quarta-feira, 5 de novembro de 2014

VLTI detecta luz exozodiacal

Com o auxílio do Interferômetro do Very Large Telescope (VLT), uma equipe internacional de astrônomos detectou luz exozodiacal perto das zonas habitáveis de nove estrelas próximas.

luz zodiacal sobre La Silla

© ESO/Y. Beletsky (luz zodiacal sobre La Silla)

Esta luz trata-se da radiação estelar refletida por poeira criada a partir de colisões entre asteroides e evaporação de cometas. A presença de tais quantidades de poeira nas regiões internas em torno de algumas estrelas poderá ser um obstáculo à obtenção de imagens diretas de planetas do tipo terrestre.

Com o auxílio do Interferômetro do Very LargeTelescope (VLTI) operando no infravermelho próximo, foi possível observar 92 estrelas próximas possibilitando a investigação da luz exozodiacal originada por poeira quente perto das suas zonas habitáveis. A equipe utilizou o instrumento visitante PIONIER no VLTI, o qual pode ligar interferometricamente os quatros telescópios auxiliares ou os quatro telescópios principais do VLT, no Observatório do Paranal. Deste modo, foi obtida, não apenas uma resolução extremamente elevada dos objetos, mas também se conseguiu uma elevada eficiência na observação. Observações anteriores foram feitas com a rede CHARA, um interferômetro astronômico óptico operado pelo Center for High Angular Resolution Astronomy (CHARA), da Universidade do Estado da Georgia, e o seu instrumento FLUOR, que combina o feixe de fibras.

Descobriu-se esta radiação brilhante, criada por grãos de poeira exozodiacal quente resplandecentes ou pela reflexão da radiação estelar nestes grãos, em torno de nove das estrelas observadas.
A luz zodiacal pode ser observada a partir de locais escuros e límpidos na Terra, apresentando-se como uma luz branca difusa e tênue no céu noturno, logo após o pôr do Sol ou antes do amanhecer. É criada pela luz solar refletida por pequenas partículas e parece estender-se até à vizinhança do Sol. Esta radiação refletida não é apenas observada a partir da Terra mas pode ser vista de qualquer ponto do Sistema Solar.
O brilho que se observou neste novo estudo é uma versão muito mais extrema do mesmo fenômeno. Apesar desta luz exozodiacal, luz zodiacal em torno de outros sistemas estelares, ter sido já observada, este é o primeiro grande estudo sistemático deste fenômeno em outras estrelas.
Contrariamente a observações anteriores, a equipe não observou poeira que dará mais tarde origem a planetas, mas sim poeira criada nas colisões entre pequenos planetas com alguns quilômetros de tamanho, os chamados planetesimais, que são objetos semelhantes a asteroides e cometas do Sistema Solar. É precisamente poeira desta natureza que está igualmente associada à luz zodiacal no Sistema Solar.
“Se queremos estudar a evolução de planetas do tipo terrestre próximo das suas zonas habitáveis, temos que observar a poeira zodiacal nessa região em torno de outras estrelas”, diz Steve Ertel, do ESO e Universidade de Grenoble, França, autor principal do artigo científico que descreve os resultados. “Detectar e caracterizar este tipo de poeira em torno de outras estrelas é uma maneira de estudar a arquitetura e evolução de sistemas planetários”.  
Para conseguirmos detectar poeira muito tênue próximo da estrela central ofuscante são necessárias observações de alta resolução com alto contraste. A interferometria, que combina a radiação coletada por diferentes telescópios ao mesmo tempo, feita no infravermelho é, até agora, a única técnica que permite que este tipo de sistemas seja descoberto e estudado.
Ao utilizar o poder do VLTI, levando os instrumentos até ao seu limite máximo de eficácia e precisão, a equipe conseguiu atingir um nível de desempenho cerca de dez vezes melhor que com outros instrumentos existentes.
Para cada uma das estrelas, a equipe utilizou os telescópios auxiliares de 1,8 metros para coletar a radiação para o VLTI. Para os objetos que apresentavam luz exozodiacal foi possível resolver por completo os discos extensos de poeira e separar o seu fraco brilho da radiação estelar dominante.
Como sub-produto, estas observações levaram também à descoberta inesperada de novas estrelas companheiras orbitando algumas das estrelas mais massivas da amostra. “Estas novas companheiras sugerem que deveríamos rever a nossa compreensão atual de quantas estrelas deste tipo são efetivamente duplas”, disse Lindsay Marion, autora principal de um artigo científico adicional dedicado a este trabalho complementar, que usa os mesmos dados.

Ao analisar as propriedades das estrelas rodeadas por um disco de poeira exozodiacal, a equipe descobriu que a maior parte da poeira é detectada em torno de estrelas mais velhas. Este resultado é bastante surpreendente e levanta algumas questões relativas aos sistemas planetários. Qualquer produção de poeira que conhecemos, causada por colisões de planetesimais, deveria diminuir com o tempo, uma vez que o número destes objetos vai reduzindo à medida que estes vão sendo destruídos.
A amostra dos objetos observados inclui também 14 estrelas para as quais houve já  detecção de exoplanetas. Todos estes planetas encontram-se na mesma região onde a poeira dos sistemas mostra luz exozodiacal. A presença de luz exozodiacal em sistemas com planetas poderá, por isso, dificultar os estudos astronômicos de exoplanetas.
A emissão da poeira exozodiacal, mesmo a baixos níveis, torna muito mais difícil a detecção de planetas do tipo terrestre a partir de imagens diretas. A luz exozodiacal detectada deste rastreio é cerca de um fator 1.000 mais brilhante do que a luz zodiacal observada em torno do Sol. O número de estrelas que contêm luz zodiacal ao nível da do Sistema Solar é provavelmente muito maior do que os números encontrados neste rastreio. Estas observações são assim um primeiro passo em estudos mais detalhados de luz exozodiacal.
“A elevada taxa de detecção encontrada a este nível de brilho sugere que deve haver um número significativo de sistemas que contêm poeira mais tênue que não foi detectada no nosso rastreio, mas que, ainda assim, é mais brilhante que a poeira zodiacal presente no Sistema Solar”, explica Olivier Absil, Universidade de Liège, co-autor do artigo. “A presença de tal poeira em tantos sistemas poderá por isso tornar-se um obstáculo a observações futuras, que pretendam obter imagens diretas de exoplanetas do tipo terrestre”.

Este trabalho será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

domingo, 2 de novembro de 2014

Supernova ilumina galáxia M61

Uma possível explosão de supernova iluminou recentemente a M61, também conhecida por NGC 4303, uma bela galáxia espiral barrada localizada a cerca de 55 milhões de anos-luz da Terra na constelação de Virgem.

galáxia M61

© Hunter Wilson (galáxia M61)

O brilho intenso foi descoberto em magnitude aparente de 13,6, no último dia 29 de outubro por Koichi Itagaki, um caçador de supernovas do Japão. A designação oficial emitida pela circular da CBAT (Central Bureau for Astronomical Telegrams) referente à supernova descoberta é: SN2014dt.

