terça-feira, 28 de fevereiro de 2012

Modelo de formação de galáxias é questionado

O astrônomo Polychronis Papaderos, do Centro de Astrofísica da Universidade do Porto (CAUP), usou o telescópio espacial Hubble para obter observações extremamente precisas da galáxia I Zw 18.

galáxia I Zw 18

© Papaderos (galáxia I Zw 18)

A sua investigação levou-o a concluir que esta enigmática galáxia anã poderá levar à correção dos atuais modelos de formação de galáxias.

A galáxia anã I Zw 18 é uma das mais estudadas, pois entre as que apresentam uma forte atividade de formação estelar, é das mais pobres em elementos pesados. Além disso, a proximidade desta galáxia à Terra, conjugada com um tempo total de observação de quase 3 dias, permitiu obter dados com uma resolução e sensibilidade sem precedentes.

A análise destes dados revelou que esta galáxia tem um extenso halo de gás, sem qualquer estrela, cerca de 16 vezes mais extenso do que a componente estelar da galáxia. Isto resulta da grande quantidade de energia libertada pelo surto de formação estelar pelo qual a I Zw 18 está passando. Toda essa energia aquece e perturba o gás frio existente na galáxia, que emite uma quantidade de luz comparável à emitida por todas as estrelas da galáxia – a emissão nebular.

“Este trabalho é inovador porque nos dá a primeira prova observacional que as jovens galáxias, que passaram por surtos de formação estelar no início do Universo, estiveram envolvidas num enorme halo de emissão nebular. Este halo extenso é aquecido pela imensa energia de milhares de estrelas massivas, que se formaram durante o surto, e que rapidamente explodem como supernovas”, disse Papaderos.

Até agora, para as galáxias mais distantes, onde não é possível atingir a resolução necessária para distinguir entre a emissão do gás e das estrelas, assumia-se que o gás ocupava a mesma região que as estrelas e que estas últimas eram responsáveis por emitir quase toda a luz observada.

No entanto, este estudo mostrou que as galáxias que estão atravessando um surto de formação estelar, à semelhança da I Zw 18, podem não obedecer a esta regra. Este resultado poderá levar a correções significativas em pesquisas desenvolvidas em astronomia extragalática e cosmologia. Um exemplo disto é o cálculo da massa correspondente a estrelas numa galáxia, que é estimada a partir da luminosidade total. No entanto, tal como estes resultados demonstram, até 50% dessa luminosidade pode corresponder à emissão nebular, e não a estrelas.

Outro dos resultados obtidos neste trabalho mostra que, segundo Papaderos, “a distribuição da emissão nebular pode ser confundida com um disco de estrelas, o que pode resultar em classificar erradamente a galáxia, ainda em formação, como uma galáxia já totalmente formada” (uma espiral ou uma elíptica gigante). Assim, muitos dos estudos anteriores para determinar a evolução de galáxias desde o início do Universo, poderão ter cometido estes erros na classificação.

Para além disso, estes resultados têm também uma grande importância para o conhecimento atual acerca de formação de galáxias, uma vez que a equipe concluiu que a I Zw 18 é extremamente jovem, tendo a maioria das suas estrelas menos de bilhões de anos. Ou seja, esta jovem galáxia está neste momento passando pela fase dominante de formação estelar, à semelhança das que se formaram logo a seguir ao Big Bang.

Fonte: Centro de Astrofísica da Universidade do Porto

sábado, 25 de fevereiro de 2012

Pulsares são mais velhos do que o Universo?

Algumas observações recentes indicam que os pulsares, ou buracos negros estelares, parecem ser mais velhos do que o Universo.

ilustração de um pulsar emissor de raios X

© NASA (ilustração de um pulsar emissor de raios X)

Os pulsares estão entre os corpos celestiais mais exóticos que se conhece. Eles têm um diâmetro entre 10 e 20 quilômetros, e concentram uma massa equivalente à do Sol. O resultado é uma emissão de energia 100.000 vezes maior do que a do Sol.

