do que os cientistas pensavam anteriormente, criando um evento a nível galáctico.

À medida que este tsunami cósmico atinge o material interestelar, a temperatura na frente de choque atinge bilhões de graus, onde o material brilha em grande parte como raios X, mas também amplamente no espectro visível. Qualquer pessoa que assista a este evento verá um brilhante espetáculo celeste. "Receberíamos muita radiação, primeiro em raios X e raios gama, depois estendida para o visível e para o infravermelho," disse Arav.

As simulações numéricas da evolução da galáxia sugerem que estes fluxos podem explicar alguns enigmas cosmológicos importantes, como porque são observadas tão poucas galáxias grandes no Universo e porque é que há uma relação entre a massa da galáxia e a massa do seu buraco negro central. Este estudo mostra que estes poderosos fluxos de quasar devem prevalecer no Universo primitivo.

"Tanto teóricos quanto observadores sabem há décadas que existe algum processo físico que interrompe a formação estelar em galáxias massivas, mas a natureza deste processo tem permanecido um mistério. A colocação dos fluxos observados nas nossas simulações resolve estes problemas pendentes na evolução galáctica," explicou o eminente cosmólogo Jeremiah P. Ostriker da Universidade Columbia e da Universidade de Princeton.

Os astrônomos estudaram 13 fluxos de quasar e foram capazes de medir a velocidade vertiginosa do gás acelerado pelo vento quasar observando as "impressões digitais" espectrais da luz do gás brilhante. Os dados ultravioleta do Hubble mostram que estas características de absorção de luz, criadas a partir de material ao longo do percurso da luz, foram desviadas espectralmente devido ao rápido movimento do gás pelo espaço. Isto deve-se ao efeito Doppler, onde o movimento de um objeto comprime ou estica os comprimentos de onda, dependendo se estiver aproximando ou se afastando de nós. Somente o Hubble possui a gama específica de sensibilidade ultravioleta que permite aos astrônomos obter as observações necessárias que levam a esta descoberta.

Além de medir os quasares mais energéticos alguma vez observados, a equipe também descobriu um fluxo acelerando mais depressa do que qualquer outro. Aumentou de quase 69 milhões de quilômetros por hora para aproximadamente 74 milhões de quilômetros por hora ao longo de um período de três anos. Os cientistas pensam que a sua aceleração vai continuar aumentando com o tempo.

Estes poderosos fluxos podem fornecer novas ideias sobre a ligação entre o crescimento de um buraco negro supermassivo central e o desenvolvimento de toda a sua galáxia hospedeira.

As descobertas foram publicadas numa série de seis artigos científicos no periódico The Astrophysical Journal Supplements.

Fonte: Space Telescope Science Institute

quarta-feira, 15 de janeiro de 2020

Hubble detecta os menores aglomerados conhecidos de matéria escura

Usando o telescópio espacial Hubble e uma nova técnica de observação, os astrônomos descobriram que a matéria escura forma aglomerados muito menores do que se pensava anteriormente.


© Hubble (quasares e suas galáxias hospedeiras)

Este resultado confirma uma das previsões fundamentais da teoria amplamente aceita da "matéria escura fria".

Todas as galáxias, de acordo com esta teoria, se formam e estão embebidas dentro de nuvens de matéria escura. A matéria escura propriamente dita consiste de partículas lentas, ou "frias", que se juntam para formar estruturas que variam de centenas de milhares de vezes a massa da Via Láctea até aglomerados não mais massivos do que um avião comercial.

A observação do Hubble fornece novas ideias sobre a natureza da matéria escura e de como se comporta.

A matéria escura é uma forma invisível de matéria que compõe a maior parte da massa do Universo e cria os andaimes sobre os quais as galáxias são construídas. Embora não é possível ver a matéria escura, os astrônomos podem detectar a sua presença indiretamente medindo como a sua gravidade afeta as estrelas e as galáxias. A detecção das formações menores de matéria escura, procurando estrelas incorporadas, pode ser difícil ou impossível, porque contêm muito poucas estrelas.