Koichi e seus colegas já foram responsáveis por incríveis 94 descobertas de supernovas. Ele utilizou uma câmera CCD e um telescópio refletor de 500 mm de abertura. E pra sua surpresa, em uma de suas observações, ele viu um brilho intenso em um dos braços espirais da galáxia. Quando comparou com suas fotos anteriores, ele percebeu que aquele brilho não estava presente, e logo notou que tratava-se de mais uma possível supernova para seu currículo. Um fato curioso é que Koichi já havia feito uma descoberta de supernova na mesma galáxia M61, em dezembro de 2008.

Durante a noite, Ernesto Guido, Martino Nicolini e Nick Howes, do Observatório Remanzacco, usaram um telescópio remoto no Novo México para confirmar o novo objeto.

localização da supernova

© Observatório Remanzacco (localização da supernova)

Supernovas são divididas em duas grandes categorias: Supernova Tipo Ia e Supernova Tipo II, e os dois tipos de explosões podem tornar-se 5.000 milhões de vezes mais brilhantes do que o Sol, ejetando matéria para o espaço a uma velocidade entre 5.000 e 20.000 km/s. O material lançado para o espaço a partir de uma supernova contém elementos pesados, como ferro, níquel, ouro e chumbo. Muitas vezes, o que resta da estrela após uma explosão é um núcleo incrivelmente denso, que gira a uma velocidade alta, ou seja, uma estrela de nêutrons. Dependendo da massa da estrela, o resultado final pode ser ainda um buraco negro.

Por intermédio de analise espectroscópica é observado um azul contínuo com absorção de 635,5 nm relativamente fraco e estreito de Si II. Linhas de Fe III em 430 e 500 nm são visíveis, o que sugere que o objeto poderia ser um membro da classe Tipo-Iax de supernovas.

Agora, são 7 o número total de supernovas observadas na galáxia M61.

Fonte: Universe Today

Crescem evidências de matéria escura no núcleo da Via Láctea

Até agora, nem mesmo as melhores tentativas de encontrar a matéria escura tiveram êxito. Astrônomos sabem que essa espécie invisível domina nosso Universo e exerce arrasto gravitacional sobre a matéria comum, mas não sabem do que ela é feita.

mapa do centro da Via Láctea com excesso de raios gama

© Universidade de Chicago/T. Linden (mapa do centro da Via Láctea com excesso de raios gama)

Esse mapa do centro da Via Láctea mostra um grande excesso de raios gama (o vermelho indica a maior quantidade) que não pode ser explicado por fontes convencionais.

Desde 2009, porém, raios de luz gama radiando do núcleo da Via Láctea, onde se acredita que a matéria escura seja especialmente densa, intrigam pesquisadores.
Alguns imaginam que esses raios podem ter sido emitidos durante explosões provocadas por partículas de matéria escura em colisão. Agora, um novo sinal de raios gama oferece mais evidências de que isso pode ser verdade, em conjunto com os que já foram detectados.
Uma possível explicação para a matéria escura é que ela seja composta pelas teóricas partículas WIMP, ou “partículas massivas de interação fraca”.
Acredita-se que cada WIMP seja tanto matéria quanto antimatéria; assim, quando duas delas se encontrassem, deveriam se aniquilar mutuamente, como acontece com a matéria e a antimatéria. Essas explosões criariam luzes de raios gama, vistas em grande quantidade no centro de nossa galáxia em dados do telescópio espacial de raios gama Fermi. As explosões também poderiam criar partículas de raios cósmicos, que são elétrons e pósitrons de alta energia que por sua vez sairiam do núcleo da Via Láctea em alta velocidade e às vezes colidiriam com partículas de luz estelar, o que lhes daria energia extra e as colocaria na faixa dos raios gama.
Pela primeira vez, cientistas detectaram luzes que se adequam às previsões para esse segundo processo, chamado de espalhamento Compton inverso, que deveria produzir raios gama mais distantes pelo espaço e entrar em um grupo diferente de energias do que os que foram liberados diretamente pela aniquilação da matéria escura.
“Esse trabalho deixa bem claro que um componente Compton inverso adicional de raios gama está presente”, declara Dan Hooper, astrofísico do Laboratório do Acelerador Nacional Fermi, que não se envolveu no estudo, mas que foi o primeiro a apontar que um sinal de matéria escura poderia estar presente nos dados do telescópio Fermi. Um componente desses viria da mesma matéria escura que produz o sinal primário de raios gama.
Cientistas da Universidade da Califórnia, Anna Kwa e Kevork Abazajian apresentaram o novo estudo em 23 de outubro no Quinto Simpósio Internacional Fermi em Nagoya, no Japão.

Mas nenhuma dessas intrigantes luzes de raios gama significa que foi encontrada matéria escura. Outros processos astrofísicos, como estrelas giratórias chamadas de pulsares, podem criar esses dois tipos de sinal. Há muito tempo a equipe oficial do telescópio Fermi evita tirar conclusões sobre a matéria escura com base em seus dados. Mas no simpósio da semana passada, o grupo apresentou sua própria análise da misteriosa luz de raios gama e concluiu que, apesar de múltiplas hipóteses se adequarem aos dados, a matéria escura se encaixa melhor. Simona Murgia, astrofísica da Universidade da Califórnia, e membro da equipe que analisou o centro galáctico, apresentou as descobertas do grupo.
Ela declara que a complexidade do centro galáctico torna difícil saber com certeza como o excesso de raios gama surgiu, e se a luz poderia vir de fontes mundanas “de fundo”. No entanto, a detecção de excessos estendidos nessa região do céu é complicada por nossa compreensão incompleta do fundo.
A interpretação da matéria escura seria mais provável se astrônomos conseguissem encontrar evidências semelhantes da aniquilação de WIMPs em outras galáxias, como as cerca de 24 galáxias-anãs que orbitam a Via Láctea. Os experimentos de detecção direta na Terra pretendem capturar WIMPS nas ocasiões extremamente raras em que elas atingem átomos de matéria comum. Até agora, porém, nenhum desses experimentos encontrou qualquer evidência de matéria escura. Em vez disso, eles reduziram gradualmente o número de tipos possíveis de WIMPS que poderiam existir.  
Outros experimentos orbitais, como o Espectrômetro Alfa Magnético (AMS) na Estação Espacial Internacional (ISS), que detecta raios cósmicos, também não conseguiram encontrar provas convincentes de matéria escura.
De fato, os resultados do AMS parecem conflitar com as explicações mais básicas que conectam a matéria escura às observações do Fermi. Novas evidências são necessárias para corroborarem tal interpretação.

