Mostrando postagens com marcador Supernovas. Mostrar todas as postagens
Mostrando postagens com marcador Supernovas. Mostrar todas as postagens

quinta-feira, 14 de dezembro de 2023

Nova observação de alta definição de uma explosão estelar

Como um ornamento redondo e brilhante, pronto a ser colocado numa árvore de Natal, o remanescente de supernova Cassiopeia A (Cas A) brilha numa nova imagem do telescópio espacial James Webb. No entanto, esta cena não é a proverbial noite feliz e nem tudo está calmo.

© Webb / MIRI (Cassiopeia A no infravermelho próximo)

A imagem de Cas A obtida pelo instrumento NIRCam (Near-Infrared Camera) do Webb mostra uma explosão muito violenta com uma resolução anteriormente inalcançável nestes comprimentos de onda. Esta imagem de alta resolução revela pormenores intrincados da concha de material em expansão que embate no gás liberado pela estrela antes desta explodir. 

O Cas A está localizado a 11.000 anos-luz de distância, na direção da constelação de Cassiopeia. Estima-se que tenha explodido há cerca de 340 anos, do nosso ponto de vista.

A supernova Cas A é um dos remanescentes de supernova mais bem estudados em todo o cosmos. Ao longo dos anos, os observatórios terrestres e espaciais, incluindo o telescópio espacial Hubble, reuniram coletivamente uma imagem de vários comprimentos de onda dos restos esfarrapados do objeto. 

No entanto, os astrônomos entraram agora numa nova era no estudo de Cas A. Em abril de 2023, o MIRI (Mid-Infrared Instrument) do Webb deu início a esta história, revelando características novas e inesperadas no interior da concha interna do remanescente de supernova.

© Webb / MIRI (Cassiopeia A no infravermelho médio)

Mas muitas dessas características são invisíveis na nova imagem do NIRCam. A luz infravermelha é invisível aos nossos olhos, pelo que os processadores de imagem representam estes comprimentos de onda de luz com cores visíveis. Nesta imagem mais recente de Cas A, foram atribuídas cores aos diferentes filtros do NIRCam, e cada uma dessas cores indica uma atividade diferente que ocorre no interior do objeto. À primeira vista, a imagem do NIRCam pode parecer menos colorida do que a imagem MIRI. No entanto, isso não significa que haja menos informação: simplesmente, trata-se dos comprimentos de onda em que o material do objeto está emitindo a sua luz. As cores mais visíveis na imagem são os aglomerados de cor de laranja brilhante e rosa claro que constituem o invólucro interior do remanescente de supernova. 

A visão nítida do Webb consegue detectar os menores nós de gás, compostos por enxofre, oxigênio, argônio e neônio da própria estrela. Neste gás contém uma mistura de poeira e moléculas, que acabarão por ser incorporadas em novas estrelas e sistemas planetários. Alguns filamentos de detritos são demasiado pequenos para serem resolvidos, mesmo pelo Webb, o que significa que são comparáveis ou inferiores a 16 bilhões de quilômetros de diâmetro (cerca de 100 UA). Em comparação, a totalidade de Cassiopeia A estende-se por 10 anos-luz, ou cerca de 9,5x10^13 quilômetros. 

Quando se compara a nova imagem no infravermelho próximo de Cas A pelo Webb com a imagem no infravermelho médio, a sua cavidade interior e a camada mais exterior estão curiosamente desprovidas de cor. Os arredores da camada interior principal, que apareciam como um laranja e vermelho profundos na imagem MIRI, parecem agora a fumaça de uma fogueira. Isto marca o local onde a onda de explosão da supernova está embatendo no material circundante. A poeira no material circunstelar é demasiado fria para ser detectada diretamente nos comprimentos de onda do infravermelho próximo, mas ilumina-se no infravermelho médio. 

Os pesquisadores concluíram que a cor branca é a luz da radiação síncroton, que é emitida em todo o espetro eletromagnético, incluindo no infravermelho próximo. É gerada por partículas carregadas que se deslocam a velocidades extremamente elevadas e que se movimentam em espiral em torno de linhas de campo magnético. A radiação síncroton é também visível nas conchas em forma de bolha na metade inferior da cavidade interna. Igualmente invisível no infravermelho próximo, o "loop" de luz verde na cavidade central de Cas A que brilhava no infravermelho médio. Esta característica foi descrita como "difícil de compreender" pelos investigadores na altura da sua primeira observação. Embora o "verde"  não seja visível no NIRCam, o que resta no infravermelho próximo nessa região pode dar uma ideia do misterioso fenômeno. Os buracos circulares visíveis na imagem MIRI são ligeiramente delineados por emissões brancas e púrpuras na imagem NIRCam, isto representa gás ionizado. Provavelmente, isto se deve aos detritos da supernova empurrarem e esculpirem o gás deixado pela estrela antes desta explodir. 

Existe também uma caraterística fascinante no canto inferior direito do campo de visão da NIRCam. Essa mancha grande e estriada Cas A Bebê, porque parece ser uma "cria" da supernova principal. Isto é um eco de luz. A luz da explosão da estrela há muito tempo atingiu, e está aquecendo, a poeira distante, que brilha à medida que arrefece. A complexidade do padrão de poeira, e a aparente proximidade de Cas A Bebê com a própria Cas A, são particularmente intrigantes. Na realidade, Cas A Bebê está localizada a cerca de 170 anos-luz atrás do remanescente de supernova. Há também vários outros ecos de luz menores espalhados pelo novo retrato do Webb.