Recentemente, descobriu-se que um pulsar mais denso do que a teoria considerava possível. Em maio do ano passado, a Nebulosa do Caranguejo apresentou uma ejeção inédita de raios gama, que os cálculos logo mostraram se originar de um pulsar impossível de existir segundo os modelos atuais.

Uma família desses corpos celestes, chamada de pulsares de milissegundo, gira centenas de vezes por segundo ao redor do seu próprio eixo.

Desde que o primeiro deles foi descoberto, em 1982, os astrônomos já encontraram cerca de outros 200 desses pulsares, com períodos de rotação entre 1,4 e 10 milissegundos.

Essas estrelas de nêutrons fortemente magnetizadas atingem essas altíssimas frequências rotacionais acumulando massa e momento angular sugando uma estrela próxima, com a qual formam um sistema binário.

O problema é que, ao calcular a idade dos pulsares e dos restos da sua estrela companheira é possível alcançar a conclusão paradoxal de que eles são mais velhos do que o Universo!

Na verdade, ainda não se chegou a uma explicação razoável nem para a idade, nem para os períodos de rotação e nem para os fortíssimos campos magnéticos desses estranhos "faróis estelares".

O pesquisador Thomas Tauris, do Instituto Max Planck, na Alemanha, fez simulações computacionais que mostraram que os pulsares de milissegundo podem não ser tão velhos quanto parecia. E ele fez isso apresentando uma solução para o problema do desligamento dos pulsares.

Por meio de cálculos numéricos, feitos com base na evolução estelar e no torque de acreção dos pulsares, Tauris demonstrou que os pulsares de milissegundo perdem cerca de metade da sua energia rotacional durantes os estágios finais do processo de transferência de massa de sua estrela canibalizada, antes que o pulsar acione seu processo de emissão de ondas de rádio.

O elemento mais importante do estudo é que ele demonstra como o pulsar é capaz de quebrar seu equilíbrio rotacional.

Nessa época, a taxa de transferência de massa cai, o que faz a magnetosfera do pulsar se expandir.

O resultado é que ele começa a arremessar massa de volta ao espaço, como se fosse uma hélice, o que o faz perder energia rotacional e diminuir seu período de rotação.

Em outras palavras, é a expansão do campo magnético do pulsar que ajuda a diminuir sua velocidade de rotação.

É por isso que os pulsares que emitem ondas de rádio giram mais lentamente do que seus progenitores, os pulsares emissores de raios X, que continuam absorvendo matéria das suas estrelas doadoras.

Além de estar em concordância com as observações, isso explicaria porque os pulsares de milissegundo dão a impressão de ser mais velhos do que os restos das anãs-brancas que eles sugam.

Isto porque sua idade é calculada com base na sua rotação, mas até agora não se conhecia essa variação na rotação induzida pela expansão do campo magnético do pulsar - o que induz a cálculos de até 15 bilhões de anos de idade para alguns pulsares, mais do que os 13,7 bilhões calculados para o Universo.

Segundo Tauris, o único "relógio" em que se pode confiar para calcular a idade desses sistemas binários são os restos da estrela companheira - mais especificamente, de sua temperatura, uma vez que ela continua quente mesmo não sendo mais capaz de queimar hidrogênio devido à perda de massa para o pulsar.

O trabalho também oferece uma explicação para a aparente inexistência de pulsares ainda mais rápidos, na faixa dos microssegundos ou menos.

Fonte: Science

quarta-feira, 22 de fevereiro de 2012

O vento mais rápido gerado num buraco negro

Novas observações feitas com o observatório de raios X Chandra da NASA mediram o vento mais rápido já observado sendo soprado do disco ao redor de um buraco negro de massa estelar.

ilustração de um sistema binário com um buraco negro

© NASA (ilustração de um sistema binário com um buraco negro)

A imagem acima mostra um sistema contendo um buraco negro com massa estelar chamado de IGR J17091-3624 ou IGR J17091. A forte gravidade do buraco negro, na parte esquerda do desenho, está puxando o gás de sua estrela companheira à direita. Esse gás forma um disco de gás quente ao redor do buraco negro e o vento é expulso desse disco.