Embora já tenham sido detectadas concentrações de matéria escura em torno de galáxias grandes e médias, até agora ainda não tinham sido encontrados aglomerados muito menores de matéria escura. Na ausência de evidências observacionais de tais aglomerados de pequena escala, alguns pesquisadores desenvolveram teorias alternativas, incluindo "matéria escura quente". Esta ideia sugere que as partículas de matéria escura se movem rapidamente, passando depressa demais para se fundirem e formarem concentrações menores. As novas observações não suportam este cenário, descobrindo que a matéria escura é "mais fria" do que teria que ser na teoria alternativa da matéria escura quente.

A procura de concentrações de matéria escura sem estrelas provou ser um desafio. A equipe do Hubble, no entanto, usou uma técnica na qual não precisavam de procurar a influência gravitacional de estrelas como rastreadores de matéria escura. A equipe teve como alvos oito "candeeiros" cósmicos poderosos e distantes, chamados quasares, ou seja, regiões em torno de buracos negros ativos que emitem enormes quantidades de luz. Os astrônomos mediram como a luz emitida pelo oxigênio e neônio, em órbita de cada um dos buracos negros dos quasares, é distorcida pela gravidade de uma galáxia massiva no plano da frente, que atua como uma lupa.

Usando este método, foi descoberto grupos de matéria escura ao longo da linha de visão do telescópio até aos quasares, bem como dentro e ao redor das galáxias intervenientes. As concentrações de matéria escura detectadas pelo Hubble têm 1/10.000 a 1/100.000 vezes a massa do halo de matéria escura da Via Láctea. Muitos destes pequenos grupos provavelmente não contêm sequer galáxias pequenas e, portanto, seriam impossíveis de detectar pelo método tradicional de procurar estrelas embebidas.

Os oito quasares e galáxias estavam alinhados tão precisamente que o efeito de distorção, chamado lente gravitacional, produziu quatro imagens distorcidas de cada quasar. O efeito é como olhar para um espelho de uma casa de diversões numa feira. As imagens quádruplas de quasares são raras devido ao alinhamento quase exato necessário entre a galáxia em primeiro plano e o quasar no plano de trás. No entanto, os ipesquisadores precisaram de várias imagens para realizar uma análise mais detalhada.

A presença de aglomerados de matéria escura altera o brilho e a posição aparentes de cada imagem distorcida do quasar. Os astrônomos compararam estas medições com previsões de como as imagens dos quasares seriam sem a influência da matéria escura. Os pesquisadores usaram as medições para calcular as massas das pequenas concentrações de matéria escura. Para analisar os dados, os cientistas também desenvolveram elaborados programas de computação e técnicas intensivas de reconstrução.

Os pesquisadores usaram o instrumento WFC3 (Wide Field Camera 3) do Hubble para captar a luz infravermelha próxima de cada quasar e para dispersá-la nas suas cores componentes para estudo com espectroscopia. As emissões únicas dos quasares de fundo são melhor observadas no infravermelho. As observações do Hubble, a partir do espaço, permitem fazer estas medições em sistemas de galáxias que não seriam acessíveis com telescópios terrestres de menor resolução, e a atmosfera da Terra é opaca à luz infravermelha.

As lentes gravitacionais foram descobertas através de levantamentos aqui na Terra, como o SDSS (Sloan Digital Sky Survey) e o DES (Dark Energy Survey), que fornecem os mapas tridimensionais mais detalhados do Universo já feitos. Os quasares estão localizados a aproximadamente 10 bilhões de anos-luz da Terra; as galáxias no plano da frente, a cerca de 2 bilhões de anos-luz. 

O número de pequenas estruturas detectadas no estudo fornece mais pistas sobre a natureza da matéria escura. No entanto, o tipo de partícula que compõe a matéria escura é ainda um mistério.