Um artigo sobre a pesquisa foi enviado para o periódico Physical Review Letters.

Fonte: Scientific American

sábado, 1 de novembro de 2014

Antigas estrelas indicam evolução da Via Láctea

Nós habitamos uma gigante galáxia em forma de espiral, que brilha com centenas de bilhões de estrelas, um colosso tão massivo que pelo menos duas dúzias de galáxias revolvem a seu redor.

M92

© NOAO (M92)

Mas como surgiu essa imensa entidade? Indícios vêm das estrelas mais antigas da Via Láctea, aquelas localizadas no halo estelar, o componente galáctico que envolve o brilhante disco que abriga o Sol.
Estrelas do halo se destacam por terem se formado antes de supernovas espalharem uma grande quantidade de elementos pesados pela galáxia, e por isso esse tipo de estrela tem pouco ferro. Os membros mais brilhantes do halo são aglomerados estelares globulares pobres em ferro, objetos espetaculares que podem abrigar centenas de milhares de estrelas ancestrais em uma esfera com apenas algumas dúzias de anos-luz de diâmetro.
Agora, o telescópio espacial Hubble descobriu que uma estrela individual do halo é ainda mais antiga que esses conjuntos estelares e que, portanto, é uma cápsula do tempo ideal que existe desde o nascimento da Via Láctea. Apesar de sua importância, o halo estelar constitui apenas um milésimo da massa total da Via Láctea. Ainda que o halo se estenda muito além do disco, a maioria de suas estrelas fica mais perto do centro galáctico do que nós, então aglomerados globulares são numerosos em constelações na direção do centro galáctico, como Escorpião e Sagitário.
Don VandenBerg, astrônomo da University of Victoria na Columbia Britânica, e seus colegas, avaliaram a idade de duas estrelas do halo na constelação de Libra. Nenhuma delas pertence a um aglomerado globular, e ambas são subgigantes, estrelas que estão fazendo a transição da fase da sequência principal, em que nosso Sol brilha, para fase de gigante vermelha, quando uma estrela fica muito maior. Os astrônomos escolhem essas estrelas porque, a uma dada temperatura, subgigantes de idades diferentes têm luminosidades diferentes, então medir o mais recente revela o anterior.
A equipe de VandenBerg usou o Hubble para determinar que uma das estrelas do halo, chamada HD 140283, fica a aproximadamente 190 anos-luz da Terra. A distância revelou quanta luz a estrela emite. Modelos de evolução estelar indicam que a estrela deveria atingir essa luminosidade aos 14,3 bilhões de anos. Isso é um pouco mais que os 13,8 bilhões de anos do Universo, mas a idade estelar tem uma margem de incerteza de 0,8 bilhão de anos, assim não existe conflito.
A estrela é muito mais velha que um aglomerado globular com a mesma composição química. O aglomerado, chamado de M92, fica na constelação de Hércules e tem cerca de 12,5 bilhões de anos, 1,5 bilhão de anos a menos que a estrela. Tanto o aglomerado quanto a estrela têm a mesma baixa quantidade de ferro, cerca de 1/250 a do Sol.
Essa é a mesma história da outra estrela, chamada de HD 132475, que é mais jovem e mais rica em ferro. Ela fica a aproximadamente de 320 anos-luz de distância, e tem cerca de 12,6 bilhões de anos, quase um bilhão de anos mais velha que o aglomerado M5, que tem 1/30 do ferro de nosso Sol, a mesma quantidade da estrela.
Assim,  as duas estrelas parecem ter se formado muito antes dos aglomerados com que se parecem.
No princípio, a galáxia provavelmente não conseguia produzir grandes aglomerados, mas apenas estrelas individuais e pequenos grupos estelares.
Estrelas se formam quando nuvens de gás colapsam. Mas uma nuvem deve estar fria para colapsar; na Via Láctea atual, átomos de carbono e oxigênio irradiam calor, deixando nuvens com temperaturas gélidas. Mas a galáxia primitiva tinha pouco carbono ou oxigênio. Como resultado disso, algo tão grandioso quanto um aglomerado globular só poderia surgir após supernovas terem lançado esses dois elementos cruciais ao espaço. Portanto, os primeiros objetos que se formaram na Via Láctea foram estrelas individuais.
De qualquer forma, a nova descoberta se baseia em apenas duas estrelas. Felizmente, a situação deve melhorar em breve, porque a sonda Gaia da ESA (Agência Espacial Europeia) está medindo a distância de milhões de estrelas, incluindo subgigantes no halo.
Até o final da década, os dados da Gaia devem confirmar ou refutar o novo trabalho. Aglomerados estelares são objetos incríveis quando vistos por um telescópio amador, mas os melhores indícios da época inicial da galáxia podem vir das estrelas solitárias espalhadas por seu halo.

Um artigo foi publicado no periódico The Astrophysical Journal.

Veja outras informações em A estrela mais velha já conhecida.

Fonte: Scientific American

sexta-feira, 31 de outubro de 2014

Hubble capta “luz fantasma” de galáxias mortas

O telescópio espacial Hubble detectou o brilho tênue e fantasmagórico de estrelas expelidas de galáxias antigas que foram gravitacionalmente rasgadas há vários bilhões de anos atrás.

aglomerado de galáxias Abell 2744

© NASA/ESA/IAC/STScI (aglomerado de galáxias Abell 2744)

O caos aconteceu a 4 bilhões de anos-luz de distância, dentro de uma grande coleção de quase 500 galáxias apelidada de "Aglomerado de Pandora", também conhecido como Abell 2744.

As estrelas espalhadas já não estão vinculadas a qualquer uma galáxia, derivam livremente entre galáxias no aglomerado. Ao observar a luz destas estrelas "órfãs", os astrônomos do Hubble reuniram provas forenses que sugerem que até seis galáxias foram rasgadas em pedaços dentro do aglomerado ao longo de 6 bilhões de anos.

Os modelos computacionais da dinâmica gravitacional entre galáxias num enxame sugerem que galáxias tão grandes como a nossa Via Láctea são as prováveis candidatas à origem das estrelas. As galáxias condenadas teriam sido despedaçadas se mergulhadas através do centro de um aglomerado de galáxias onde as forças gravitacionais de maré são mais fortes. Os astrônomos há muito que teorizam que a luz destas estrelas espalhadas podia ser detectável após a desagregação destas galáxias. No entanto, o brilho previsto das estrelas é muito tênue e foi, portanto, um desafio para identificar.

