quarta-feira, 29 de abril de 2015

Uma galáxia espiral maciça e próxima

A galáxia espiral NGC 2841 é uma das galáxias mais maciças conhecidas.

NGC 2841

© Roberto Colombari (galáxia espiral NGC 2841)

Ela está localizada a cerca de 46 milhões de anos-luz de distância, sendo encontrada na constelação boreal da Ursa Maior.

Esta visão nítida deste magnífico universo-ilha mostra um impressionante núcleo amarelo e disco galáctico. Faixas de poeira, regiões de nascimento de estrelas pequenas e em cor de rosa e os jovens aglomerados de estrelas azuis estão incorporados nos braços espirais enrolados e irregulares. Em contraste, muitas outras espirais apresentam grandes braços deslumbrantes com grandes regiões de nascimento de estrelas.

A NGC 2841 tem um diâmetro de mais de 150.000 anos-luz, ainda maior do que a nossa Via Láctea, e foi captada nesta imagem composta, uma fusão das exposições do telescópio espacial Hubble, com 2,4 metros de diâmetro e na órbita da Terra, e do telescópio Subaru, com 8,2 metros e em solo. Imagens de raios X sugerem que os ventos e as explosões estelares decorrentes criam nuvens de gás quente que se estendem num halo em torno de NGC 2841.

Fonte: NASA

domingo, 26 de abril de 2015

Observada a fusão de um par de buracos negros supermassivos

Quando duas galáxias entram nos estágios finais de fusão, é previsto na teoria que seus buracos negros supermassivos podem formar um binário, ou seja, dois buracos negros em uma órbita tão próxima que são gravitacionalmente ligados um ao outro.

ilustração da fusão de dois buracos negros supermassivos

© NASA (ilustração da fusão de dois buracos negros supermassivos)

Em um novo estudo, astrônomos da Universidade de Maryland (EUA) apresentaram evidências diretas de um quasar pulsante, o que pode comprovar a existência desses buracos negros binários. 

“Estes buracos negros podem estar tão próximos que estão emitindo ondas gravitacionais, que foram previstas pela Teoria da Relatividade Geral de Albert Einstein”, explica Suvi Gezari, também da Universidade de Maryland.

A descoberta pode elucidar a frequência com que os buracos negros se aproximam o suficiente para formar um binário gravitacionalmente ligado, e eventualmente se fundir. Os buracos negros tipicamente devoram matéria, que acelera e se aquece, emitindo energia eletromagnética e criando alguns dos pontos mais luminosos no céu, chamados quasares. Um quasar é composto por um buraco negro supermaciço e a sua região circundante, normalmente localizado no núcleo de uma galáxia. Quando um quasar está ativo, o gás da galáxia é capturado pelo campo gravitacional do buraco negro e forma um disco de acreção em torno dele. O gás nesse disco orbita o buraco negro a alta velocidade, onde o atrito e o intenso campo eletromagnético aquecem-no a temperaturas muito elevadas, provocando a emissão de radiação muito energética como raios gama e raios X. A variabilidade periódica do PSO J334.2028+01.4075 pode ser explicada pelo movimento orbital de dois buracos negros, no centro da galáxia hospedeira, situada a 10,4 bilhões de anos-luz ; o segundo buraco negro poderá ter entrado em órbita do buraco negro do quasar durante uma colisão galáctica. Um tal sistema emitiria uma enorme quantidade de energia sob a forma de ondas gravitacionais e seria um alvo de referência para experiências que tentam detectar diretamente estas ondas, cuja existência é prevista pela Teoria da Relatividade Geral. A sua existência oferece poucas dúvidas à comunidade científica pois foram detectadas indiretamente em sistemas binários formados por pulsares. Quando dois buracos negros orbitam como um binário, absorvem matéria ciclicamente, o que possibilita prever que o quasar binário responderia clareando e escurecendo periodicamente.

Os pesquisadores realizaram uma busca sistemática pelos chamados quasares variáveis usando o Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) Medium Deep Survey. Este telescópio fica baseado no Havaí, em Haleakala, e fotografa a mesma porção do céu uma vez a cada três dias, recolhendo centenas de dados para cada objeto ao longo de quatro anos. Nestes dados, a equipe de astrônomos encontrou o quasar PSO J334.2028+01.4075, que tem um grande buraco negro de quase 10 bilhões de massas solares e emite um sinal óptico periódico que se repete a cada 542 dias. O sinal do quasar era incomum porque as curvas de luz da maioria dos quasares são arrítmicos. Para verificar a sua descoberta, a equipe de pesquisa executou rigorosos cálculos e simulações e examinou dados adicionais, incluindo dados fotométricos de outros telescópios e sistemas de monitoramento.

simulação da fusão de dois buracos negros supermassivos

© S. Shapiro (simulação da fusão de dois buracos negros supermassivos)

Uma equipe de cientistas liderada por Stuart Shapiro, da Universidade de Illinois Urbana-Champaign, apresentou pela primeira vez simulações da colisão de dois buracos negros supermaciços em 3 dimensões, usando as equações da Teoria da Relatividade Geral, para descrever a interação gravitacional dos corpos, e as equações da magnetohidrodinâmica que descrevem o plasma com elevadas temperaturas dos discos de acreção que envolvem os horizontes de eventos dos buracos negros. Os resultados das simulações foram publicados na revista Nature e apresentados na reunião da American Physical Society que ocorreu recentemente em Baltimore, Maryland (EUA).