Fonte: Space Telescope Science Institute

terça-feira, 7 de novembro de 2023

Quando astrônomos amadores apontam o caminho

Esta imagem mostra a galáxia espiral NGC 941, que fica a cerca de 55 milhões de anos-luz da Terra.

© Hubble (NGC 941)

Os dados usados para esta imagem foram coletados pela Advanced Camera for Surveys (ACS) do Hubble. A bela galáxia NGC 941 é sem dúvida a principal atração desta imagem; no entanto, esta galáxia de aspecto nebuloso não foi a motivação para o recolhimento de dados.

Esta distinção pertence a um evento astronômico que ocorreu na galáxia anos antes: a supernova SN 2005ad. A localização desta supernova desbotada foi observada como parte de um estudo de múltiplas supernovas ricas em hidrogênio, também conhecidas como supernovas do tipo II, a fim de compreender melhor os ambientes em que ocorrem certos tipos de supernovas. 

Embora o estudo tenha sido conduzido por astrônomos profissionais, a SN 2005ad deve a sua descoberta a um distinto astrônomo amador chamado Kōichi Itagaki, que descobriu mais de 170 supernovas. Isto pode levantar a questão de como um astrônomo amador poderia detectar algo como um evento de supernova antes dos astrônomos profissionais, que têm acesso a telescópios como o Hubble. A resposta é, em parte, que a detecção de supernovas é uma mistura de habilidade, facilidades e sorte.

A maioria dos eventos astronômicos acontecem ao longo de períodos de tempo que superam o tempo de vida humano, mas as explosões de supernovas são extraordinariamente rápidas, aparecendo muito repentinamente e depois aumentando e diminuindo o brilho ao longo de um período de dias ou semanas. Outro aspecto é que os astrônomos profissionais muitas vezes não passam muito tempo observando. Há uma grande competição por tempo em telescópios como o Hubble, e então os dados de algumas horas de observações podem levar semanas, meses, ou às vezes até anos, para serem processados e analisados em todo o seu potencial.

Astrônomos amadores podem passar muito mais tempo observando os céus e, às vezes, possuem sistemas extremamente impressionantes de telescópios, computadores e software que podem usar. Tantas supernovas são detectadas por amadores habilidosos como Itagaki que existe na verdade um sistema online configurado para reportá-las o Transient Name Server

Isto é uma grande ajuda para os astrônomos profissionais, porque com eventos de supernova o tempo é verdadeiramente essencial. Depois que a descoberta de SN 2005ab foi relatada, astrônomos profissionais foram capazes de acompanhar estudos espectroscópicos e confirmá-la como uma supernova tipo II, o que eventualmente levou à inclusão de sua localização neste estudo com o Hubble. Tal estudo não seria possível sem uma rica biblioteca de supernovas anteriores, construída com o olhar atento de astrônomos amadores. 

Fonte: ESA

terça-feira, 31 de outubro de 2023

Novas revelações do histórico remanescente de supernova

O telescópio IXPE (Imaging X-ray Polarimetry Explorer) da NASA captou as primeiras imagens de raios X polarizados do remanescente de supernova SN 1006.

© Chandra / IXPE (SN 1006)

Na imagem os elementos vermelhos, verdes e azuis refletem os raios X de baixa, média e alta energia, respetivamente, tal como detectados pelo observatório Chandra. Os dados do IXPE, que medem a polarização dos raios X, são vistos em roxo no canto superior esquerdo, com a adição de linhas que representam o movimento para fora do campo magnético do remanescente.

Os novos resultados alargam o conhecimento dos cientistas sobre a relação entre os campos magnéticos e o fluxo de partículas altamente energéticas proveniente de estrelas em explosão. Os campos magnéticos são extremamente difíceis de medir, mas o IXPE fornece uma forma eficiente de os sondar. Agora é possível ver que os campos magnéticos de SN 1006 são turbulentos, mas também apresentam uma direção organizada. 

Situada a cerca de 6.500 anos-luz da Terra, na direção da constelação de Lobo, a SN 1006 é tudo o que resta após uma explosão titânica, que ocorreu quando duas anãs brancas se fundiram ou quando uma anã branca retirou demasiada massa de uma estrela companheira.

Inicialmente detectada na primavera do ano 1006 por observadores na China, no Japão, na Europa e no mundo árabe, a sua luz foi visível a olho nu durante pelo menos três anos. Os astrônomos modernos continuam a considerá-la o evento estelar mais brilhante de que há registo na história. 

Desde o início da observação moderna, os pesquisadores identificaram a estranha estrutura dupla do remanescente, marcadamente diferente de outros remanescentes de supernova arredondados. Tem também "membros" brilhantes ou orlas identificáveis nas bandas de raios X e raios gama. 

A proximidade de remanescentes de supernovas brilhantes em raios X, como SN 1006, torna-o ideal para medições pelo IXPE, dada a combinação da sensibilidade do IXPE à polarização de raios X com a capacidade de resolver espacialmente as regiões de emissão, que é essencial para localizar locais de aceleração de raios cósmicos. 

Observações anteriores dos raios X de SN 1006 forneceram a primeira evidência de que os remanescentes de supernova podem acelerar radicalmente os elétrons e ajudaram a identificar nebulosas em rápida expansão em torno de estrelas que explodiram como um local de nascimento de raios cósmicos altamente energéticos, que podem viajar quase à velocidade da luz. 

Os cientistas depreenderam que a estrutura única de SN 1006 está ligada à orientação do seu campo magnético e teorizaram que as ondas de explosão da supernova, a nordeste e a sudoeste, movem-se na direção alinhada com o campo magnético e aceleram mais eficazmente as partículas de alta energia. As novas descobertas do IXPE ajudaram a validar e a clarificar essas teorias. 