Os astrônomos poderão realizar estudos de acompanhamento da matéria escura usando telescópios espaciais de próxima geração como o JWST (James Webb Space Telescope) e o WFIRST (Wide Field Infrared Survey Telescope), ambos observatórios infravermelhos. O Webb será capaz de obter eficazmente estas medições para todos os quasares quadruplamente ampliados por lentes gravitacionais. A nitidez e o amplo campo de visão do WFIRST vão ajudar a fazer observações de toda a região do espaço afetada pelo imenso campo gravitacional de galáxias massivas e aglomerdos de galáxias.

A equipe apresentou os seus resultados na 235.ª reunião da Sociedade Astronômica Americana em Honolulu, Havaí. Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Space Telescope Science Institute

segunda-feira, 23 de dezembro de 2019

O "café da manhã" de buracos negros no Amanhecer Cósmico

Com o auxílio do Very Large Telescope (VLT) do ESO, os astrônomos observaram reservatórios de gás frio em torno de algumas das primeiras galáxias do Universo.


© ESO/VLT (quasar no centro de galáxia)

Estes halos de gás são o “alimento” perfeito dos buracos negros supermassivos situados no centro destas galáxias, que agora são vistas como eram há mais de 12,5 bilhões de anos. Este depósito de “comida” pode muito bem explicar como é que estes monstros cósmicos cresceram tão depressa durante um período da história do Universo conhecido por Amanhecer Cósmico.

“Podemos demonstrar pela primeira vez que as galáxias primordiais dispõem de ‘alimento’ suficiente nas suas vizinhanças para conseguirem fazer com que os buracos negros supermassivos nos seus centros cresçam ao mesmo tempo que mantêm uma intensa formação estelar,” diz Emanuele Paolo Farina, do Instituto Max Planck de Astronomia em Heidelberg, na Alemanha. “Isto adiciona uma peça fundamental ao quebra-cabeça que os astrônomos estão construindo para imaginar como as estruturas cósmicas se formaram há mais de 12 bilhões de anos.”

Os astrônomos se perguntavam como é que os buracos negros supermassivos conseguiam crescer tanto tão cedo na história do Universo. A presença destes monstros primordiais, com massas de vários bilhões de vezes a massa do nosso Sol, constituía um mistério. Isto significa que os primeiros buracos negros, que podem ter se formado a partir do colapso das primeiras estrelas, devem ter crescido muito rapidamente. No entanto, até agora, os astrônomos não tinham descoberto gás e poeira em quantidades grandes o suficiente para explicar este rápido crescimento.

Para complicar ainda mais a situação, observações obtidas anteriormente com o ALMA (Atacama Large Millimeter/submillimeter Array) revelaram uma enorme quantidade de poeira e gás nestas galáxias primordiais, mas que parecia desencadear essencialmente formação estelar muito intensa, sugerindo que poderia restar muito pouco material para alimentar um buraco negro.

Para desvendar este mistério, Farina e colegas usaram o instrumento MUSE montado no VLT, instalado no deserto chileno do Atacama, para estudar quasares, que são objetos extremamente luminosos situados no centro de galáxias massivas e alimentados por buracos negros supermassivos. Este estudo observou 31 quasares vistos tal como eram a mais de 12,5 bilhões de anos atrás, numa época em que o Universo era ainda muito jovem, com apenas 870 milhões de anos de idade. Esta é uma das maiores amostras de quasares desde o início da história do Universo a ser pesquisada.

Os astrônomos descobriram que 12 destes quasares se encontram rodeados  por enormes reservatórios de gás: halos de hidrogênio denso e frio que se estendem até 100.000 anos-luz de distância dos buracos negros centrais, com bilhões de vezes a massa do Sol. A equipe, da Alemanha, EUA, Itália e Chile, também descobriu que estes halos de gás estavam fortemente ligados às galáxias, fornecendo a fonte de "alimento" perfeita para sustentar o crescimento de buracos negros supermassivos e uma intensa formação estelar.

Num futuro próximo, o Extremely Large Telescope (ELT) do ESO ajudará os cientistas a revelar ainda mais detalhes sobre as galáxias e os buracos negros supermassivos nos primeiros dois bilhões de anos após o Big Bang.