“A descoberta de um candidato a sistema compacto binário de buracos negros supermassivos como o PSO J334.2028+01.4075, que parece a uma separação orbital tão pequena, acrescenta ao nosso conhecimento limitado das etapas finais da fusão entre os buracos negros supermassivos”, aponta a estudante de mestrado em astronomia da Universidade de Maryland, Tingting Liu, principal autora da pesquisa. Os pesquisadores planejam continuar procurarando novos quasares variáveis. A partir de 2023, sua pesquisa poderia ser auxiliada pelo telescópio Synoptic Large Telescope Survey. Espera-se que este aparelho possa fazer o levantamento de uma área muito maior, possibilitando identificar a localização de milhares destes buracos negros supermassivos que estão se fundindo no céu noturno.

O trabalho foi publicado na revista The Astrophysical Journal Letters.

Fonte: University of Maryland

sábado, 25 de abril de 2015

O aglomerado de formação estelar Westerlund 2

A tapeçaria brilhante de jovens estrelas ganha vida nessa nova imagem feita pelo telescópio espacial Hubble e lembra a explosão de fogos de artifícios no céu.

aglomerado estelar Westerlund 2

© Hubble (aglomerado estelar Westerlund 2)

Essa vibrante imagem do aglomerado estelar, conhecido como Westerlund 2, foi lançada para celebrar o vigésimo quinto aniversário do Hubble na órbita da Terra e um quarto de século de novas descobertas, imagens impressionantes e uma ciência inigualável. O aglomerado estelar Westerlund 2 foi descoberto na década de 1960 pelo o astrônomo sueco Bengt Westerlund.

No dia 24 de Abril de 1990, o telescópio espacial Hubble foi colado em órbita pelo ônibus espacial Discovery, tornando-se o primeiro telescópio espacial deste tipo. Ele ofereceu uma nova visão do Universo, e durante este tempo tem alcançado e superado todas as expectativas, enviando para a Terra, dados e imagens que têm mudado a maneira com a qual os cientistas entendem o Universo e a percepção que o público tem dele.

região central do aglomerado estelar Westerlund 2

© Hubble (região central do aglomerado estelar Westerlund 2)

Nessa imagem, o centro brilhante do gigantesco aglomerado estelar Westerlund 2 contém cerca de 3.000 estrelas. O aglomerado reside num local estelar muito fértil, conhecido como Gum 29, localizado a cerca de 20.000 anos-luz de distância da Terra, na constelação de Carina.

O berçário estelar é difícil de ser observado pois ele fica envolto por poeira, mas a Wide Field Camera 3 do Hubble consegue espiar através do véu empoeirado usando para isso os seus detectores de radiação infravermelha, dando assim aos astrônomos uma visão clara do aglomerado. A visão nítida do Hubble resolve a densa concentração de estrelas no aglomerado central, que mede somente cerca de 10 anos-luz de diâmetro.

O gigantesco aglomerado de estrelas tem somente dois milhões de anos de vida, mas contém algumas das mais brilhantes, quentes e massivas estrelas já descobertas. Algumas dessas estrelas estão cavando as profundas cavidades no material ao redor, lançando correntes de radiação ultravioleta e fluxos de alta velocidade de partículas carregadas, conhecidos como ventos estelares. Esses ventos, por sua vez estão soprando para longe a nuvem de gás hidrogênio onde as estrelas estavam nascendo e são responsáveis pelas estranhas e maravilhosas formas das nuvens de gás de poeira observadas na imagem.

Os pilares na imagem são compostos de densas concentrações de gás e poeira, e são resistentes à erosão da forte radiação e dos poderosos ventos. Esses monolitos gasosos possuem alguns anos-luz de altura e apontam para a região central do aglomerado. Outras regiões gasosas circundam os pilares, incluindo filamentos escuros de poeira e gás.

Além de esculpir a região gasosa, as brilhantes estrelas podem também ajudar a criar uma nova geração de novas estrelas. Quando o vento estelar atinge as densas paredes de gás, é criada uma onda de choque, que gera uma nova onda de formação de estrelas, ao longo da parede da cavidade. Os pontos vermelhos espalhados através da paisagem cósmica são ricas populações de estrelas em formação que ainda estão embrulhadas nos seus casulos de gás e poeira. Esses fetos estelares ainda não iniciaram em seu interior a fusão do hidrogênio, para então brilharem como estrelas. Contudo a visão do Hubble no infravermelho próximo permite que os astrônomos identifiquem esses bebês estelares. As estrelas azuis brilhantes vistas através da imagem são na sua maioria estrelas de primeiro plano e que não pertencem ao aglomerado.

A região central da imagem, contendo o aglomerado estelar, só é visível pois foi feita uma mistura dos dados em luz visível obtidos pela Advanced Camera for Surveys e pelas exposições em infravermelho próximo feitas pela Wide Field Camera 3. A região ao redor é vista graças às observações feitas na luz visível pela Advanced Camera for Surveys do Hubble.

Essa imagem é um testamento sobre o poder observacional do Hubble, e demonstra que, mesmo com 25 anos de operação, a história do Hubble está longe de acabar. O Hubble está preparando o palco para o seu companheiro o telescópio espacial James Webb, programado para ser lançado em 2018, mas ele não será imediatamente substituído por essa nova maravilha da engenharia, mas sim irão trabalhar em conjunto. Agora, 25 anos depois do seu lançamento, é o momento de celebrar o potencial futuro do Hubble bem como lembrar a sua história marcante.