Os buracos negros de massa estelar nascem quando estrelas extremamente massivas colapsam e normalmente possuem massa entre 5 e 10 vezes da massa solar.

O vento está soprando à incrível velocidade de 32 milhões de quilômetros por hora, ou algo em torno de 3% da velocidade da luz. Isso é aproximadamente dez vezes mais rápido do que o vento mais rápido anteriormente medido e se ajusta com os ventos mais rápidos gerados por buracos negros supermassivos, objetos que milhões ou as vezes bilhões de vezes mais massivos.

Outra descoberta é que o vento, que vem de um disco de gás ao redor do buraco negro pode carregar mais material do que o buraco negro está capturando.

A alta velocidade do vento foi estimada a partir do espectro feito pelo Chandra em 2011. Um espectro mostra quão intenso os raios X são nas diferentes energias. Íons emitem e absorvem com aspectos distintos do espectro, o que permite o monitoramento de seus comportamentos. Um espectro do Chandra de íons de ferro feito dois meses antes não mostrou evidências desse vento de alta velocidade, significando que o vento provavelmente é ligado e desligado com o passar dos tempos.

Fonte: NASA

Spitzer encontra buckyballs sólidas no espaço

Astrônomos usando os dados obtidos pelo telescópio espacial Spitzer da NASA, descobriram pela primeira vez a existência de buckyballs em estado sólido no espaço.

ilustração de buckyballs no espaço

© NASA (ilustração de buckyballs no espaço)

Antes dessa descoberta, as esferas microscópicas de carbono tinham sido encontradas somente na forma gasosa no espaço.

Formalmente chamadas de buckministerfullerene, as buckyballs, foram denominadas em homenagem à semelhança que elas têm com os domos geodésicos feitos pelo arquiteto Buckminter Fuller. Elas são compostas por 60 moléculas de carbono arranjadas em uma esfera oca, como uma bola de futebol. Suas estruturas pouco comuns fazem delas as candidatas ideais para aplicações elétricas e químicas na Terra, incluindo os materiais supercondutores, para a medicina, para purificação de água e outras aplicações.

Na última descoberta, os cientistas usaram o Spitzer para detectar pequenos pedaços de matéria, ou partículas, consistindo de buckyballs empilhadas. Eles encontraram as partículas ao redor de um par de estrelas chamadas de XX Ophiuchi a 6.500 anos-luz de distância da Terra e detectaram ali uma quantidade suficiente para preencher um volume equivalente a 10.000 Monte Everests.

“Essas buckyballs são empilhadas para formar um sólido, como laranjas numa cesta”, disse Nye Evans da Universidade de Keele na Inglaterra, principal autor do artigo que aparece na Monthly Notices da Royal Astronomical Society. “As partículas  detectadas são minúsculas, menores do que a largura de um fio de cabelo, mas cada um contém pilhas de milhões e buckyballs”.

As buckyballs foram detectadas definitivamente no espaço pela primeira vez pelo Sitzer em 2010. O Spitzer depois identificou as moléculas em diferentes ambientes cósmicos. Elas foram encontradas em quantidades suficientes e iguais a 15 massas da Lua numa galáxia próxima da Terra chamada de Pequena Nuvem de Magalhães.

Em todos os casos, as moléculas foram encontradas na forma gasosa. A recente descoberta das partículas buckyballs significa que grandes quantidades dessas moléculas precisam estar presentes em ambientes estelares para formar partículas sólidas. A equipe de pesquisa foi capaz de identificar a forma sólida das buckyballs nos dados do Spitzer pois elas emitem luz de uma maneira diferente da sua forma gasosa.

“Esses resultados animadores sugerem que as buckyballs são ainda mais dispersas no espaço do que os primeiros resultados do Spitzer mostraram”, disse Mike Werner, cientista de projeto para o Spitzer no Laboratório de Propulsão a Jato da NASA em Pasadena na Califórnia. “Elas podem ser importantes formas do carbono, um dos blocos fundamentais e essenciais para a vida através do cosmos”.