As propriedades de polarização obtidas a partir da análise espectral-polarimétrica alinham-se notavelmente bem com os resultados de outros métodos e observatórios de raios X, sublinhando a confiabilidade e as fortes capacidades do IXPE. 

Pela primeira vez, foi mapeada as estruturas do campo magnético de remanescentes de supernova de energias mais elevadas com maior detalhe e precisão, permitindo compreender melhor os processos que conduzem à aceleração destas partículas. 

Os pesquisadores afirmam que os resultados demonstram uma ligação entre os campos magnéticos e o fluxo de partículas altamente energéticas do remanescente. Os campos magnéticos na concha de SN 1006 estão um pouco desorganizados, de acordo com os resultados do IXPE, mas ainda assim têm uma orientação preferencial. À medida que a onda de choque da explosão original passa pelo gás circundante, os campos magnéticos ficam alinhados com o movimento da onda de choque. As partículas carregadas são apanhadas pelos campos magnéticos em volta do ponto original da explosão, onde recebem rapidamente surtos de aceleração. Estas partículas de alta energia, por sua vez, transferem energia para manter os campos magnéticos fortes e turbulentos. 

O IXPE observou três remanescentes de supernovas: Cassiopeia A, Tycho e agora SN 1006, desde o seu lançamento em dezembro de 2021, ajudando os cientistas a desenvolver uma compreensão mais abrangente da origem e dos processos dos campos magnéticos que rodeiam estes fenômenos. 

Os cientistas ficaram surpreendidos ao descobrir que SN 1006 é mais polarizado do que os outros dois remanescentes de supernova, mas que todos os três apresentam campos magnéticos orientados de tal forma que apontam para fora do centro da explosão.

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: NASA

sábado, 14 de outubro de 2023

Uma galáxia espiral com supernova

O que está acontecendo no braço desta galáxia espiral?

© Bernard Miller (NGC 1097 e SN 2023rve)

Uma supernova. No mês passado, a supernova SN 2023rve foi descoberta pelo Observatório Al-Khatim dos Emirados Árabes Unidos e mais tarde considerada consistente com a explosão mortal de uma estrela massiva, possivelmente deixando para trás um buraco negro. 

A galáxia espiral NGC 1097 está relativamente próxima a 45 milhões de anos-luz de distância e é visível com um pequeno telescópio em direção à constelação sul da Fornalha (Fornax).

A galáxia é notável não só pelos seus pitorescos braços espirais, mas também pelos tênues jatos consistentes com antigos fluxos estelares que sobraram de uma colisão galáctica, possivelmente com a pequena galáxia vista entre os seus braços, no canto inferior esquerdo. 

A imagem apresentada destaca a nova supernova piscando entre duas exposições tiradas com vários meses de intervalo. Encontrar supernovas em galáxias próximas pode ser importante para determinar a escala e a taxa de expansão de todo o Universo, um tema atualmente com tensão inesperada e de muito debate. 

Fonte: NASA

quinta-feira, 12 de outubro de 2023

Encontrada uma explosão bizarra num local inesperado

Uma explosão muito rara e estranha de luz extraordinariamente brilhante no Universo acaba de se tornar ainda mais estranha, graças à visão aguçada do telescópio espacial Hubble.

© NOIRLab (explosão luminosa transiente)

O fenômeno, denominado LFBOT (Luminous Fast Blue Optical Transient), surgiu onde não se esperava que surgisse, muito longe de qualquer galáxia hospedeira. Só o Hubble conseguiu localizar o fenômeno. 

Os astrônomos não sabem o que são os LFBOTs. Os resultados do Hubble sugerem que sabem ainda menos, ao excluir algumas teorias possíveis. Os LFBOTs estão entre os eventos mais brilhantes de luz visível conhecidos no Universo, surgindo inesperadamente como os flashes de uma câmara. 

Desde a primeira descoberta em 2018, apenas foram encontrados alguns, um evento localizado a cerca de 200 milhões de anos-luz de distância que foi apelidado de "A Vaca". Atualmente, os LFBOTs são detectados uma vez por ano.

Após a sua detecção inicial, o último LFBOT foi observado por vários telescópios em todo o espetro eletromagnético, desde os raios X às ondas de rádio. Designado AT2023fhn e apelidado de "o Finch", o evento transitório mostrou todas as características de um LFBOT. Brilhava intensamente em luz azul e evoluía rapidamente, atingindo o pico de brilho e desvanecendo-se numa questão de dias, ao contrário das supernovas, que demoram semanas ou meses a desvanecer. 

Mas, ao contrário de qualquer outro LFBOT visto anteriormente, o Hubble descobriu que o Finch está localizado entre duas galáxias vizinhas, a cerca de 50.000 anos-luz de uma galáxia espiral próxima e a cerca de 15.000 anos-luz de uma galáxia menor. 

Embora se tenha assumido que estas explosões espantosas são um tipo raro de supernova chamado supernovas de colapso do núcleo, as estrelas gigantescas que se transformam em supernovas têm uma vida curta para os padrões estelares. Por conseguinte, as estrelas progenitoras massivas não têm tempo de viajar muito longe do seu local de nascimento - um aglomerado de estrelas recém-nascidas - antes de explodirem. Todos os anteriores LFBOTs foram encontrados nos braços espirais de galáxias onde o nascimento de estrelas está decorrendo, mas o Finch não se encontra em nenhuma galáxia.