Fonte: Space Telescope Science Institute

Astrônomos descobrem galáxias elípticas compactas fugitivas

O Dr. Igor Chilingarian do Harvard-Smithsonian Center for Astrophysics e seu colega, o Dr. Ivan Zolotukhin do L’Institut de Recherche em Astrophysique et Planetologie em Tolouse, na França, descobriram onze galáxias elípticas compactas fugitivas.

ilustração da criação de uma galáxia fugitiva

© NASA/ESA/Hubble Heritage Team (ilustração da criação de uma galáxia fugitiva)

Este esquema ilustra a criação de uma galáxia fugitiva. No primeiro painel, uma galáxia espiral intrusa se aproxima do centro do aglomerado de galáxias, onde uma galáxia elíptica compacta (CE), gira em torno de uma enorme galáxia elíptica central. No segundo painel, um encontro ocorre e a galáxia elíptica compacta recebe um impulso gravitacional da intrusa. No terceiro painel, o galáxia elíptica compacta escapa do aglomerado de galáxias enquanto a intrusa é devorada pela galáxia elíptica gigante no centro do aglomerado.

Os astrônomos inicialmente estavam realizando o estudo para identificar novos membros de uma classe de galáxias chamadas de elípticas compactas. Esses objetos são maiores do que os aglomerados estelares, mas são menores do que uma galáxia normal, se espalhando por poucas centenas de anos-luz.

Antes do estudo, somente cerca de 30 galáxias elípticas compactas eram conhecidas, todas elas residindo em aglomerados de galáxias.

Os pesquisadores usaram os dados do Sloan Digital Sky Survey (SDSS) e do satélite GALEX da NASA para identificar 195 elípticas compactas anteriormente desconhecidas. Dessas, onze estavam completamente isoladas e foram encontradas bem longe de qualquer galáxia ou aglomerado de galáxias.

Essas galáxias compactas isoladas eram inesperadas pois os teóricos acreditavam que elas eram originadas de galáxias maiores e que tiveram a maior parte de suas estrelas arrancadas através de interações com galáxias maiores. Assim, as galáxias compactas deveriam ser todas encontradas perto de galáxias maiores.

As galáxias recém encontradas não só estavam isoladas, mas elas também estavam se movendo mais rápido do que as galáxias elípticas compactas encontradas nos aglomerados.

“Nós nos perguntamos, o que poderia explicar isso? A resposta era um problema clássico de interação de três corpos”, disse o Dr. Chilingarian.

Uma estrela fugitiva pode ser criada se um sistema binário passa perto de um buraco negro ou perto do núcleo de uma galáxia massiva. Assim, uma estrela pode ser capturada enquanto que a outra é ejetada a uma enorme velocidade.

De maneira similar, uma galáxia elíptica compacta poderia ser emparelhada com a galáxia grande que arrancou suas estrelas. Então uma terceira galáxia entrou na dança e ejetou para longe a galáxia elíptica compacta.

O estudo foi publicado ontem na revista Science.

Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 23 de abril de 2015

Primeiro espectro de exoplaneta obtido na luz visível

Com o auxílio do instrumento HARPS montado no telescópio de 3,6 metros do ESO, o principal “caçador” de exoplanetas instalado no Observatório de La Silla no Chile, astrônomos detectaram pela primeira vez de forma direta o espectro visível refletido por um exoplaneta.

ilustração do exoplaneta 51 Pegasi b

© ESO/M. Kornmesser/Nick Risinger (ilustração do exoplaneta 51 Pegasi b)

Estas observações revelaram também novas propriedades deste objeto famoso, o primeiro exoplaneta a ser descoberto em torno de uma estrela normal: 51 Pegasi b.

O exoplaneta 51 Pegasi b situa-se a cerca de 50 anos-luz da Terra na constelação do Pégaso. Tanto o exoplaneta 51 Pegasi b como a sua estrela hospedeira 51 Pegasi encontram-se entre os objetos que aguardam um nome escolhido pelo público no âmbito do concurso da UAI NameExoWorlds. Foi descoberto em 1995 e será lembrado para sempre como o primeiro exoplaneta confirmado descoberto em órbita de uma estrela normal, como o Sol. Evidenciando que tinham sido detectados anteriormente dois objetos planetários orbitando o meio extremo que circunda um pulsar. É também considerado o arquétipo dos exoplanetas do tipo Júpiter quente, uma classe de planetas que se sabe agora serem bastante comuns, e que são semelhantes a Júpiter em termos de massa e de tamanho, mas com órbitas muito mais próximas das suas estrelas progenitoras.
Desde esta descoberta crucial, foi já confirmada a existência de mais de 1.900 exoplanetas em 1.200 sistemas planetários, no entanto, no ano em que a sua descoberta faz 20 anos, 51 Pegasi b volta à cena para fazer avançar uma vez mais o estudo dos exoplanetas.
A equipe que fez esta nova detecção foi liderada por Jorge Martins do Instituto de Astrofísica e Ciências do Espaço (IA) e da Universidade do Porto, que atualmente faz o seu doutoramento no ESO, no Chile.