As buckyballs têm sido encontradas na Terra em várias formas. Elas se formam como um gás de velas incandescentes e existe como sólido em certos tipos de rochas, como um mineral encontrado na Rússia e como o fulgurito, uma rocha vítrea do Colorado que se forma quando os raios atingem o solo. Num tubo de teste, os sólidos tomam uma forma escura.

“A janela de análise do Spitzer fonece uma visão do Universo na parte infravermelha do espectro e têm revelado a bela estrutura em escala cósmica”, disse Bill Danchi, cientista do programa do Spitzer na sede da NASA em Washington. “Em outra descoberta surpreendente da missão, nós tivemos sorte o suficiente para ver estruturas elegantes em escalas menores, que nos estão ensinando muito sobre a arquitetura interna da existência”.

Fonte: NASA

terça-feira, 21 de fevereiro de 2012

Hubble descobre nova classe de planeta

O telescópio espacial Hubble descobriu uma nova classe de planeta: um mundo de água coberto por uma atmosfera espessa e fumegante, menor do que Urano, mas maior do que a Terra.

concepção artística do GJ 1214b

© NASA/ESA (concepção artística do GJ 1214b)

O trabalho foi aceito para publicação no periódico Astrophysical Journal. Esse tipo de planeta nunca havia sido observado.
O exoplaneta GJ 1214b foi descoberto em 2009, mas só agora os cientistas conseguiram confirmar detalhes sobre a atmosfera do planeta. Em 2010, outro grupo de cientistas realizou medições e descobriu que ele poderia ser formado por vapor de água ou nuvens. Agora, a equipe utilizou a câmera infravermelha do Hubble para confirmar que a atmosfera do GJ 1214b era formada por uma espessa e densa camada de vapor de água.
O planeta possui 2,7 vezes o diâmetro da Terra e tem massa sete vezes maior. O GJ 1214b completa uma órbita em volta de uma estrela anã vermelha a cada 38 horas a uma distância de dois milhões de quilômetros, o equivalente a uma vez e meia o diâmetro do Sol. Os cientistas estimam que a temperatura na superfície do mundo alienígena seja de 230 ºC.
Como a massa e o tamanho do planeta são conhecidos, os cientistas conseguem calcular sua densidade: dois gramas por centímetro cúbico. A água, por exemplo, tem densidade de um grama por centímetro cúbico e o valor médio para a densidade da Terra é de 5,5. Isso quer dizer que o GJ 1214b tem muito mais água e menos rocha do que nosso planeta. Por isso, a estrutura interna do mundo alienígena seria "extraordinariamente diferente" em relação a Terra.
O planeta GJ 1214b está localizado na constelação de Serpentário, a 40 anos-luz da Terra. De acordo com os cientistas, liderados por Zachory Berta, do Centro de Astrofísica Harvard-Smithsonian, ele não se parece com nenhum outro conhecido. "Grande parte de sua massa é formada por água", disse Berta.
Os teóricos acreditam que o GJ 1214b começou sua formação distante de sua estrela, onde o gelo era abundante. Depois o planeta migrou para mais perto, passando pela zona habitável da estrela. Nesse momento, a temperatura da superfície seria semelhante a da Terra. Os cientistas não sabem dizer quanto tempo ele teria ficado assim.
Por causa da proximidade do planeta, 'apenas' 40 anos luz, o GJ 1214b é um grande candidato para ser estudado pelo telescópio espacial James Webb, o sucessor do Hubble. A missão de mais de oito bilhões de dólares tem previsão de lançamento para 2018.

Fonte: Veja

segunda-feira, 20 de fevereiro de 2012

Colisão entre galáxias gera redemoinho de estrelas

Novas simulações sugerem que enormes redemoinhos de estrelas ao redor de galáxias distantes se formam quando duas galáxias de mesmo tamanho se chocam.

galáxia NGC 5907

© R Jay Gabany (galáxia NGC 5907)

A galáxia, denominada NGC 5907, está localizada a 50 milhões de anos-luz de distância na constelação do Draco (Dragão). Seus laços e correntes contêm estrelas, gás e poeira distribuídos em um diâmetro de 150.000 anos-luz.