A ZTF (Zwicky Transient Facility), uma câmara terrestre de angular extremamente grande que varre todo o céu do norte de dois em dois dias, alertou pela primeira vez os astrônomos para o Finch no dia 10 de abril de 2023. Assim que foi avistado, os pesquisadores desencadearam um programa de observações que tinha estado em suspensão, pronto para rapidamente voltar a sua atenção para qualquer potencial candidato a LFBOT que surgisse.

Medições espectroscópicas efetuadas com o telescópio Gemini South, no Chile, revelaram que o Finch tem uma temperatura escaldante de 20.000º C. O Gemini também ajudou a determinar a sua distância da Terra para que a sua luminosidade pudesse ser calculada. Juntamente com dados de outros observatórios, incluindo o observatório de raios X Chandra da NASA e os radiotelescópios do VLA (Very Large Array), estas descobertas confirmaram que a explosão era um LFBOT. Os LFBOTs podem ser o resultado de estrelas sendo despedaçadas por um buraco negro de massa intermediária (entre 100 e 1.000 massas solares).

A alta resolução e a sensibilidade infravermelha do telescópio espacial James Webb  poderão eventualmente ser usadas para descobrir que o Finch explodiu no interior de um aglomerado globular no halo exterior de uma das duas galáxias vizinhas. Um aglomerado globular é o local mais provável onde um buraco negro de massa intermediária pode ser encontrado. 

Para explicar a localização incomum do Finch, os pesquisadores estão considerando a possibilidade de a explosão ser o resultado de uma colisão de duas estrelas de nêutrons, viajando para longe da sua galáxia hospedeira, que têm estado espiralando uma em direção à outra durante bilhões de anos. Tais colisões produzem uma quilonova, uma explosão 1.000 vezes mais poderosa do que uma nova normal. 

No entanto, uma teoria muito especulativa é a de que se uma das estrelas de nêutrons for altamente magnetizada, ou seja, um magnetar, poderá amplificar ainda mais o poder da explosão, para 100 vezes o brilho de uma supernova normal.

Uma vez que os eventos astronômicos transientes podem surgir em qualquer lugar e a qualquer momento, e são relativamente fugazes, os pesquisadores dependem de levantamentos de campo largo que podem monitorar continuamente grandes áreas do céu para os detectar e alertar outros observatórios como o Hubble para fazer observações de acompanhamento. 

Contudo, é necessária uma amostra maior para se chegar a uma melhor compreensão do fenômeno. Os próximos telescópios de observação de todo o céu, como o observatório Vera C. Rubin, poderão ser capazes de detectar mais, dependendo da astrofísica subjacente.

A descoberta será publicada numa próxima edição do periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Space Telescope Science Institute

sexta-feira, 8 de setembro de 2023

Reveladas novas estruturas no interior de uma supernova icônica

O telescópio espacial James Webb da NASA iniciou o estudo de uma das mais famosas supernovas, SN 1987A.

© James Webb (SN 1987A)

Localizada a 168.000 anos-luz de distância na Grande Nuvem de Magalhães, SN 1987A tem sido alvo de intensas observações em comprimentos de onda que vão desde os raios gama até ao rádio durante quase 40 anos, desde a sua descoberta em fevereiro de 1987.

Novas observações da câmara NIRCam (Near-Infrared Camera) do Webb fornecem uma pista crucial para a nossa compreensão de como uma supernova se desenvolve ao longo do tempo para formar o seu remanescente. Esta imagem revela uma estrutura central semelhante a um buraco de fechadura. Este centro está cheio de gás e poeira ejetados pela explosão da supernova. A poeira é tão densa que mesmo a luz infravermelha que o Webb detecta não a consegue penetrar, dando forma ao "buraco" escuro da fechadura. Um anel equatorial brilhante rodeia o buraco da fechadura interior, formando uma faixa em volta do cinturão que liga dois braços tênues de anéis exteriores em forma de ampulheta. O anel equatorial, formado por material ejetado dezenas de milhares de anos antes da explosão da supernova, contém pontos quentes brilhantes, que apareceram quando a onda de choque da supernova atingiu o anel. Agora os pontos são encontrados mesmo no exterior do anel, com emissão difusa ao seu redor. Estes são os locais onde os choques da supernova atingiram material mais exterior. 

Embora estas estruturas tenham sido observadas em diferentes graus pelos telescópios espaciais Hubble e Spitzer e pelo observatório de raios X Chandra da NASA, a sensibilidade e a resolução espacial sem paralelo do Webb revelaram uma nova característica neste remanescente de supernova, pequenas estruturas em forma de crescente. Pensa-se que estes crescentes fazem parte das camadas exteriores de gás disparadas pela explosão da supernova. O seu brilho pode ser uma indicação do aumento de brilho do limbo, um fenômeno óptico que resulta da observação do material em expansão em três dimensões. O nosso ângulo de visão faz com que pareça que há mais material nestes dois crescentes do que realmente há. 

A alta resolução destas imagens também é digna de nota. Antes do Webb, o agora reformado telescópio Spitzer observou esta supernova no infravermelho ao longo de toda a sua vida, produzindo dados importantes sobre a evolução das suas emissões com o passar do tempo. No entanto, nunca foi capaz de observar a supernova com tanta clareza e pormenor. 

Apesar das décadas de estudo desde a descoberta inicial da supernova, há vários mistérios que permanecem, particularmente em torno da estrela de nêutrons que se deveria ter formado no rescaldo da explosão da supernova. Tal como o Spitzer, o Webb continuará observando a supernova ao longo do tempo. Os seus instrumentos NIRSpec (Near-Infrared Spectrograph) e MIRI (Mid-Infrared Instrument) oferecerão aos astrônomos a capacidade de captar novos dados infravermelhos de alta fidelidade ao longo do tempo e de obter novos conhecimentos sobre as estruturas crescentes recentemente identificadas. Além disso, o Webb continuará colaborando com o Hubble, o Chandra e outros observatórios para fornecer novos conhecimentos sobre o passado e o futuro desta lendária supernova.