Este trabalho foi descrito num artigo científico publicado no The Astrophysical Journal.

Fonte: ESO

domingo, 18 de agosto de 2019

Descoberto buraco negro "encoberto" no Universo primordial

Os astrônomos descobriram evidências do mais distante buraco negro "encoberto" até à data, usando o observatório de raios X Chandra da NASA.


© Chandra/ALMA/Pan-STARRS (o mais distante buraco negro encoberto)

Esta é a primeira indicação de um buraco negro escondido por gás num momento tão precoce na história do cosmos. Os buracos negros supermassivos, com milhões a bilhões de vezes a massa do nosso Sol, normalmente crescem puxando material de um disco de matéria circundante. O crescimento rápido gera grandes quantidades de radiação numa região muito pequena ao redor do buraco negro. Esta fonte extremamente brilhante e compacta é denominada quasar.

De acordo com as teorias atuais, uma densa nuvem de gás abastece o material no disco em torno do buraco negro supermassivo durante o seu período de crescimento inicial, que esconde da nossa observação a maior parte da luz brilhante do quasar. À medida que o buraco negro consome material e se torna mais massivo, o gás na nuvem esgota-se, até que o buraco negro e o seu disco brilhante ficam a descoberto.

É extraordinariamente desafiador encontrar quasares nesta fase encoberta, porque grande parte da sua radiação é absorvida e não pode ser detectada pelos instrumentos atuais.

A nova descoberta surgiu de observações de um quasar chamado PSO167-13, que foi descoberto pela primeira vez pelo Pan-STARRS, um telescópio óptico no Havaí. Observações ópticas deste e de outros levantamentos detectaram cerca de 200 quasares que já brilhavam intensamente quando o Universo tinha menos de um bilhão de anos, ou cerca de 8% da sua idade atual. Estas pesquisas só foram consideradas eficazes para encontrar buracos negros não cobertos, porque a radiação que detectam é suprimida até por finas nuvens de gás e poeira. Como PSO167-13 fazia parte destas observações, esperava-se que este quasar também estivesse desobstruído.

Os astrônomos testaram esta ideia usando o Chandra para observar PSO167-13 e outros nove quasares descobertos com levantamentos ópticos. Após 16 horas de observações, apenas três fótons de raios X foram detectados de PSO167-13, todos com energias relativamente altas. Dado que os raios X de baixa energia são mais facilmente absorvidos do que os de mais alta energia, a explicação provável é que o quasar é altamente obscurecido pelo gás, permitindo que sejam detectados apenas raios X de alta energia.

Uma reviravolta interessante no que toca a PSO167-13 é que a galáxia hospedeira tem uma galáxia companheira, visível nos dados anteriormente obtidos com o ALMA (Atacama Large Millimeter Array) no Chile e com o telescópio espacial Hubble da NASA. Dada a sua pequena separação e o fraco brilho da fonte em raios X, a equipe não foi capaz de determinar se a recém-descoberta emissão de raios X está associada com o quasar PSO167-13 ou com a galáxia companheira.

Se os raios X vierem do quasar conhecido, então qual será o motivo de o quasar parecer altamente obscurecido em raios X, mas não no visível? Uma possibilidade é que houve um aumento grande e rápido no "disfarce" do quasar durante os três anos que separam as observações ópticas e com as de raios X.

Por outro lado, se em vez disso os raios X tiverem origem na galáxia companheira, então representa a detecção de um novo quasar em íntima proximidade com PSO167-13. Este par de quasares seria o mais distante já detectado.

Em qualquer um destes dois casos, o quasar detectado pelo Chandra seria o quasar encoberto mais distante já visto, 850 milhões de anos após o Big Bang. O recordista anterior foi observado 1,3 bilhões de anos após o Big Bang.

Os autores também planejam procurar mais exemplos de buracos negros altamente obscurecidos.

O artigo que descreve estes resultados foi aceito para publicação na revista Astronomy and Astrophysics.

Fonte: Harvard-Smithsonian Center for Astrophysics