Os pesquisadores, estudando esses redemoinhos, pensavam antes que eles eram formados quando uma galáxia relativamente pequena se chocava com uma galáxia maior e uma parte se separava do objeto maior formando tais redemoinhos.

Mas num novo estudo, uma massiva simulação de computador mostrou que seria impossível para uma galáxia muito pequena produzir as correntes observadas. Para produzir tais aspectos, a situação mais provável seria a colisão de duas galáxias de tamanho parecido que ocorreu a aproximadamente 8 ou 9 bilhões de anos atrás. A simulação também mostrou que as galáxias precisavam ser muito ricas em gás para produzir os redemoinhos ao redor da NGC 5907.

Acredita-se que grande parte das grandes galáxias espirais se formem por um processo semelhante. Ao longo da história do Universo, galáxias menores se chocaram com outras e se fundiram, produzindo galáxias ainda maiores. A própria Via Láctea está em curso para se colidir com a galáxia vizinha Andrômeda, um encontro catastrófico que deve acontecer em aproximadamente 4,5 bilhões de anos.

Fonte: Astronomy & Astrophysics

sexta-feira, 17 de fevereiro de 2012

Desvendando o "mistério" dos buracos negros

Imagem divulgada pela agência espacial europeia ESA mostra um grupo de jovens estrelas azuis em torno de um buraco negro chamado de HLX-1.

buraco negro HLX-1

© ESA (buraco negro HLX-1)

O registro inédito foi capturado pelo telescópio espacial Hubble e indica que o buraco se formou a partir de uma galáxia anã.

De acordo com a ESA, a descoberta tem importantes implicações na compreensão da evolução dos buracos negros e das galáxias. O mecanismo de desintegração das estrelas supermassivas para a formação dos buracos negros é conhecido, no entanto, não está claro como estas estruturas, que podem ter massa milhões de vezes maior que a do Sol, podem se formar no núcleo das galáxias. A ideia defendida pelos pesquisadores é de que essas estruturas supermassivas podem se originar a partir da fusão de pequenos e médios buracos negros.

O fato de haver um grupo muito jovem de estrelas na imagem indica que o buraco negro de massa intermediária pode ter se originado a partir da galáxia anã, que foi "engolida" pela estrutura mais massiva.

Conhecido como Hyper-Luminous X-ray source 1 (HLX-1), o buraco negro registrado na imagem tem massa 20 mil vezes da massa do Sol e encontra-se em direção à borda da galáxia ESO 243-49, que está a 290 milhões de anos-luz da Terra.

Fonte: Astrophysical Journal

Os efeitos de estrelas da Via Láctea

As propriedades das galáxias que vemos hoje podem nos dar pistas importantes para entender a história do Universo.

representação da distribuição de galáxias luminosas

© SDSS III (representação da distribuição de galáxias luminosas)

Em particular a forma com que elas se aglomeram pode fornecer uma escala característica do Universo (proveniente da oscilação acústica dos bárions) que pode ser usada como uma régua padrão e inferir o tipo da expansão cósmica. Em segundo lugar, pode-se usar esta informação e calcular o conteúdo de matéria no Universo nas diferentes formas: matéria ordinária, matéria escura, energia escura e neutrinos.

Muitos desses resultados são prejudicados pelo efeito de estarmos observando o Universo de dentro de um sistema estelar, a nossa Galáxia. Ashley Ross e colaboradores do Sloan Digital Sky Survey -III, incluído pesquisadores do Observatório Nacional (ON), acabam de mostrar como esse efeito pode ser compreendido. Por um lado, as estrelas da Galáxia, mesmo as de baixo brilho, ocultam uma fração mínima de área de céu, onde existem galáxias. Esta área é ínfima, cerca de um milionésimo de grau quadrado por estrela, mas com dezenas de milhões de estrelas ela é substancial e provoca a diminuição do número de galáxias observada. Por outro lado, uma fração de cerca de 3% dos objetos selecionados fotometricamente como galáxias, são na verdade estrelas. Estes efeitos precisam ser estimados e considerados na determinação das propriedades de aglomeração das galáxias.