Fonte: Space Telescope Science Institute

sexta-feira, 7 de julho de 2023

Telescópio Webb localiza reservatórios de poeira em duas supernovas

Recorrendo ao telescópio espacial James Webb, pesquisadores fizeram grandes progressos na confirmação da origem da poeira nas galáxias primitivas.

© STScI (SN 2004et e SN 2017eaw na galáxia NGC 6496)

As observações de duas supernovas de Tipo II, a Supernova 2004et (SN 2004et) e a Supernova 2017eaw (SN 2017eaw), revelaram grandes quantidades de poeira no material ejetado de cada um destes objetos.

A massa encontrada apoia a teoria de que as supernovas desempenharam um papel fundamental no fornecimento de poeira ao Universo primitivo. A poeira é um bloco de construção para muitas coisas no nosso Universo, os planetas em particular. À medida que a poeira das estrelas moribundas se espalha pelo espaço, transporta elementos essenciais para ajudar a dar origem à próxima geração de estrelas e respectivos planetas. 

A origem desta poeira tem intrigado os astrônomos durante décadas. Uma fonte significativa de poeira cósmica pode ser as supernovas; depois de uma estrela moribunda explodir, o gás remanescente expande-se e arrefece, criando poeira. 

Até agora, as evidências diretas deste fenômeno eram escassas, uma vez que as nossas capacidades só nos permitiram estudar a população de poeira numa supernova relativamente próxima, a Supernova 1987A, a 170.000 anos-luz da Terra.

Quando o gás arrefece o suficiente para formar poeira, esta poeira só é detectável nos comprimentos de onda do infravermelho médio, desde que se tenha sensibilidade suficiente. Para supernovas mais distantes do que SN 1987A, como SN 2004et e SN 2017eaw, ambas na galáxia NGC 6946, a cerca de 22 milhões de anos-luz de distância, esta combinação de cobertura de comprimento de onda e sensibilidade requintada só pode ser obtida com o instrumento MIRI (Mid-Infrared Instrument) do Webb.

As observações do Webb são o primeiro avanço no estudo da produção de poeira a partir de supernovas desde a detecção de poeira recém-formada em SN 1987A com o telescópio ALMA (Atacama Large Millimeter/submillimeter Array) há quase uma década. Outro resultado particularmente intrigante do seu estudo não é apenas a detecção de poeira, mas a quantidade de poeira vista nesta fase inicial da vida da supernova. 

Na supernova SN 2004et, os pesquisadores encontraram mais de 5.000 massas terrestres de poeira. As observações mostraram que as galáxias jovens e distantes estão cheias de poeira, mas estas galáxias não são suficientemente antigas para que estrelas de massa intermediária, como o Sol, tenham fornecido a poeira à medida que envelhecem. Estrelas mais massivas e de vida curta poderiam ter morrido suficientemente cedo e em número suficiente para criar tanta poeira. 

Embora os astrônomos tenham confirmado que as supernovas produzem poeira, a questão que se coloca é saber qual a quantidade de poeira que consegue sobreviver aos choques internos que reverberam no rescaldo da explosão. Ver esta quantidade de poeira nesta fase da vida de SN 2004et e de SN 2017eaw sugere que a poeira pode sobreviver à onda de choque; evidência de que as supernovas são, afinal, importantes fábricas de poeira. 

Embora o Webb tenha permitido aos pesquisadores medir poeiras mais frias do que nunca, podem haver poeiras ainda mais frias não detectadas e que irradiam ainda mais longe no espetro eletromagnético e que permanecem obscurecidas pelas camadas mais externas de poeira. 

As novas descobertas são apenas um indício das novas capacidades de investigação sobre as supernovas e a sua produção de poeira utilizando o Webb, e o que isso nos pode dizer sobre as estrelas de onde provêm. As supernovas SN 2004et e SN2017eaw são os primeiros de cinco alvos incluídos neste programa.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Space Telescope Science Institute

quarta-feira, 21 de junho de 2023

Rara lente gravitacional deforma a luz de uma supernova

Os astrônomos captaram uma imagem bizarra de uma supernova, a poderosa explosão de uma estrela, cuja luz foi tão distorcida pela gravidade de uma galáxia, que aparece como múltiplas imagens no céu.

© J. Johansson (lente gravitacional de SN Zwicky)

Este efeito, conhecido como lente gravitacional, ocorre quando a gravidade de um objeto denso distorce e aumenta a luz de um objeto por trás dele. Uma equipe liderada por Ariel Goobar, do Centro Oskar Klein da Universidade de Estocolmo, descobriu que a incomum supernova de Tipo Ia, designada "SN Zwicky", sofreu um efeito quádruplo de lente, o que significa que quatro imagens da mesma supernova podiam ser vistas da Terra.

Poucas semanas depois de detectar a supernova no ZTF (Zwicky Transient Facility), no Observatório Palomar, Goobar e a sua equipe usaram o instrumento NIRC2 (Near-Infrared Camera 2) do Observatório W. M. Keck, emparelhado com o seu sistema de óptica adaptativa, e resolveram com sucesso SN Zwicky, revelando que a lente da supernova era suficientemente forte para ter criado múltiplas imagens do mesmo objeto. Também foram utilizados neste estudo o VLT (Very Large Telescope), o telescópio espacial Hubble, o telescópio Hobby-Eberly, o telescópio Liverpool e o NOT (Nordic Optical Telescope). 