Atualmente, o método mais utilizado para estudar a atmosfera de um exoplaneta consiste em observar o espectro da estrela hospedeira quando este é filtrado pela atmosfera do planeta durante um trânsito, uma técnica chamada espectroscopia de transmissão. Uma aproximação alternativa será observar o sistema quando a estrela passa em frente do planeta, o que dará essencialmente informação sobre a temperatura do exoplaneta.
A nova técnica não depende de um trânsito planetário, por isso pode potencialmente ser usada para estudar muito mais exoplanetas, e permite que o espectro planetário seja detectado diretamente no visível, o que significa que características diferentes do planeta, que não são acessíveis através de outras técnicas, possam ser inferidas.
O espectro da estrela hospedeira é usado como modelo para procurar uma assinatura semelhante, que se espera que seja refletida pelo planeta que a orbita. Trata-se de uma tarefa extremamente difícil já que os planetas são muitíssimo tênues quando comparados com as suas estrelas progenitoras resplandecentes.
O sinal emitido pelo planeta é também muito facilmente diluído por outros pequenos efeitos e fontes de ruído. O desafio é semelhante a tentar estudar o fraco brilho refletido por um inseto minúsculo que voa em volta de uma luz muito distante e brilhante. Perante tal adversidade, o sucesso da técnica utilizada quando aplicada aos dados do HARPS relativos ao 51 Pegasi b, valida o conceito de forma muito valiosa.
Jorge Martins explica: “Este tipo de técnica de detecção tem uma grande importância científica, já que nos permite medir a massa real do planeta e a sua inclinação orbital, o que é essencial para compreendermos completamente o sistema. Permite-nos também estimar a refletividade do planeta, ou albedo, o que pode ser depois usado para inferir a composição tanto da superfície do planeta como da sua atmosfera”.
Descobriu-se que 51 Pegasi b tem uma massa de cerca de metade da de Júpiter e uma órbita com uma inclinação de cerca de nove graus na direção da Terra. Isto significa que a órbita do planeta está orientada quase de perfil quando observada a partir da Terra, embora não esteja suficientemente perto para termos trânsitos. O planeta parece também ser maior que Júpiter em termos de diâmetro e extremamente refletivo. Estas são propriedades típicas de um planeta do tipo Júpiter quente, que se encontra muito próximo da sua estrela progenitora e por isso exposto a intensa radiação estelar.
O resultado promete um futuro brilhante para a técnica utilizada, particularmente com o advento da nova geração de instrumentos, tais como o ESPRESSO, para o Very Large Telescope (VLT), e futuros telescópios como o European Extremely Large Telescope (E-ELT). O ESPRESSO que será montado no VLT e posteriormente instrumentos ainda mais poderosos montados em telescópios muito maiores como o E-ELT, permitirão um aumento significativo na precisão e no poder coletor, ajudando a detectar planetas mais pequenos, ao mesmo tempo que teremos um aumento no detalhe com que poderemos observar planetas semelhantes a 51 Pegasi b.
“Esperamos com impaciência a primeira luz do espectrógrafo ESPRESSO que será montado no VLT, com o qual faremos estudos mais detalhados sobre este e outros sistemas planetários”, conclui Nuno Santos, do IA e Universidade do Porto, co-autor do novo artigo científico que descreve estes resultados.

Este trabalho foi descrito no artigo científico intitulado “Evidence for a spectroscopic direct detection of reflected light from 51 Peg b”, de J. Martins et al., que foi publicado ontem na revista especializada Astronomy & Astrophysics.

Fonte: ESO

Nuvens estelares coloridas no Cisne

As estrelas podem nascer em ambientes coloridos.

Nebulosa Gamma Cygni

© André van der Hoeven (Nebulosa Gamma Cygni)

Este é um local de nascimento de estrelas rica em gás brilhante e poeira escura na direção da constelação do Cisne, perto da estrela brilhante Sadr. Esta região, que se estende por cerca de 50 anos-luz, é parte da Nebulosa Gamma Cygni que fica a cerca de 1.800 anos-luz de distância.

Em direção à direita da imagem está Barnard 344, uma nuvem de poeira escura e distorcida rica em gás molecular frio. Um muro espetacular de poeira e gás hidrogênio vermelho e brilhante forma uma linha descendo pelo centro da imagem. Enquanto o gás brilhante vermelho é indicativo de pequenas nebulosas de emissão, as áreas em tons azuis são nebulosas de reflexão, onde a luz das estrelas é refletida a partir de grãos de poeira geralmente escuros.

A Nebulosa Gamma Cygni provavelmente não vai durar os próximos bilhões de anos, pois a maioria das jovens estrelas brilhantes vão explodir, a maior parte da poeira será destruída e a maior parte do gás vai se afastar.

Fonte: NASA

terça-feira, 21 de abril de 2015

Emissões de raios X esculpem a Nebulosa do Capacete de Thor

A cena intensamente colorida a baixo mostra uma gigantesca nuvem de gás brilhante e poeira, conhecida como NGC 2359.

Nebulosa do Capacete de Thor

© XMM-Newton/SSRO (Nebulosa do Capacete de Thor)

Ela também é chamada popularmente de Nebulosa do Capacete de Thor, devido aos braços de gás que arqueiam a partir do seu bulbo central e curvam em direção ao topo para esquerda e para a direita da imagem, criando uma forma que lembra muito o capacete alado do deus nórdico.