"Os dados do Hubble que revelaram a luz fantasmagórica são passos importantes para a compreensão da evolução dos aglomerados de galáxias," afirma Ignacio Trujillo, do Instituto de Astrofísica das Canárias, em Santa de Cruz de Tenerife, Espanha. "Também é incrivelmente importante porque encontramos o brilho usando as capacidades únicas do Hubble."

A equipe estima que a luz combinada de aproximadamente 200 milhões de estrelas marginalizadas contribui com aproximadamente 10% do brilho do enxame.

"Os resultados estão de acordo com o que foi previsto acontecer dentro de gigantescos aglomerados de galáxias," afirma Mireia Montes, também do mesmo instituto, autora principal da pesquisa.

Porque estas estrelas extremamente tênues são mais brilhantes nos comprimentos de onda do infravermelho próximo, a equipe enfatizou que este tipo de observação só poderia ser alcançado com a sensibilidade infravermelha do Hubble para radiação extraordinariamente tênue.

As medições do Hubble determinaram que as estrelas "fantasmas" são ricas em elementos mais pesados como o oxigênio, o carbono e o azoto. Isto significa que as estrelas espalhadas devem ser estrelas de segunda ou terceira geração enriquecidas com os elementos fabricados nos núcleos de estrelas de primeira geração do Universo. As galáxias espirais, como as que se acredita terem sido dilaceradas, podem sustentar a formação de estrelas quimicamente enriquecidas.

Com uma massa superior a 4 trilhões de sóis, Abell 2744 é um dos alvos do programa Frontier Fields. Este ambicioso esforço de três anos junta o Hubble com outros grandes observatórios da NASA para observar aglomerados de galáxias e ajudar os astrônomos a estudar o Universo remoto. Os aglomerados de galáxias são tão massivos que a sua gravidade desvia a luz que passa através deles, ampliando, aumentando e distorcendo a luz num fenômeno chamado lente gravitacional. Esta propriedade é explorada e os aglomerados de galáxias são utlizados como uma lupa para ampliar as imagens de galáxias ainda mais distantes que de outra forma seriam demasiado fracas para observação.

A equipe de Montes usou dados do Hubble para examinar o ambiente do próprio aglomerado. Existem outros cinco aglomerados de galáxias no programa Frontier Fields, e a equipe planeja procurar a misteriosa "luz fantasma" também nesses aglomerados.

Um artigo sobre a pesquisa foi publicado na revista The Astrophysical Journal.

Outras informações acesse a notícia veiculada neste blog, cujo título é:

Encontrada galáxia extremamente distante através de lente gravitacional.

Fonte: Space Telescope Science Institute

Sismos gigantes em estrela de nêutrons

As estrelas de nêutrons resultam do colapso gravitacional de estrelas maciças e luminosas. A certa altura na evolução destas estrelas, o seu núcleo deixa de produzir energia suficiente para sustentar o seu próprio peso.

ruptura momentânea da crosta de um magnetar

© NASA/Goddard Space Flight Center/S. Wiessinger (ruptura momentânea da crosta de um magnetar)

Quando isto acontece, e numa fração de segundo, o núcleo sofre um colapso gravitacional, ou seja, é esmagado pela sua própria gravidade, sendo comprimido até atingir uma densidade semelhante à de um núcleo atômico. O resultado é uma estrela de nêutrons, com 20 km de diâmetro e uma temperatura de milhões de Kelvin. A conservação do momento angular durante o colapso faz com que a estrela de nêutrons recém formada gire sobre si própria várias dezenas de vezes por segundo.

Também o campo magnético do núcleo da estrela original aumenta de intensidade ao ser comprimido. Uma estrela de nêutrons típica tem um campo magnético 1 trilhão de vezes mais intenso do que o da Terra e conduz o plasma existente na sua vizinhança ao longo das linhas do campo até este colidir em 2 regiões opostas na superfície. A colisão aquece o plasma nestas regiões a temperaturas muito elevadas dando origem à emissão intensa de radiação em várias bandas do espectro eletromagnético. Se a orientação da estrela de nêutrons é adequada, a sua rotação vira estas regiões emissoras na direção da Terra, uma vez por cada rotação, como se se tratasse de um farol. Esta estrela de nêutrons é denominada pulsar.

Quando certas condições durante o colapso gravitacional se conjugam, por exemplo, se o núcleo da estrela original tem uma velocidade de rotação inicial muito elevada, o campo magnético da estrela de nêutrons que se forma cresce de forma exponencial, atingindo uma intensidade mil vezes superior ao de uma estrela de nêutrons normal. Estas estrelas de nêutrons têm propriedades especiais e são designadas por magnetar. Até à data conhecem-se apenas 23 magnetares na Via Láctea. Pensa-se que existem apenas durante algumas centenas de milhares de anos. Durante este período o campo magnético dissipa parte substancial da sua energia inicial até que o que resta é uma estrela de nêutrons normal.

Tanto quanto foi possível determinar, através de modelos teóricos confrontados com observações, as estrelas de nêutrons, e os magnetares também, têm uma estrutura relativamente simples. A uma atmosfera de poucos centímetros formada por um plasma a milhões de Kelvin, segue-se uma crosta de 2 km com uma estrutura cristalina formada por íons metálicos, de ferro e níquel principalmente, através da qual fluem com partículas como elétrons. Suspeita-se que o interior da estrela é formado por um superfluído, um fluído com viscosidade zero, de partículas elementares, principalmente nêutrons e, talvez, na sua região mais central, quarks, as partículas constituintes dos prótons e dos nêutrons. O campo magnético das estrelas de nêutrons deve-se a um poderoso efeito de dínamo devido às cargas elétricas em movimento, em especial na crosta cristalina, conjugadas com a rotação rapidíssima da estrela. O mesmo efeito, mas com uma intensidade muito menor, é observado na Terra. No nosso planeta, no entanto, não é a crosta que gera o efeito de dínamo mas antes uma camada exterior do núcleo, fluida e condutora de eletricidade, constituída fundamentalmente por ferro, níquel e vestígios de outros elementos.

Nas magnetares, a intensidade do campo magnético é tão grande, e este está de tal forma ancorado na crosta da estrela, onde alterações no campo magnético provocam tensões, e ajustes na forma da crosta provocam a reconfiguração do campo magnético. Este fenômeno assemelha-se aos tremores de terra no nosso planeta, mas não é devido ao atrito de placas tectônicas, mas antes à interação da crosta com o campo magnético. Forçada pelo campo magnético, a crosta tem rupturas momentâneas que reorganizam o campo magnético e provocam a dissipação de energia, gerando sismos estelares. A energia libertada é tão grande que toda a estrela vibra depois de um destes eventos. Em teoria, estas vibrações deveriam deixar uma impressão detectável nos raios X e gama libertados pela magnetar. Isto foi precisamente o que uma equipe de cientistas observou numa magnetar utilizando o telescópio Fermi, que observa fontes de raios gama.