Tal como previsto por Albert Einstein há mais de um século, a luz de um objeto cósmico que encontra um objeto denso no seu caminho até nós pode sofrer o efeito de lente gravitacional. O objeto denso atua como uma lente que pode dobrar e focar a luz. Dependendo da densidade da lente e da distância até nós, este efeito de deformação pode variar em intensidade. Com lentes fortes, a luz do objeto cósmico é tão distorcida que é ampliada e dividida em várias cópias da mesma imagem. 

Os astrônomos têm observado a curvatura gravitacional da luz desde 1919, poucos anos depois de Einstein ter desenvolvido a teoria, mas a natureza transiente das supernovas torna eventos como SN Zwicky, também conhecida como SN 2022qmx, muito difíceis de detectar. Embora os cientistas já tenham detectado muitas vezes imagens duplicadas de objetos distantes chamados quasares, apenas foram encontradas algumas supernovas duplicadas devido às lentes gravitacionais. Um exemplo clássico, chamado iPTF16geu, foi descoberto pela iPTF (intermediate Palomar Transient Factory), antecessora do ZTF.

Quais são os componentes em falta necessários para modelar a história da expansão do Universo? O que é a matéria escura que constitui a grande maioria da massa das galáxias? À medida que novas descobertas forem obtidas com o ZTF e com o futuro Observatório Vera Rubin, teremos mais uma ferramenta para desvendar os mistérios do Universo e encontrar respostas. 

Um artigo foi publicado na revista Nature Astronomy

Fonte: W. M. Keck Observatory

segunda-feira, 12 de junho de 2023

A complexidade das novas clássicas

Ao estudar as novas clássicas utilizando o VLBA (Very Long Baseline Array) do NRAO (National Radio Astronomy Observatory), a pesquisadora Montana Williams descobriu evidências de que os objetos podem ter sido erradamente classificados como simples.

© B. Saxton (ilustração de uma nova clássica)

As novas observações, que detectaram emissões não térmicas de uma nova clássica com uma companheira anã, foram apresentadas numa conferência de imprensa durante a 242.ª reunião da Sociedade Astronômica Americana em Albuquerque, no estado norte-americano do Novo México. 

A V1674 Herculis é uma nova clássica hospedada por uma anã branca e uma anã companheira e é atualmente a nova clássica mais rápida de que há registo. O que a equipe encontrou é tudo menos as simples explosões induzidas pelo calor que os cientistas esperavam das novas clássicas. Historicamente, as novas clássicas têm sido consideradas explosões simples, emitindo majoritariamente energia térmica. No entanto, com base em observações recentes pelo instrumento LAT (Large Area Telescope) do telescópio espacial Fermi, este modelo simples não está inteiramente correto. 

As detecções por VLBI (Very Long Baseline Interferometry) de novas clássicas com companheiras anãs como V1674Her são raras. São tão raras que este mesmo tipo de detecção, com componentes de síncrotron de rádio resolvidos, só foi reportado uma outra vez até à data. Isto deve-se em parte à natureza assumida das novas clássicas. 

As detecções de novas por VLBI só recentemente se tornaram possíveis devido aos melhoramentos introduzidos nas técnicas deste tipo de observações, como a sensibilidade dos instrumentos e o aumento da largura de banda ou a quantidade de frequências que podemos registar num dado momento. 

© NRAO (diferença de brilho em apenas quatro dias da nova clássica V1674Her)

Esta raridade faz com que as novas observações da equipe sejam um passo importante para compreender as vidas ocultas das novas clássicas e o que, em última análise, leva ao seu comportamento explosivo. Estudando as imagens do VLBA e comparando-as com outras observações do VLA (Very Large Array), do instrumento LAT do Fermi, do NuSTAR e do Swift da NASA, foi possível determinar o que poderá ser a causa da emissão e também fazer ajustes ao modelo simples anterior. 

Como as observações do LAT do Fermi e do NuSTAR já tinham indicado que poderia haver emissões não térmicas provenientes de V1674Her, isso fez da nova clássica uma candidata ideal para estudo. Era também mais interessante devido à sua evolução hiper-rápida e porque, ao contrário das supernovas, o sistema hospedeiro não é destruído durante esta evolução, mas permanece quase completamente intacto e inalterado após a explosão.

Muitas fontes astronômicas não mudam muito no decurso de um ano ou mesmo de 100 anos. Mas esta nova ficou 10.000 vezes mais brilhante num único dia e depois voltou ao seu estado normal em apenas cerca de 100 dias. 

Uma vez que os sistemas hospedeiros das novas clássicas permanecem intactos, podem ser recorrentes, o que significa que podemos ver esta entrar em erupção novamente.

Fonte: National Radio Astronomy Observatory

sábado, 3 de junho de 2023

Betelgeuse está quase 50% mais brilhante que o normal

Desde o evento Grande Escurecimento que ocorreu na segunda metade de 2019 e no início de 2020, a estrela gigante vermelha Betelgeuse simplesmente não vai parar com a anormalidade.

© ESO / ALMA (Betelgeuse)

Os ciclos regulares de flutuação de brilho da estrela moribunda mudaram, e agora Betelgeuse tornou-se incomumente brilhante. Há dez dias, ela estava com 142% de seu brilho normal. Tem flutuado para cima e para baixo em pequena escala, mas em uma tendência ascendente constante por meses e atingiu um pico recente de 156% em abril. 

Atualmente, Betelgeuse é a 7ª estrela mais brilhante no céu, acima de sua posição normal como a 10ª mais brilhante, provocando especulações de que Betelgeuse está prestes a explodir em uma espetacular supernova. Infelizmente, provavelmente não é. 

Embora Betelgeuse esteja à beira da morte em escalas de tempo cósmicas, em escalas de tempo humanas, sua supernova pode estar a 100.000 anos de distância. De acordo com os cientistas, é mais provável que seu comportamento atual seja um pouco instável após o escurecimento de 2019, e a estrela retornará ao normal dentro de uma década.

Betelgeuse, localizada a cerca de 700 anos-luz da Terra, é uma das estrelas mais interessantes do céu. Ela paira acima de nós, brilhando como um olho injetado, uma estrela no estágio de gigante vermelha que marca o fim de sua vida. Mas Betelgeuse é um tipo incomum de estrela, mesmo para uma gigante vermelha. 

Era uma vez um monstro absoluto: uma estrela tipo O azul-branca, a classe de peso estelar mais massiva. Estrelas com esta faixa de massa queimam seus estoques de hidrogênio mais rapidamente do que estrelas mais leves; Betelgeuse tem apenas cerca de 8 a 8,5 milhões de anos. Compare isso com uma estrela como o Sol, que com 4,6 bilhões de anos, está apenas na metade de sua vida de queima de hidrogênio. Betelgeuse mudou seu tipo espectral, pois quase esgotou suas reservas de hidrogênio. Agora está fundindo hélio em carbono e oxigênio e expandiu para um tamanho gigantesco: cerca de 764 vezes o tamanho do Sol e cerca de 16,5 a 19 vezes sua massa. 

Eventualmente, ficará sem combustível para queimar, virar supernova, jogar fora seu material externo e seu núcleo entrará em colapso em uma estrela de nêutrons. O evento Grande Escurecimento viu a estrela diminuir o brilho em uma quantidade considerável, quase 25%. Os astrônomos correram para descobrir a causa; descobriu-se que o resfriamento na superfície de Betelgeuse causou a condensação de uma enorme nuvem de poeira na estrela. Esta nuvem foi posteriormente ejetada, obscurecendo parcialmente Betelgeuse, fazendo com que parecesse escurecer. Comportamento bastante normal para uma estrela gigante vermelha. 

Betelgeuse também apresentava flutuações de brilho em ciclos regulares. O mais longo destes ciclos é de cerca de 5,9 anos; outro é de 400 dias. Mas parece que o Grande Escurecimento causou algumas mudanças nestas flutuações. 

Um novo artigo, liderado pelo astrofísico Morgan MacLeod, do Harvard-Smithsonian Center for Astrophysics, descobriu que o ciclo de 400 dias parece ter caído pela metade. Este ciclo de pulsação é impulsionado pela expansão e contração dentro da estrela. De acordo com as simulações conduzidas por MacLeod e seus colegas, uma pluma convectiva dentro de Betelgeuse pode ter surgido, tornando-se o material que se desprende da estrela. Durante o processo, esta ressurgência interrompeu a fase do ciclo de 400 dias, produzindo um ciclo de aproximadamente 200 dias que a estrela está exibindo atualmente. 

Portanto, Betelgeuse ainda está se recuperando do Grande Escurecimento, o que significa que não é improvável que seu brilho atual também esteja relacionado a fatores em andamento. No entanto, a equipe prevê que, eventualmente, a normalidade voltará para Betelgeuse, e continuará vivendo seu crepúsculo de milênios de forma relativamente pacífica por algum tempo.

Fonte: Universe Today

domingo, 21 de maio de 2023

Nebulosa do Anel WR 134

Feito com filtros de banda estreita, este instantâneo cósmico cobre um campo de visão do tamanho da Lua cheia dentro dos limites da constelação de Cygnus.

© Craig Stocks (WR 134)

A fotografia destaca a borda brilhante de uma nebulosa em forma de anel traçada pelo brilho de enxofre ionizado, hidrogênio e gás oxigênio. Embutidos nas nuvens interestelares de gás e poeira da região, os arcos complexos e brilhantes são seções de bolhas ou conchas de material arrastadas pelo vento da estrela Wolf-Rayet WR 134, a estrela mais brilhante perto do centro da imagem. 

As estimativas de distância colocam WR 134 a cerca de 6.000 anos-luz de distância, tornando a imagem com mais de 50 anos-luz de diâmetro. Derramando seus invólucros externos em poderosos ventos estelares, as massivas estrelas Wolf-Rayet queimaram seu combustível nuclear a uma taxa prodigiosa e encerram esta fase final de evolução estelar massiva em uma espetacular explosão de supernova. Os ventos estelares e as supernovas finais enriquecem o material interestelar com elementos pesados a serem incorporados nas futuras gerações de estrelas. 

Fonte: NASA

sexta-feira, 12 de maio de 2023

Nova descoberta: Nebulosa de Angelo

A aventura começou em outubro de 2022 a partir do desejo do astrônomo Nicolas Martino de fotografar uma nebulosa escura.

© N. Martino (Nebulosa de Angelo, Relâmpago de Thor, SRN G150.3+4.5 e LDN 1400)

A imagem mostra uma animação dos dados obtidos com filtros RGB. Nesta época do ano, a região de Cassiopeia, Cepheus e Girafa são áreas privilegiadas. Martino avistou uma nebulosa escura chamada LDN 1400 na constelação da Girafa. Seu formato atípico atraiu sua atenção à primeira vista e sua distância focal oferecia um enquadramento interessante. 