As cores em neon nessa imagem não são apenas bonitas, elas também nos dizem sobre a composição da nebulosa. As partes brilhantes em azul mostra a emissão de raios X, registradas pelas câmeras EPIC a bordo do observatório espacial XMM-Newton da ESA, enquanto as regiões em vermelho e verde traçam o brilho do hidrogênio e do oxigênio ionizado, como visto pelo Stars and Shadows Remote Observatory South no observatório inter-americano de Cerro Tololo no Chile.

A intensa emissão de raios X detectada pelo XMM-Newton é emanada de uma estrela no centro da nebulosa. Essa estrela é uma Wolf-Rayet denominada HD 56925, e é uma estrela massiva e velha que está empurrando uma grande quantidade de material a uma taxa impressionante: a estrela perde uma massa equivalente ao Sol em menos de 100.000 anos, na forma de um vento estelar que está se movendo a mais de 1.500 km/s.

Esses violentos habitantes têm influenciado a forma estranha da NGC 2359. A nebulosa consiste de uma bolha central circundada por uma teia de filamentos de gás, espessos canais de poeira escura e brilhantes explosões, onde o material é varrido pelo vento estelar e que tem colidido com o gás ao redor disparando ondas de choque através de toda a região.

As parte em azul nessa imagem destacam as regiões mais quentes da nebulosa: a bolha central e a explosão na parte inferior esquerda. Acredita-se que o gás da NGC 2359 alcance temperaturas que variam de poucos milhões a mais de 10 milhões de graus.

Fonte: ESA

Anã branca pode ter destruído planeta passando em sua proximidade

A destruição de um planeta pode as vezes parecer coisas de ficção científica, mas uma equipe de astrônomos encontrou evidências de que isso pode ter acontecido em um antigo aglomerado de estrelas na borda da Via Láctea.

aglomerado globular NGC 6388

© Chandra/Hubble (aglomerado globular NGC 6388)

Usando um arsenal de telescópios, incluindo o observatório de raios X Chandra da NASA, os pesquisadores encontraram evidências que uma estrela do tipo anã branca, ou seja, o núcleo denso de uma estrela parecida com o Sol, que esgotou todo o seu combustível nuclear, talvez tenha destruído um planeta à medida que ele se aproximou dela.

Como poderia uma estrela anã branca, que tem apenas o tamanho da Terra, ser responsável por um ato tão extremo? A resposta é a gravidade.

Quando uma estrela alcança o estágio de anã branca, quase todo o seu material fica empacotado num raio de centésimo do tamanho da estrela original. Isso significa que, em encontros muitos próximos com outros objetos, a força gravitacional da estrela e as forças de marés associadas, causadas pela diferença na força da gravidade no lado próximo da estrela e no lado mais distante são ampliadas. Por exemplo, a gravidade na superfície de uma anã branca é mais de 10.000 vezes maior do que a gravidade na superfície do Sol.

Pesquisadores usando o INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) da ESA, descobriram uma nova fonte de raios X perto do centro do aglomerado globular NGC 6388. Observações ópticas haviam levantado a hipótese de que um buraco negro de massa intermediária, equivalente a centenas de Sóis ou mais residisse no centro do NGC 6388. A detecção de raios X pelo INTEGRAL então trouxe a tona a intrigante possibilidade de que os raios X pudessem ser produzidos pelo gás quente, circulando um buraco negro de massa intermediária.

Nas observações seguintes de raios X feitas pelo Chandra, devido à sua excelente visão, permitiu que os astrônomos determinassem que os raios X provenientes do NGC 6388 não vinham de um buraco negro no centro do aglomerado, mas sim de um local deslocado do centro. Uma nova imagem composta mostra o NGC 6388 com raios X detectados pelo Chandra em rosa e a luz visível detectada pelo Hubble em vermelho, verde e azul, com muitas das estrelas aparecendo em laranja ou branco. Sobrepondo as fontes de raios X e as estrelas próximas do centro do aglomerado, também é possível gerar uma imagem que aparece branco.

Eliminando assim a hipótese de um buraco negro central como a potencial fonte de raio X, a caçada continuou por pistas sobre a verdadeira fonte no NGC 6388. A fonte foi monitorada com o telescópio de raios X a bordo da missão Swift Gamma Ray Burst da NASA, cerca de 20 dias depois de ter sido descoberta pelo INTEGRAL.

A fonte tornou-se mais apagada durante o período de observações do Swift. A taxa com a qual o brilho dos raios X caia estava de acordo com os modelos teóricos de ruptura de um planeta pelas forças de marés gravitacional de uma anã branca. Nesses modelos, um planeta primeiro é puxado para longe da estrela pela gravidade da densa concentração de estrelas no aglomerado globular. Quando esse planeta passa próximo da anã branca, ele pode ser destruído pelas intensas forças de marés da anã branca. Os detritos planetários são então aquecidos e brilham nos raios X à medida que eles colapsam na anã branca. A quantidade observada de raios X emitidos em diferentes energias, está de acordo com as expectativas para um evento de ruptura como esse.

Os pesquisadores estimam que o planeta destruído poderia conter um terço da massa da Terra, enquanto que a anã branca cerca de 1,4 vezes a massa do Sol.