Em 2009, o Fermi detectou várias erupções de raios gama provenientes da magnetar SGR J1550−5418, localizada a 15 mil anos-luz na constelação do Altar. O magnetar manteve-se quiescente até Outubro 2008. Nesse momento entrou num período de grande atividade, com numerosas erupções, que terminou em Abril de 2009. As erupções mais intensas libertaram tanta energia como a produzida pelo Sol em todos os comprimentos de onda durante 20 anos! A atividade da estrela foi visível também em raios X de alta energia, detectados pelos telescópios SWIFT e Rossi X-ray Timing Explorer, ambos da NASA, que observaram centenas de erupções de raios X e gama. Analisando os raios gama libertados pela magnetar durante este período, os cientistas detectaram um padrão que mostra que as erupções foram acompanhadas por vibrações na crosta da estrela equivalentes a um tremor de terra de magnitude 23. Por comparação, o tremor de terra mais intenso de que há registo foi no Chile, em 1960, com magnitude 9,5. Note-se que esta escala é logarítmica e, no caso, uma diferença de 2 magnitudes corresponde a mil vezes a energia dissipada. Assim, um tremor de terra de magnitude 23 corresponde a uma dissipação de energia mais de um quintilhão de vezes superior ao tremor de terra do Chile.

Esta descoberta é de suma importância no estudo das estrelas de nêutrons e das magnetares em particular. Os teóricos desenvolveram vários modelos para descrever a estrutura interna das estrelas de nêutrons mas sem observações como esta, em que foi possível quantificar as vibrações provocadas na superfície da estrela em função da energia libertada pela reconfiguração do campo magnético, seria difícil determinar qual dos modelos está correto. As densidades que prevalecem no interior das estrelas de nêutrons não podem ser reproduzidas em laboratório na Terra pelo que este tipo de observações indiretas fornecem pistas importantes para compreender a sua estrutura interna.

Um artigo descrevendo a pesquisa foi publicado no The Astrophysical Journal.

Fonte: Goddard Space Flight Center

Um espectro à leste da Nebulosa do Véu

Formas e rostos assustadores são uma marca da temporada de Halloween. Eles também assombram na imagem detalhada cósmica da parte leste da Nebulosa do Véu.

Nebulosa do Véu

© Ken Crawford (Nebulosa do Véu)

A Nebulosa do Véu, descoberta em 5 de setembro 1784 por William Herschel, por si só é uma grande remanescente de supernova, ou seja, a nuvem de detritos em expansão da explosão mortal de uma estrela massiva. As componentes da Nebulosa do Véu são: o Véu Ocidental que é constituído pela NGC 6960; o Véu Oriental que é constituído pelas NGC 6992, NGC 6995 e IC 1340; e o Triângulo de Pickering, a mais brilhante na borda norte central.

Enquanto que o Véu tem uma forma aproximadamente circular cobrindo perto de 3 graus no céu, na constelação de Cygnus, essa porção da parte leste do Véu se espalha por cerca de 0,5 grau, ou seja, aproximadamente o tamanho da Lua Cheia. Isso se traduz em um tamanho de 12 anos-luz para o Véu a uma distância estimada de 1.400 anos-luz da Terra. Na composição dos dados de imagem registrados através dos filtros de banda curta, a emissão dos átomos de hidrogênio na remanescente é mostrada em vermelho com forte emissão de átomos de oxigênio em tonalidades azul esverdeada. Na parte oeste do Véu, localiza-se outra aparição sazonal, a NGC 6960, conhecida como Nebulosa Vassoura da Bruxa, vista na imagem abaixo.

Nebulosa Vassoura da Bruxa

© Martin Pugh (Nebulosa Vassoura da Bruxa)

Fonte: NASA

quinta-feira, 30 de outubro de 2014

Um impacto de caos cósmico no nascimento estelar

De acordo com um novo estudo que usa dados do observatório de raios X Chandra da NASA, o mesmo fenômeno que faz com que uma viagem de avião seja acidentada, turbulência, pode ser a solução para um mistério de longa data acerca do nascimento das estrelas, ou da sua ausência.

aglomerados de galáxias de Perseu e de Virgem

© NASA/CXC/Stanford/I. Zhuravleva (aglomerados de galáxias de Perseu e de Virgem)

Os aglomerados de galáxias são os maiores objetos do Universo, mantidos juntos pela gravidade. Estes colossos contêm centenas ou milhares de galáxias individuais que estão imersas em gás com temperaturas de milhões de graus.

Este gás quente, que é o maior componente dos aglomerados de galáxias sem contar com a matéria escura invisível, brilha em raios X que o Chandra consegue detectar. Ao longo do tempo, o gás nos centros destes aglomerados arrefece o suficiente para que as estrelas se formem a taxas incríveis. No entanto, não é o que os astrônomos observam em muitos aglomerados de galáxias.

"Nós sabiamos que de alguma forma o gás nos aglomerados está sendo aquecido para evitar com que arrefeça e forme estrelas. A questão era exatamente como," afirma Irina Zhuravleva da Universidade de Stanford em Palo Alto, no estado americano da Califórnia, que liderou o estudo. "Pensamos que encontramos evidências de que o calor é canalizado a partir de movimentos turbulentos, que nós identificamos de assinaturas registadas em imagens de raios X."

Estudos anteriores mostram que buracos negros supermassivos, centrados em grandes galáxias no meio de aglomerados de galáxias, bombeiam grandes quantidades de energia ao seu redor em poderosos jatos de partículas energéticas que criam cavidades no gás quente. O Chandra e outros telescópios de raios X já tinham detectado anteriormente estas cavidades gigantes.

A pesquisa mais recente por Zhuravleva e colegas fornecem novas informações sobre o modo como a energia pode ser transferida a partir destas cavidades até ao gás circundante. A interação destas cavidades com o gás pode estar gerando turbulência, ou movimento caótico, que depois se dispersa para manter o gás quente durante bilhões de anos.

"Quaisquer movimentos de gás a partir da turbulência acabarão por decair, libertando a sua energia para o gás," afirma o co-autor Eugene Churazov, do Instituto Max Planck para Astrofísica, em Munique, Alemanha. "Mas o gás não vai arrefecer se a turbulência for forte o suficiente e se for criada regularmente."

A evidência da turbulência vem de dados do Chandra sobre os dois enormes aglomerados de galáxias de Perseu e Virgem. Ao analisar dados de observação de cada aglomerado, a equipe foi capaz de medir flutuações na densidade do gás. Esta informação permitiu-lhes estimar a quantidade de turbulência no gás.

"O nosso trabalho dá-nos uma estimativa de quanta turbulência é gerada nestes aglomerados," comenta Alexander Schekochihin da Universidade de Oxford no Reino Unido. "Pelo que determinamos até agora, existe turbulência suficiente para balançar o arrefecimento do gás."

Estes resultados suportam o modelo de regeneração que envolve buracos negros supermassivos nos centros de aglomerados de galáxias. O gás arrefece e cai na direção do buraco negro a um ritmo acelerado, fazendo com que o buraco negro aumente a ejeção dos seus jatos, o que produz cavidades e impulsiona a turbulência no gás. Esta turbulência eventualmente dissipa-se e aquece o gás.

Apesar de uma fusão entre dois aglomerados de galáxias também podem produzir turbulência, os pesquisadores pensam que as erupções de buracos negros supermassivos são a principal fonte desta agitação cósmica nos centros densos de muitos aglomerados de galáxias.

O estudo foi publicado na última edição online da revista Nature.

Fonte: NASA

Sombra de lua sobre a grande mancha de Júpiter

O telescópio espacial Hubble consegue dar aos astrônomos visões maravilhosas e algumas interessantes dos planetas externos do Sistema Solar.

sombra de Ganimedes sobre a grande mancha de Júpiter

© Hubble (sombra de Ganimedes sobre a grande mancha de Júpiter)

Mas nada se compara a imagem acima que mostra um planeta gigante olhando para você! Nessas imagens do Hubble, a sombra da lua joviana Ganimedes é registrada cruzando o centro da Grande Mancha Vermelha, uma gigantesca e eterna tempestade que ocorre na atmosfera do planeta. Essa composição deu a Júpiter uma estranha aparência, parecendo que ele tem uma pupila no centro do seu olho com cerca de 16.000 quilômetros de diâmetro.

Agora, seria realmente preocupante se esse olho começasse a piscar!

Fonte: NASA

quarta-feira, 29 de outubro de 2014

Corrente de gás num sistema binário de estrelas

Com o auxílio do ALMA astrônomos detectaram, pela primeira vez, uma corrente de gás que flui desde um disco externo massivo até ao interior de um sistema binário de estrelas.

ilustração do sistema binário de estrelas GG Tauri-A

© ESO/L. Calçada (ilustração do sistema binário de estrelas GG Tauri-A)

Esta configuração, nunca observada até agora, pode ser responsável por manter um segundo disco de formação planetária menor, que teria desaparecido completamente há muito tempo. Metade das estrelas do tipo solar nascem em sistemas binários e, por isso, esta descoberta tem consequências importantes na procura de exoplanetas.

Um grupo de pesquisa liderado por Anne Dutrey do Laboratório de Astrofísica de Bordeaux, em França, e CNRS, utilizaram o Atacama Large Millimeter/submillimeter Array (ALMA) para observar a distribuição de gás e poeira num sistema estelar múltiplo chamado GG Tau-A. Ele objeto faz parte de um sistema estelar múltiplo mais complexo chamado GG Tauri. Observações recentes de GG Tau-A, obtidas com o VLT, revelaram que uma das suas estrelas, GG Tau Ab, a que não se encontra rodeada por um disco, é, ela própria, um sistema binário próximo, constituído pelas estrelas GG Tau-Ab1 e GG Tau-Ab2. Este fato introduz uma quinta componente no sistema GG Tau. O GG Tau-A tem apenas alguns milhões de anos de idade e situa-se a cerca de 450 anos-luz de distância da Terra na constelação do Touro.
Tal como uma roda dentro de outra roda, GG Tau-A contém um disco exterior maior, que circunda todo o sistema, e um disco interior menor que se situa em torno da estrela central. Este segundo disco tem uma massa equivalente à de Júpiter e a sua presença tem constituído um mistério para os astrônomos, uma vez que este objeto se encontra perdendo matéria para a estrela central a uma taxa tal que deveria já ter-se esgotado completamente há muito tempo atrás.
Ao observar estas estruturas com o auxílio do ALMA, a equipe descobriu acúmulos de gás na região que se situa entre os dois discos. As novas observações sugerem que existe material que está sendo transferido do disco exterior para o disco interior, criando um tipo de corda de salvamento entre os dois. Um resultado anterior do ALMA mostrou um exemplo de estrela individual onde matéria flui para o seu interior vindo de uma parte exterior do disco que rodeia a estrela.
“Embora em simulações de computador já se tivesse previsto matéria fluindo na região entre os dois discos, é a primeira vez que tal fenômeno é efetivamente observado. O fato de termos detectado estas acumulações de matéria, indica-nos que o material se desloca entre os dois discos, permitindo que um se alimente do outro”, explica Dutrey. “Estas observações demonstram que o material do disco exterior consegue sustentar o disco interior durante muito tempo, fato este que tem consequências importantes na potencial formação planetária do sistema”.
Os planetas nascem da matéria que sobra da formação da estrela. Trata-se de um processo lento, o que significa que a presença de um disco que se mantenha durante muito tempo é um pré-requisito para a formação de planetas. Se o processo de “alimentação” do disco interior agora observado pelo ALMA ocorrer em outros sistemas estelares múltiplos, esta descoberta aponta-nos para um vasto número de novas localizações potenciais para encontrar planetas no futuro.
A primeira fase da procura de exoplanetas foi dirigida a estrelas individuais, como o Sol. Uma vez que as órbitas em torno de estrelas binárias são mais complexas e menos estáveis, pensava-se que a formação de planetas nestes sistemas seria mais complicada do que em torno de estrelas individuais. Mais recentemente mostrou-se que uma grande fração de planetas gigantes orbitam sistemas binários de estrelas. Agora, os pesquisadores começaram a investigar a possibilidade de planetas orbitarem estrelas individuais inseridas em sistemas estelares múltiplos. Esta nova descoberta apoia a possível existência de tais planetas, fornecendo aos “caçadores” de exoplanetas novos campos por explorar.
Emmanuel Di Folco, co-autor do artigo científico que descreve estes resultados, conclui: “Quase metade das estrelas do tipo solar nasceram em sistemas binários, o que significa que acabamos de descobrir um mecanismo para sustentar a formação planetária que pode ser aplicado a um número significativo de estrelas da Via Láctea. As nossas observações são um enorme passo em frente na verdadeira compreensão da formação planetária”.

Estes resultados serão publicados amanhã na revista Nature.