O primeiro passo deste estudo foi selecionar cerca de 900.000 galáxias luminosas, ou seja, que podem ser vistas até grandes distâncias. Essa amostra cobre o maior volume do Universo até hoje usado para medida de aglomeração de galáxias, graças ao bem sucedido desenvolvimento do projeto SDSS-III. A área analisada atingiu 9913 graus quadrados, representando mais de ¼ da área total do céu e inclui galáxias existentes até 6 bilhões de anos atrás. Distâncias foram estimadas a partir das magnitudes observadas em 5 bandas espectrais através de uma técnica denominada redshifts fotométricos. Uma representação da distribuição dessas galáxias é mostrada na figura acima, que representa a distribuição de galáxias luminosas observadas pelo SDSS-III, com redshifts fotométricos entre 0,25 e 0,75. A nossa Galáxia está no centro da figura e cada pequeno ponto verde representa uma galáxia..

Usando diferentes métodos, a equipe do SDSS-III mostrou em trabalho recentemente publicado, quanto este efeito combinado de ocultação e contaminação pelas estrelas interfere nas estimativas da aglutinação das galáxias e como podem ser corrigidos.

Ao final do levantamento, cada galáxia, do total de cerca de 1 milhão, terá uma determinação de redshift espectroscópica, com uma precisão superior às medidas fotométricas, dotando esta amostra de condições sem precedentes para estudar o Universo com grande precisão.

Fonte: ON

Telescópio observa nuvens escuras no Touro

Uma nova imagem do telescópio APEX (Atacama Pathfinder Experiment), situado no Chile, mostra um filamento sinuoso de poeira cósmica com mais de dez anos-luz de comprimento.

Barnard 211 e Barnard 213

© APEX (Barnard 211 e Barnard 213)

No seu interior estão escondidas estrelas recém-nascidas, e nuvens densas de gás preparam-se para colapsar e formar ainda mais estrelas. Esta é uma das regiões de formação estelar mais próximas de nós. Os grãos de poeira cósmica são tão frios que são necessárias observações no comprimento de onda do milímetro para podermos detectar o seu brilho tênue.

A nuvem molecular do Touro, na constelação do Touro, situa-se a cerca de 450 anos-luz de distância. Esta imagem mostra duas partes de uma estrutura filamentar muito comprida na nuvem, conhecidas como Barnard 211 e Barnard 213. Os nomes vêm do atlas fotográfico de “marcas escuras do céu” compilado por Edward Emerson Barnard no início do século XX. No visível estas regiões aparecem como tiras escuras, sem estrelas. Barnard argumentou de forma correta que esta aparência se devia a “matéria obscurante no espaço”.

Sabemos hoje que estas marcas escuras são na realidade nuvens de grãos de poeira e gás interestelar. Os grãos de poeira - pequeníssimas partículas parecidas com cinza fina e areia - absorvem a radiação visível, impedindo-nos de observar o rico campo estelar por trás das nuvens. A nuvem molecular do Touro mostra-se particularmente escura nos comprimentos de onda visíveis, uma vez que não possui estrelas de grande massa que iluminam as nebulosas em outras regiões de formação estelar como Orion. Os grãos de poeira emitem eles próprios um brilho fraco mas, uma vez que são extremamente frios, com temperaturas de cerca de -260ºC, a sua radiação só pode ser observada em comprimentos de onda muito maiores que os da radiação visível, a cerca de um milímetro.

Estas nuvens de gás e poeira não são apenas um obstáculo aos astrônomos que desejam observar as estrelas por trás delas. Na realidade, elas próprias são locais de nascimento de novas estrelas. Quando as nuvens colapsam sob a sua própria gravidade, fragmentam-se em nódulos. Dentro destes nódulos podem formar-se núcleos densos, onde o hidrogênio gasoso se torna suficientemente denso e quente para que se iniciem reações de fusão: nasce uma nova estrela. O nascimento da estrela encontra-se por isso rodeado por um casulo de poeira denso, que impede a observação nos comprimentos de onda do visível. É por isso que observações a maiores comprimentos de onda, tais como o milímetro, são essenciais para o estudo dos primeiros estágios de formação estelar.