Enquanto que o caso para a ruptura de maré de um planeta não é um evento que seja rico em ferro, o argumento para isso foi fortalecido quando os astrônomos utilizaram dados integrados de múltiplos telescópios para ajudar a eliminar as outras possíveis explicações para os raios X detectados. Por exemplo, a fonte não mostrava algumas das distintas características de um sistema binário contendo uma estrela de nêutrons, como as pulsações ou as rápidas explosões de raios X. Também, a fonte era muito mais apagada nas ondas de rádio para que ela fizesse parte de um sistema binário com um buraco negro de massa estelar.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 20 de abril de 2015

Peculiaridade extragaláctica

Essa galáxia, denominada ESO 162-17, encontra-se localizada a cerca de 40 milhões de anos-luz de distância da Terra, na direção da constelação da Carina.

galáxia ESO 162-17

© Hubble (galáxia ESO 162-17)

Olhando rapidamente, ela parece uma galáxia tradicional, com linhas escuras de poeira, e partes com jovens estrelas azuis. Porém, se olharmos mais de perto e em detalhe, essa galáxia pode nos revelar alguns aspectos peculiares.

Primeiro, a ESO 162-17 é o que chamamos de uma galáxia peculiar, uma galáxia que passou por interações com seus vizinhos cósmicos, resultando numa quantidade incomum de gás e poeira, uma forma irregular, ou uma composição estranha.

Um segundo ponto a ser considerado, em 23 de Fevereiro de 2010, os astrônomos observaram a supernova conhecida como SN 2010ae dentro dessa galáxia. A supernova pertence a uma classe recentemente descoberta de supernovas, chamada de Tipo Iax. Essa classe de objetos está relacionada com o tipo melhor conhecido, ou seja, as supernovas do Tipo Ia.

As supernovas do Tipo Ia, surgem quando uma estrela do tipo anã branca acumula massa suficiente de uma estrela companheira ou, raramente, de uma colisão com outra anã branca, iniciando assim um colapso catastrófico seguindo de uma explosão espetacular como supernova. As supernovas do Tipo Iax também desenvolvem uma anã branca como estrela central, mas nesse caso ela pode sobreviver ao evento explosivo. As supernovas do Tipo Iax são muito mais apagadas e mais raras do que as supernovas do Tipo Ia, e o exato mecanismo de como funcionam ainda é questão de debate.

A forma exuberante de quatro pontas de estrelas em primeiro plano distribuídos ao redor da ESO 162-17 também chama a atenção. Isso é um efeito óptico introduzido à medida que a luz que está entrando no Hubble é difratada pelas quatro armações que suportam o espelho secundário do telescópio espacial Hubble.

Fonte: ESA

domingo, 19 de abril de 2015

Uma galáxia com formato de anel

Como pode uma galáxia tomar a forma de um anel?

galáxia AM 0644-741

© Hubble (galáxia AM 0644-741)

A imagem acima mostra  a borda da galáxia azul com uma imensa estrutura galáctica em forma de anel com cerca de 150.000 anos-luz de diâmetro, que é composta na sua maioria de estrelas massivas brilhantes recém-formadas. Essa galáxia, conhecida como AM 0644-741 é classificada como uma galáxia de anel, que possui este formato devido a uma imensa colisão galáctica. Quando as galáxias colidem, elas passam uma através da outra, e raramente suas estrelas individuais entram em contato. A forma anelada é o resultado da perturbação gravitacional gerada por uma galáxia intrusa pequena, que passou através de uma galáxia grande. Quando isso acontece, o gás e a poeira interestelar tornam-se condensados, gerando uma onda de formação de estrelas que se move desde o ponto de impacto, como se fosse uma ondulação na superfície de um lago depois de se jogar uma pedra. A galáxia intrusa não aparece na imagem acima obtida pelo telescópio espacial Hubble. Essa imagem foi realizada pelo Hubble para comemorar o aniversário de lançamento do telescópio espacial em 1990. A galáxia de anel AM 0644-741 localiza-se a cerca de 300 milhões de anos-luz de distância da Terra.

Fonte: NASA

sexta-feira, 17 de abril de 2015

Revelado campo magnético intenso próximo de buraco negro supermassivo

O Atacama Large Millimeter/submillimeter Array (ALMA) revelou um campo magnético extremamente potente, muito além do que tinha sido anteriormente detectado no núcleo de uma galáxia, muito próximo do horizonte de eventos de um buraco negro supermassivo.

ilustração de um buraco negro supermassivo

© ESO/L. Calçada (ilustração de um buraco negro supermassivo)

Esta nova observação ajuda os astrônomos a compreender melhor a estrutura e formação destes habitantes massivos dos centros das galáxias e os jatos gêmeos de plasma que frequentemente ejetam a alta velocidade dos seus polos.