Fonte: ESO

segunda-feira, 27 de outubro de 2014

Terra tem água mais antiga que o Sol

A água foi crucial no desenvolvimento da vida na Terra, pelo que a identificação da sua origem poderá ajudar a estimar a probabilidade da existência de vida em outros planetas.

a água na nuvem molecular progenitora do Sol e na incorporação nos planetas

© NRAO/Bill Saxton (a água na nuvem molecular progenitora do Sol e na incorporação nos planetas)

Uma equipe de pesquisadores abordou esta questão num estudo, e concluiu que uma parte importante da água no Sistema Solar poderá ter vindo de pequenos fragmentos de gelo de água formados no espaço interestelar. Esta descoberta sugere que a água é um ingrediente amplamente disponível para a formação de planetas, o que tem profundas implicações na abundância de sistemas planetários com planetas potencialmente habitáveis.

A água está em toda a parte no Sistema Solar. Podemos encontrá-la não só nos oceanos da Terra, mas também no interior de crateras permanentemente sombrias nas regiões polares de Mercúrio, no regolito da superfície da Lua, nas calotes polares de Marte, nas luas geladas dos gigantes gasosos, nos gelos dos cometas, ou nas rochas dos asteroides carbonáceos. Sendo os objetos mais primitivos do Sistema Solar, os cometas e os asteroides são particularmente interessantes porque retêm os traços gerais das condições presentes nos primórdios da formação dos planetas. Contudo, apesar de fornecerem informações inestimáveis acerca da distribuição de compostos voláteis logo após o nascimento do Sol, a origem da água nestes objetos permaneceu até hoje um mistério.

No início da formação do Sistema Solar, o Sol encontrava-se rodeado por um disco protoplanetário, a partir do qual viriam a emergir a Terra e os outros planetas. No entanto, até agora, os cientistas não sabiam se as partículas de gelo, que nesta época vagueavam ao redor do Sol, seriam as mesmas da nuvem molecular progenitora da nossa estrela, ou se esta água interestelar teria sido destruída e recriada por reações químicas no interior do disco protoplanetário.

“Porque é que isto é importante? Se nos primórdios do Sistema Solar, a água foi principalmente herdada do gelo proveniente do espaço interestelar, então é provável que gelos semelhantes, junto com a matéria orgânica prebiótica que contêm, sejam abundantes na maioria ou em todos os discos protoplanetários, em torno de estrelas em formação”, explicou Conel Alexander, pesquisador do Instituto Carnegie de Washington, nos Estados Unidos, e coautor deste trabalho. “Mas se a água presente nos primórdios do Sistema Solar foi, em grande parte, resultante de processamento químico local, durante o nascimento do Sol, então é possível que a abundância de água nos sistemas planetários em formação varie consideravelmente, o que obviamente teria implicações no potencial para o aparecimento de vida em outros locais.”

Para determinarem o cenário mais provável, os pesquisadores focaram-se no hidrogênio e no seu isótopo mais pesado, o deutério. A diferença de massa influencia de forma sutil no comportamento dos diferentes isótopos nas reações químicas, pelo que a razão de deutério/hidrogênio (D/H) nas moléculas de água varia de acordo com as condições em que estas são criadas.

Como no espaço interestelar a água é formada a temperaturas muito baixas e sob intensa radiação cósmica, as moléculas de água interestelares tendem a ter uma razão D/H cerca de seis vezes superior às encontradas na Terra e em outros corpos do Sistema Solar. Para esclarecerem a origem do deutério no Sistema Solar, os pesquisadores criaram modelos que simulam um disco protoplanetário desprovido de deutério. Partindo desta condição inicial, a equipe testou a formação de água com deutério, também conhecida por água pesada, durante um período de um milhão de anos. O objetivo deste exercício foi verificar se o sistema poderia atingir as razões D/H observadas em amostras de meteoritos, nos oceanos terrestres, e nos cometas.

“Deixamos a química evoluir ao longo de um milhão de anos, o tempo de vida típico de um disco protoplanetário, e descobrimos que os processos químicos no disco eram ineficientes na formação de água pesada por todo o Sistema Solar”, afirmou Ilsedore Cleeves, pesquisadora da Universidade de Michigan, nos Estados Unidos, e primeira autora do trabalho. “O que isto implica é que, se o disco planetário não produziu a água, então herdou-a. Consequentemente, uma fração da água no nosso Sistema Solar é mais antiga que o Sol.”

Cleeves e colegas estimaram que 7 a 50% da água presente nos nossos oceanos terá tido origem no meio interestelar! “Estes resultados têm implicações bastante emocionantes”, acrescenta Cleeves. “Se a formação da água fosse um processo local, a quantidade de água e de outros ingredientes químicos importantes, necessários para a formação da vida, poderia variar de sistema para sistema. No entanto, porque alguns dos gelos quimicamente ricos da nuvem molecular são diretamente herdados, os jovens sistemas planetários têm assim acesso a estes importantes ingredientes.”

Fonte: Science

sexta-feira, 24 de outubro de 2014

Estudo observa que Titã brilha ao anoitecer e ao amanhecer

Novos mapas da lua de Saturno, Titã, revelam grandes manchas de gases que brilham perto dos pólos norte e sul. Estas regiões estão curiosamente desviadas dos pólos, para Este ou Oeste, quando o amanhecer surge na região a Sul e enquanto a noite cai na região a Norte.

zonas de dois gases brilham na atmosfera de Titã

© NRAO/AUI/NSF (zonas de dois gases brilham na atmosfera de Titã)

A imagem acima mostra no alto da atmosfera de Titã, grandes zonas de dois gases brilham perto do pólo norte, no lado do anoitecer da lua, e perto do pólo sul, no lado do amanhecer. As cores mais brilhantes indicam sinais mais fortes dos dois gases, HNC (esquerda) e HC3N (direita); os tons avermelhados indicam sinais menos pronunciados.

O par de manchas foi descoberto por uma equipe internacional de cientistas que investigavam a composição química da atmosfera de Titã.

"Esta é uma descoberta inesperada e potencialmente revolucionária," afirma Martin Cordiner, astroquímico que trabalha no Centro de Voo Espacial Goddard da NASA, autor principal do estudo. "Estes tipos de variações de leste para oeste nunca foram antes vistos nos gases atmosféricos de Titã. A explicação da sua origem apresenta-nos um novo e fascinante problema."

O mapeamento vem de observações feitas pelo ALMA (Atacama Large Millimeter/submillimeter Array), uma rede de antenas de alta precisão no Chile. Nos comprimentos de onda utilizados por essas antenas, as áreas ricas em gás da atmosfera de Titã brilham intensamente. E graças à sensibilidade do ALMA, os pesquisadores foram capazes de obter mapas espaciais dos elementos químicos na atmosfera de Titã a partir de uma observação "instantânea" que durou menos de 3 minutos.

Há muito que a atmosfera de Titã é de interesse, pois atua como uma fábrica química, usando a energia do Sol e do campo magnético de Saturno para produzir uma grande variedade de moléculas orgânicas, ou à base de carbono. O estudo desta química complexa pode fornecer mais dados sobre as propriedades da atmosfera primitiva da Terra, que pode ter partilhado muitas das características da atmosfera atual de Titã.