A parte superior direita do filamento que aqui mostramos é a Barnard 211, enquanto que a parte inferior esquerda é a Barnard 213. As observações na banda do milímetro obtidas com a câmera LABOCA montada no telescópio APEX, que mostram o brilho dos grãos de poeira, estão aqui representadas em tons de laranja, encontrando-se sobrepostas a uma imagem da região no óptico, a qual mostra um campo de fundo rico em estrelas. A estrela brilhante por cima do filamento é a φ Tauri, enquanto que a que se encontra parcialmente visível no lado esquerdo da imagem é a HD 27482. Ambas as estrelas estão mais próximo de nós que o filamento e não se encontram associadas a ele.

As observações mostram que a Barnard 213 já se fragmentou e formou nódulos densos - como está ilustrado nos brilhantes nódulos de gás iluminado - e a formação estelar já ocorreu. No entanto, a Barnard 211 encontra-se num estágio mais inicial da sua evolução; o colapso e fragmentação estão ainda ocorrendo e irão dar origem a formação estelar no futuro. Esta região é por isso um excelente local para estudar como é que as “marcas escuras do céu” de Barnard desempenham um papel crucial no ciclo de vida das estrelas.

As observações foram efetuadas por Alvaro Hacar (Observatório Astronômico Nacional-IGN, Madrid, Espanha) e colaboradores. A câmera LABOCA opera no telescópio APEX de 12 metros, no planalto do Chajnantor nos Andes chilenos, a uma altitude de 5.000 metros. O APEX é o percursor da nova geração de telescópios submilimétricos, o Atacama Millimeter/submillimeter Array (ALMA), que se encontra em construção e operação no mesmo planalto.

Fonte: ESO

terça-feira, 14 de fevereiro de 2012

Mapa de regiões com formação estelar

Um mapa divulgado com dados coletados pela sonda Planck da ESA, revela 10 mil regiões de formação estelar, muitas delas nunca vistas antes por astrônomos.

distribuição de monóxido de carbono no espaço

© Planck (distribuição de monóxido de carbono no espaço)

A imagem foi divulgada nesta semana e mostra berçários de estrelas tão frios que atingem temperaturas de apenas 7 kelvin, aproximadamente 266 graus Celsius negativos.

Os pontos azuis na imagem acima mostram concentrações de centros estelares. A detecção das regiões é feita de forma indireta. Como o hidrogênio que forma as nuvens de gás é difícil de ser detectado, os cientistas procuram por monóxido de carbono para coletar as informações que compõem o mapa.

Fonte: ESA

Estrelas movidas à matéria escura no Universo

Algumas das estrelas mais antigas do Universo estão muito distantes para serem vistas, mas se o núcleo delas for movido por matéria escura, isso pode ser determinado pelo brilho ao redor delas.

distribuição da matéria visível e da matéria escura

© NASA/ESA (distribuição da matéria visível e da matéria escura)

Se essa estranha matéria dá mesmo energia às estrelas, os telescópios de infravermelho conseguem enxergar a luz resultante, que deve ser diferente da que emana de estrelas como o Sol, que contam com o processo de fusão para gerar energia.

A matéria escura nunca foi detectada diretamente e só pode ser estudada pelos seus efeitos gravitacionais em corpos visíveis. Mas sua presença pode ter exercido um papel dominante na criação das primeiras estrelas.

Essas estrelas alimentadas por matéria escura brilham muito, apesar da fonte. Enquanto a luz de uma estrela individual é muito distante para ser medida, os astrônomos podem aprender muito ao analisar a luz combinada de várias estrelas antigas, incluindo aquelas alimentadas pela estranha matéria.

Em um novo estudo, uma equipe de astrônomos calculou a quantidade de luz que as estrelas escuras iriam produzir para determinar se o brilho seria visível em ondas no infravermelho.

A luminosidade das estrelas, combinada com a luz produzida pelas galáxias, cria um arco de luz similar ao que as muitas lâmpadas acesas produzem nas cidades. Ao estudar esse brilho geral, os cientistas esperam entender mais sobre as fontes individuais de luz.

É possível comparar a luminosidade máxima e mínima produzida. Para as estrelas antigas, são analisadas propriedades como a relação entre a massa e o brilho, quanto tempo ela pode ser alimentada pela matéria escura e o nível de formação de estrelas.

Como leva muito tempo para a luz viajar distâncias tão grandes, as estrelas analisadas são muito antigas. Ao focar no brilho produzido por essas fontes distantes, os astrônomos podem examinar o passado da luz produzida pelas primeiras estrelas.

“Como não é possível estudar diretamente a formação de estrelas no início do Universo, nós dependemos de simulações numéricas”, comenta Andreas Maurer e Martin Raue, da Universidade de Hamburgo.

Os cientistas esperam que, ao estudar esse brilho antigo, eles eventualmente consigam determinar se alguns grupos de estrelas são alimentadas pela matéria escura ou pelo método mais familiar de fusão.

As estrelas se formam quando a gravidade une a matéria. Conforme as nuvens de hidrogênio e hélio – os únicos elementos presentes no começo do Universo – se quebravam, a matéria escura presa no meio seria comprimida.

A matéria escura, assim como a comum, deve ter também sua antimatéria. “Toda partícula no Universo tem uma antipartícula”, explica o astrofísico Douglas Spolyar, da Universidade de Chicago, que não esteve envolvido na nova pesquisa, mas estuda o assunto.

Quando uma partícula e sua antipartícula se encontram, elas se aniquilam, transformando-se em fótons, elétrons e pósitrons. Conforme essas partículas leves interagem com o meio, elas aquecem-no. Se esse meio estiver no centro de uma estrela recém formada, a aniquilação da matéria escura poderia substituir o processo de fusão no núcleo estelar.

Do mesmo modo, se uma estrela estabilizada capturar matéria escura suficiente, a destruição das partículas e antipartículas poderia substituir a fusão como fonte de energia. Essa pressão adicional "explode” a estrela, por isso reduz a fusão nuclear.

O processo é tão poderoso que apenas cerca de 1% da massa estelar teria que ser matéria escura para isso.

As estrelas escuras são maiores e mais geladas do que suas parceiras convencionais. Elas também duram mais do que as estrelas com fusão nuclear.

“Com um estoque suficiente de matéria escura, as estrelas escuras podem ter vidas que excedem a idade do Universo; elas ainda podem existir hoje”, comenta Maurer.

“A densidade da matéria escura pode ser bilhões de vezes maior no centro da galáxia, onde as estrelas podem capturar muito mais dela”, comenta Spolyar. “Estrelas escuras podem estar surgindo no centro da galáxia”.

Fonte: LiveScience

segunda-feira, 13 de fevereiro de 2012

Retrato de um asteroide condenado

Um novo estudo levantou uma possibilidade para explicar os misteriosos brilhos de raios X detectados por alguns anos pelo observatório de raios X Chandra na região de Sagittarius A* (Sgr A*).

ilustração buraco negro supermassivo no centro da Via Láctea

© NASA (buraco negro supermassivo no centro da Via Láctea)

O estudo sugere uma nuvem ao redor de Sgr A*, um buraco negro supermassivo localizado no centro da Via Láctea, que contém centenas de trilhões de asteroides e cometas que foram arrancados de suas estrelas originais. A emissão do brilho ocorre quando asteroides de cerca de 10 quilômetros de raio são consumidos pelo buraco negro. Um asteroide que participou de um encontro imediato com outro objeto como uma estrela ou planeta pode ser ejetado em uma órbita diretamente direcionada para Sgr A*. Se o asteroide passa a uma distância de 160 milhões de quilômetros do buraco negro, mais ou menos a distância entre a Terra e o Sol, ele é quebrado em pedaços devido às forças de maré do buraco negro. Esses fragmentos seriam então vaporizados pela fricção à medida que eles passassem pelo gás tênue e quente fluindo no Sgr A*, esse processo seria algo similar ao que acontece com um meteoro que é aquecido devido ao atrito causando um clarão quando entra na atmosfera da Terra. Uma emissão de energia é produzida e eventualmente a parte remanescente do asteroide é engolida pelo buraco negro.

Fonte: NASA