Os buracos negros supermassivos, frequentemente com massas de bilhões de vezes a do Sol, situam-se no coração da maior parte das galáxias existentes no Universo. Estes buracos negros podem acretar enormes quantidades de matéria sob a forma de um disco que os rodeia. Enquanto a maioria desta matéria alimenta o buraco negro, uma parte pode escapar momentos antes de ser capturada, sendo lançada no espaço com velocidades próximas da velocidade da luz sob a forma de um jato de plasma. A maneira como isto acontece não é muito bem compreendida, embora se pense que campos magnéticos fortes atuando muito próximo do horizonte de eventos tenham um papel crucial no processo, ajudando a matéria a escapar das “mandíbulas escancaradas da escuridão”.
Até agora, tinham se observado apenas campos magnéticos fracos longe dos buracos negros, a vários anos-luz de distância. Foram detectados campos magnéticos muito mais fracos na vizinhança do buraco negro supermassivo relativamente inativo situado no centro da Via Láctea. Observações recentes mostraram também campos magnéticos fracos na galáxia ativa NGC 1275, detectados nos comprimentos de onda milimétricos.
No entanto, astrônomos da Universidade de Tecnologia Chalmers e do Observatório Espacial Onsala na Suécia, utilizaram o ALMA para detectar sinais diretamente relacionados com um campo magnético intenso localizado muito perto do horizonte de eventos do buraco negro supermassivo da galáxia distante PKS 1830-211. Este campo magnético situa-se precisamente no local onde a matéria é lançada repentinamente para longe do buraco negro sob a forma de um jato.
A equipe mediu a intensidade do campo magnético através da polarização da radiação, à medida que esta se afastava do buraco negro.
“A polarização é uma propriedade importante da luz muito usada na vida diária, por exemplo nos óculos de sol ou nos óculos 3D no cinema”, diz Ivan Marti-Vidal, o autor principal deste trabalho. “Quando produzida naturalmente, a polarização pode ser usada para medir campos magnéticos, uma vez que a radiação muda a sua polarização quando viaja através de um meio magnetizado. Neste caso, a radiação detectada pelo ALMA viajou através da matéria situada muito próximo do buraco negro, um local cheio de plasma altamente magnetizado”.
Os astrônomos aplicaram uma nova técnica de análise desenvolvida para os dados ALMA e descobriram que a direção da polarização da radiação vinda do centro da PKS 1830-211 girou. Os campos magnéticos induzem a rotação de Faraday, que faz com que a polarização rode de diferentes maneiras a diferentes comprimentos de onda. O modo como esta rotação depende do comprimento de onda informa-nos sobre o campo magnético na região. Estes foram os comprimentos de onda mais curtos já usados neste tipo de estudo, o que permitiu que se investigassem regiões muito próximas do buraco negro central. As observações ALMA foram obtidas a um comprimento de onda efetivo de cerca de 0,3 milímetros, enquanto trabalhos anteriores foram executados a comprimentos de onda rádio muito maiores. Apenas a radiação de comprimentos de onda milimétricos consegue escapar de uma região muito próxima do buraco negro, uma vez que a radiação com maiores comprimentos de onda é absorvida.
“Descobrimos sinais claros da rotação da polarização, que são centenas de vezes maiores do que os maiores já encontrados no Universo”, diz Sebastien Muller, co-autor do artigo científico que descreve estes resultados. “A nossa descoberta constitui um enorme passo à frente em termos de frequência observada, graças ao uso do ALMA, e em termos de distância ao buraco negro onde estudamos o campo magnético, da ordem de apenas alguns dias-luz do horizonte de eventos. Estes resultados, assim como estudos futuros, ajudarão a perceber o que é que se passa realmente na vizinhança imediata dos buracos negros supermassivos.”

Este trabalho foi descrito no artigo científico intitulado “A strong magnetic field in the jet base of a supermassive black hole” que foi publicado hoje na revista Science.

Fonte: ESO

quinta-feira, 16 de abril de 2015

As galáxias gigantes morrem de dentro para fora

Astrônomos mostraram pela primeira vez como é que a formação estelar em galáxias “mortas” se desligou há bilhões de anos atrás.

galáxia elíptica IC 2006

© Hubble (galáxia elíptica IC 2006)

O Very Large Telescope (VLT) do ESO e o telescópio espacial Hubble da NASA/ESA revelaram que três bilhões de anos após o Big Bang, estas galáxias ainda formavam estrelas nas suas periferias, mas isso já não acontecia nos seus interiores. O desligar da formação estelar parece ter-se iniciado nos núcleos das galáxias, espalhando-se depois para as regiões mais externas.

Um dos principais mistérios da astrofísica prende-se com o fato de saber como é que as galáxias elípticas massivas adormecidas, bastante comuns no Universo atual, extinguiram as suas antes intensas taxas de formação estelar. Tais galáxias colossais, muitas vezes também chamadas esferóides devido à sua forma, possuem tipicamente dez vezes mais estrelas nas suas regiões centrais do que as que tem a nossa galáxia, a Via Láctea, e contêm também cerca de dez vezes mais massa.
Os astrônomos referem-se a estas galáxias como sendo vermelhas e mortas, uma vez que possuem uma enorme abundância de estrelas vermelhas velhas, mas falta-lhes estrelas azuis jovens, e não mostram sinais de formação estelar recente. As idades estimadas das estrelas vermelhas sugerem que as suas galáxias hospedeiras deixaram de formar novas estrelas há cerca de dez bilhões de anos atrás. Este desligar da formação estelar começou logo após o pico de formação estelar no Universo, quando muitas galáxias ainda estavam formando estrelas a uma taxa cerca de vinte vezes maior do que atualmente.
“Estas galáxias esferóides muito massivas contêm cerca de metade de todas as estrelas que o Universo produziu durante toda a sua vida”, disse Sandro Tacchella do ETH Zurich na Suíça, autor principal do artigo que descreve estes resultados. “Não podemos dizer que compreendemos como é que o Universo evoluiu e se tornou no que hoje é, se não compreendermos primeiro como é que estas galáxias evoluíram”.
Tacchella e colegas observaram um total de 22 galáxias de massas diferentes, numa época que corresponde a cerca de três bilhões de anos depois do Big Bang. O instrumento SINFONI montado no VLT coletou radiação desta amostra de galáxias, mostrando de modo preciso onde é que se encontravam as estrelas recém formadas. O SINFONI pode fazer estas medições detalhadas de galáxias distantes graças ao seu sistema de ótica adaptativa, que consegue cancelar a maior parte dos efeitos de distorção da atmosfera terrestre.
Os pesquisadores apontaram também o telescópio espacial Hubble à mesma amostra de galáxias, tirando partido da posição do telescópio no espaço, acima da atmosfera do nosso planeta. A câmara WFC3 do Hubble obteve imagens no infravermelho próximo, revelando a distribuição espacial das estrelas mais velhas nestas galáxias.
“O que é extraordinário é que o sistema de ótica adaptativa do SINFONI pode contrabalançar em grande parte os efeitos atmosféricos e nos dizer onde é que as novas estrelas estão nascendo, fazendo-o com a mesma precisão com que o Hubble nos dá a distribuição de massas estelares”, comenta Marcella Carollo, também do ETH Zurich e co-autora do estudo.