Neste estudo, os cientistas focaram-se em duas moléculas orgânicas, ácido isocianídrico (HNC) e cianoacetileno (HC3N), que são formadas na atmosfera de Titã. Em altitudes mais baixas, o HC3N aparece concentrado acima dos pólos norte e sul. Estes resultados são consistentes com observações feitas pela sonda Cassini, que encontrou uma zona nublada e altas concentrações de alguns gases sobre qualquer dos pólos que atravessa a estação de Inverno em Titã.

A surpresa surgiu quando os pesquisadores compararam as concentrações dos gases em diferentes níveis da atmosfera. Nas altitudes mais elevadas, as bolsas de gás pareciam desviar-se dos pólos. Estes locais desviados do pólo são inesperados porque os rápidos ventos na atmosfera média de Titã movem-se na direção Este-Oeste, formando zonas parecidas às bandas de Júpiter, embora muito menos pronunciadas. No interior de cada zona, os gases atmosféricos deviam, em grande parte, misturar-se completamente.

Os pesquisadores não têm ainda uma explicação óbvia para estas descobertas.

"Parece incrível que estes mecanismos químicos possam estar operarando em escalas de tempo rápidas o suficiente para provocar 'bolsas' reforçadas das moléculas observadas," comenta Conor Nixon, cientista planetário em Goddard e co-autor do estudo. "Seria de esperar que as moléculas fossem rapidamente misturadas ao redor do globo pelos ventos de Titã."

De momento, os cientistas estão considerando uma série de explicações possíveis, incluindo efeitos térmicos, padrões de circulação atmosférica até então desconhecidos, ou a influência do poderoso campo magnético de Saturno, grande o suficiente para englobar Titã.

Espera-se que mais observações melhorem a compreensão da atmosfera e dos processos em curso em Titã e em outros objetos do Sistema Solar.

O eswtudo foi publicado na edição online da revista The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

quarta-feira, 22 de outubro de 2014

Encontradas duas famílias de cometas em torno de estrela próxima

O instrumento HARPS, em operação no Observatório de La Silla do ESO no Chile, foi utilizado no censo mais completo feito até hoje de cometas em torno de outra estrela.

ilustração de exocometas em torno de Beta Pictoris

© ESO/L. Calçada (ilustração de exocometas em torno de Beta Pictoris)

Uma equipe de astrônomos franceses estudaram quase 500 cometas individuais que orbitam a estrela Beta Pictoris e descobriram que estes objetos pertencem a duas famílias distintas de exocometas: exocometas velhos que fizeram já várias passagens próximo da estrela e exocometas mais jovens que se formaram provavelmente da recente destruição de um ou mais objetos maiores.

Beta Pictoris é uma estrela jovem situada a cerca de 63 anos-luz de distância do Sol. Tem apenas 20 milhões de anos de idade e encontra-se rodeada por um disco de material enorme, um sistema planetário jovem muito ativo onde o gás e a poeira são produzidos tanto pela evaporação de cometas como pela colisão de asteroides.
Flavien Kiefer (IAP/CNRS/UPMC), autor principal do novo estudo explica: ”Beta Pictoris é um alvo muito interessante! Observações detalhadas dos seus exocometas fornecem pistas que nos ajudam a compreender que processos ocorrem neste tipo de sistemas planetários jovens”.
Durante quase 30 anos os astrônomos observaram variações sutis na radiação emitida por Beta Pictoris, que se pensava serem causadas pela passagem de cometas em frente da própria estrela. Os cometas são corpos pequenos, com alguns quilômetros de tamanho, ricos em gelos que se evaporam quando o corpo se aproxima da estrela, produzindo enormes caudas de gás e poeira, que podem absorver alguma da radiação que passa através delas. A fraca luz emitida pelos exocometas é ofuscada pela radiação da estrela brilhante e por isso não se conseguem obter imagens diretas destes objetos a partir da Terra.
Para estudar os exocometas de Beta Pictoris, a equipe analisou mais de 1.000 observações obtidas entre 2003 e 2011 com o instrumento HARPS, montado no telescópio de 3,6 metros do ESO, no Observatório de La Silla, no Chile.
Os pesquisadores selecionaram uma amostra de 493 exocometas diferentes. Alguns exocometas foram observados por diversas vezes e durante algumas horas. Uma análise detalhada permitiu obter medições da velocidade e tamanho das nuvens de gás. Foram também deduzidas algumas das propriedades orbitais de cada um dos cometas, como a forma e orientação da órbita e a distância à estrela.
Este tipo de análise efetuada em várias centenas de exocometas pertencentes a um único sistema exoplanetário é única. O trabalho revelou a presença de dois tipos distintos de famílias de exocometas: uma família de exocometas cujas órbitas são controladas por um planeta de grande massa e outra família, provavelmente originada pela destruição recente de um ou mais objetos maiores. Um planeta gigante, Beta Pictoris b, foi descoberto em órbita a cerca de um bilhão de quilômetros da estrela e estudado através de imagens de alta resolução obtidas com ótica adaptativa. Diferentes famílias de cometas existem igualmente no Sistema Solar.
Os exocometas da primeira família apresentam uma variedade de órbitas e mostram atividade relativamente fraca com baixas taxas de produção de gás e poeira, o que sugere que estes cometas gastaram já o seu conteúdo em gelo durante múltiplas passagens perto de Beta Pictoris. Mais ainda, as órbitas destes cometas (excentricidade e orientação) são exatamente as previstas para cometas apanhados em ressonância orbital com um planeta de elevada massa. As propriedades dos cometas da primeira família mostram que este planeta em ressonância deve estar a cerca de 700 milhões de quilômetros da estrela, perto do local onde o planeta Beta Pictoris b foi descoberto.
Os exocometas da segunda família encontram-se muito mais ativos e deslocam-se em órbitas quase idênticas, o que sugere que os membros desta família têm todos a mesma origem: provavelmente a destruição de um objeto maior cujos fragmentos se encontram numa órbita rasante da estrela Beta Pictoris. O que os torna semelhantes aos cometas da família Kreutz do Sistema Solar, ou aos fragmentos do Cometa Shoemaker-Levy 9, que chocou com o planeta Júpiter em julho de 1994.
Flavien Kiefer conclui: “Esta é a primeira vez que um estudo estatístico determina a física e órbitas de um grande número de exocometas. Este trabalho dá-nos um olhar fantástico sobre os mecanismos que estavam presentes no Sistema Solar logo após a sua formação, há cerca de 4,5 bilhões de anos atrás”.

Os novos resultados serão publicados amanhã na revista Nature.

Fonte: ESO