De acordo com os dados do IPHAS (INT Photometric H-Alpha Survey), existe até um sinal de Hidrogênio-Alfa (H-Alpha) por trás de LDN 1400. Ao explorar um pouco mais, ele percebeu que, de fato, o sinal H-Alpha vem do remanescente de supernova SNR G150.3+4.5. Este objeto raramente é fotografado e apenas uma foto pode ser vista em Oxygen III (OIII); tornando o projeto ainda mais interessante. 

Martino teve a colaboração do amigo Yann Sainty.  No total, foram necessárias 7 noites para coletar o máximo de dados. A lua deveria estar o menos presente possível para ter sinais OIII e H-Alpha mais "puros". Atendendo aos seus requisitos, as sessões de filmagem começaram em 27 de outubro de 2022 (em Puzieux, Mosela, França) e terminaram em 20 de janeiro de 2023 (em Moydans, Hautes-Alpes, França). O tempo total de integração foi de 46h15. 

O projeto foi apresentado aos astrônomos amadores Marcel Drechsler e Xavier Strottner, que efetuaram o processamento da imagem. Eles concordaram em processar os dados de banda estreita H-Alpha e OIII e os retoques finais, se necessário. Drechsler informou que havia notado um sinal OIII semelhante a uma bolha em torno de CI Camelopardalis. 

Um envelope de nova previamente desconhecido está em torno da estrela CI Camelopardalis, um sistema binário de raios X de massa muito alta. O objeto está muito próximo dos filamentos OIII do brilho residual da supernova G150.3+4.5, mas o envelope bipolar de CI Camelopardalis é um objeto independente e isolado que se encontra bem no fundo de G150.3+4.5.

A última erupção conhecida deste sistema ocorreu em 1998 e foi objeto de inúmeros estudos e publicações nos anos seguintes. Descobrimos um envelope muito mais antigo em torno da estrela, que, de acordo com os cálculos atuais, tem entre 1.500 e 2.200 anos. Este cálculo é baseado em dados de movimento obtidos em 1998 e 1999. Esses dados revelaram velocidades iniciais de 14.000 km/s, mas que diminuíram um terço após alguns dias. Essas velocidades foram inesperadas e até excederam as de uma supernova tipo 1A, o que explica o poder do flare em combinação com os raios X medidos pelo CI Camelopardalis. 

Como as distâncias para sistemas binários como CI Camelopardalis são muito imprecisas para calcular, os valores variam de 4,7 a 7,6 10³ Pc (parsec). Se tomarmos como base o valor médio, obtemos um diâmetro de 50 a 60 anos-luz para o envelope de nova descoberto recentemente em torno do CI Camelopardalis. O que é notável é a trajetória e orientação quase idênticas do surto de CI Camelopardalis de 1998 e de 1500 a 2200 anos atrás. 

O eixo da nebulosa é quase exatamente norte-sul, com uma ligeira inclinação para leste. A periferia norte dominante também corresponde a ambas as erupções. Durante este trabalho, foi possível identificar um OIII muito forte. O H-Alpha, no entanto, era tão fraco que era impossível separá-lo do fundo por meio de nossos filtros H-Alpha. O levantamento do IPHAS foi, no entanto, capaz de identificar um arco noroeste fraco, usamos esses dados para integrá-lo à imagem da descoberta. O envelope em torno do CI Camelopardalis que foi descoberto e que não foi mencionado em nenhuma publicação até agora é muito mais poderoso que uma nova comum e está, em termos de intensidade, entre uma nova e uma supernova. 

A descoberta foi registrada no novo catálogo MarSai Objet, sendo está a primeira descoberta: MarSai O 1, denominada Nebulosa de Angelo, em homenagem ao pai falecido de Martino. 

A foto final de LDN 1400, o Relâmpago de Thor, SNR G150.3+4.5 e MarSai O 1 é uma mistura de gelo, relâmpago e apocalipse. 

Fonte: AstroBin

segunda-feira, 17 de abril de 2023

Em busca da explosão de supernova numa galáxia espiral

A galáxia espiral barrada UGC 678 ocupa o centro do palco nesta imagem do telescópio espacial Hubble.

© Hubble (UGC 678)

A espetacular galáxia fica a cerca de 260 milhões de anos-luz da Terra na constelação de Peixes e está quase de frente, permitindo que seus braços espirais preguiçosamente sinuosos se estendam por esta imagem. Em primeiro plano, uma galáxia menor parece dividir a porção superior de UGC 678. 

Assim como os humanos, as estrelas têm um ciclo de vida natural; elas nascem, crescem e eventualmente envelhecem e morrem. Estudar esse ciclo de vida estelar, geralmente chamado de evolução estelar, é um tópico importante para os astrônomos. O fim da vida das estrelas pode ser marcado por eventos verdadeiramente espetaculares, incluindo explosões titânicas de supernovas, a criação de estrelas de nêutrons inimaginavelmente densas e até mesmo o nascimento de buracos negros.

A UGC 678 foi recentemente considerada a anfitriã de um desses eventos; em 2020, o telescópio robótico ATLAS escaneando o céu noturno em busca de asteroides perigosos descobriu evidências de uma enorme explosão da supernova AT2020abjq na galáxia. 

Duas observações separadas do Hubble se voltaram para UGC 678 para vasculhar a galáxia em busca das consequências de sua explosão de supernova. Uma equipe de astrônomos usou a Advanced Camera for Surveys do Hubble e a outra a Wide Field Camera 3, mas ambas pretendiam explorar UGC 678 na esperança de descobrir pistas sobre a identidade da estrela que produziu a supernova de 2020. 

Fonte: ESA