as galáxias morrem de dentro para fora

© ESO (as galáxias morrem de dentro para fora)

De acordo com os novos dados, as galáxias mais massivas da amostra mantiveram uma produção estável de novas estrelas nas suas periferias. Contudo, nos seus centros densamente povoados, a formação estelar já se encontrava desligada nesta época.
“Esta interrupção da formação estelar ocorrendo de dentro para fora em galáxias massivas, agora demonstrada, deverá ajudar-nos a compreender os mecanismos subjacentes envolvidos, os quais têm sido extensivamente debatidos desde há muito tempo na comunidade astronômica“, diz Alvio Renzini, do Observatório de Pádua, Instituto Nacional de Astrofísica italiano.
Uma teoria promissora para explicar este fenômeno é que os materiais necessários à formação das estrelas são espalhados por enxurradas de energia liberadas pelo buraco negro supermassivo central da galáxia, à medida que este devora enormes quantidades de matéria. Outra ideia diz que o gás deixa de fluir para o interior da galáxia, deixando-a sem combustível para formar novas estrelas e transformando-a num esferóide vermelho e morto.
“Há muitas sugestões teóricas diferentes para explicar os mecanismos físicos que levaram à morte destes esferóides massivos”, diz a co-autora Natascha Förster Schreiber, do Max-Planck-Institut für extraterrestrische Physik em Garching, Alemanha. “Descobrir que a extinção da formação estelar começou nos centros, tendo depois progredido para o exterior da galáxia é um passo muito importante para compreender como é que o Universo se transformou no que hoje é”.

Estes resultados serão publicados amanhã na revista Science.

Fonte: ESO

Descoberto exoplaneta gigante gasoso através de lente gravitacional

Astrônomos usando o telescópio espacial Spitzer da NASA e o telescópio polonês Optical Gravitational Lensing Experiment (OGLE) no Observatório de Las Campanas no Chile descobriram um dos mais distantes exoplanetas conhecidos, um planeta gigante gasoso localizado a aproximadamente 13.000 anos-luz de distância e chamado de OGLE-2014-BLG-0124LB.

ilustração de um exoplaneta massivo

© CfA/Christine Pulliam (ilustração de um exoplaneta massivo)

O efeito de microlente é uma forma de lente gravitacional na qual a luz de uma fonte de fundo é curvada pelo campo gravitacional de uma lente de primeiro plano para criar imagens distorcidas.

A técnica como um todo já foi responsável por descobrir três dezenas de planetas, com o mais distante localizado a 25.000 anos-luz de distância, o OGLE-2008-BLG-092LAb. Contudo, metade desses exoplanetas não podem ter sua localização precisamente definida.

Nesse ponto é onde o telescópio Spitzer pode ajudar os astrônomos, graças à sua órbita. O telescópio circula o nosso Sol, e está atualmente a cerca de 207 milhões de quilômetros da Terra.

Quando o Spitzer observa um evento de microlente simultaneamente com um telescópio na Terra, ele vê a estrela brilhando num tempo diferente, devido à grande distância entre os dois telescópios e seus pontos de vista único. Essa técnica recebe o nome de paralaxe.

“O Spitzer é o primeiro telescópio espacial a fazer medidas de paralaxe para microlentes para um planeta. Técnicas de paralaxe tradicionais que empregam telescópios em Terra não são tão efetivas como quando empregadas à grandes distâncias”, disse Jennifer Yee, do Harvard-Smithsonian Center for Astrophysics (CfA).

No caso do OGLE-2014-BLG-0124Lb, a duração do evento de microlente acontece com 150 dias de comprimento. Tanto o OGLE como o Spitzer detectaram o aumento do exoplaneta, com o Spitzer observando 20 dias antes. Esse tempo de intervalo entre a observação do evento pelos telescópios foi usado para calcular a distância para estrela e para o exoplaneta.

Sabendo a distância pode-se então determinar a massa do OGLE-2014-BLG-0124Lb, que tem cerca metade da massa de Júpiter.

De acordo com os astrônomos, o planeta com massa de 0,5 vezes a massa de Júpiter orbita uma estrela com massa de 0,7 vezes a massa do Sol, a uma distância de 3,1 UA.

O estudo foi publicado no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics