quarta-feira, 18 de julho de 2012

O coração de um quasar brilhante

Uma equipe internacional de astrônomos observou o coração de um quasar distante com uma precisão sem precedentes.

ilustração do quasar 3C 279

© ESO (ilustração do quasar 3C 279)

As observações, obtidas ao ligar pela primeira vez o telescópio Atacama Pathfinder Experiment (APEX) com dois outros telescópios situados em continentes diferentes, são um passo crucial em direção ao objetivo científico do projeto “Telescópio de Horizonte de Eventos”: obter imagens de buracos negros de grande massa situados no centro da nossa própria Galáxia e de outras galáxias.

Os astrônomos ligaram o APEX, no Chile, com o Submillimeter Array (SMA), no Havaí, EUA e o Submillimeter Telescope (SMT), no Arizona, EUA. Deste modo, conseguiram fazer a observação direta mais precisa até hoje do centro de uma galáxia distante, o quasar brilhante 3C 279, que contém um buraco negro de elevada massa - cerca de um bilhão de vezes a do Sol - e encontra-se tão distante da Terra que a sua radiação demorou mais de 5 bilhões de anos para chegar até nós. O APEX é uma colaboração entre o Instituto Max Planck para a Rádio Astronomia (MPIfR), o Observatório Espacial Onsala (OSO) e o ESO. A operação do APEX está a cargo do ESO.

Os telescópios foram ligados usando a técnica conhecida como Interferometria de Linha de Base Muito Longa (VLBI, sigla do inglês Very Long Baseline Interferometry). Telescópios maiores obtêm observações mais precisas e a interferometria permite que vários telescópios trabalhem como um só, tão grande como a separação entre eles. Utilizando a técnica VLBI, conseguimos obter as observações mais precisas ao tornar a separação entre telescópios tão grande quanto possível. Para as observações do quasar, a equipe usou três telescópios para criar o interferômetro com distâncias intercontinentais de 9.447 km do Chile ao Havaí, 7.174 km do Chile ao Arizona e 4.627 km do Arizona ao Havaí. Ligar o APEX no Chile à rede foi crucial, já que este telescópio contribuiu com as maiores distâncias.

As observações foram feitas em ondas de rádio, em um comprimento de onda de 1,3 milímetros. Esta é a primeira vez que observações em um comprimento de onda tão curto foram feitas utilizando distâncias tão grandes. As observações atingiram uma precisão, ou resolução angular, de 28 microsegundos de arco - valor 8 bilhões de vezes menor que um grau angular. Com este valor é possível distinguir detalhes dois milhões de vezes mais precisos do que o conseguido pelo olho humano. As observações foram tão precisas que se observaram escalas menores que um ano-luz ao longo do quasar, o que é um feito extraordinário tendo em conta que o objeto que se encontra a vários bilhões de anos-luz de distância.

Estas observações representam um passo importante no sentido de obter imagens de buracos negros de elevada massa e das regiões que os rodeiam. No futuro pensa-se ligar entre si ainda mais telescópios, de modo a criar o chamado Telescópio de Horizonte de Eventos. Ele será capaz de obter imagens da sombra do buraco negro de elevada massa que se situa no centro da nossa Via Láctea, assim como de outros buracos negros situados em outras galáxias próximas. A sombra, uma região escura vista em contraste com um fundo mais brilhante, é causada pela curvatura da luz devido ao buraco negro e seria a primeira evidência observacional direta da existência do horizonte de eventos de um buraco negro, a fronteira a partir da qual nem mesmo a luz consegue escapar.

A experiência marca a primeira vez que o APEX fez parte de observações VLBI e é o ápice de três anos de trabalho árduo no local onde está instalado o APEX, a uma altitude de 5.000 metros, no planalto do Chajnantor nos Andes chilenos, onde a pressão atmosférica é apenas metade da pressão ao nível do mar. Para que o APEX estivesse pronto para o VLBI, cientistas da Alemanha e da Suécia instalaram novos sistemas digitais de aquisição de dados, um relógio atômico muito preciso e gravadores de dados pressurizados capazes de gravar 4 gigabits por segundo durante muitas horas sob condições ambientais muito adversas. Os dados - 4 terabytes para cada telescópio - foram enviados para a Alemanha em discos rígidos e processados no Instituto Max Planck para a Rádio Astronomia, em Bonn.

A bem sucedida contribuição do APEX é também importante por outra razão. O APEX partilha a sua localização e muitos aspectos da sua tecnologia com o novo telescópio Atacama Large Millimeter/submillimeter Array (ALMA). O ALMA encontra-se atualmente em construção e no final será uma rede de 54 antenas com 12 metros de diâmetro, como a antena do próprio APEX, mais 12 antenas menores com um diâmetro de 7 metros. A possibilidade de ligar o ALMA à rede está atualmente sendo estudada. Com a área coletora das antenas do ALMA, que tem aumentado cada vez mais, as observações poderiam atingir uma sensibilidade 10 vezes melhor do que a destes testes iniciais, o que colocaria a sombra do buraco negro de elevada massa da Via Láctea ao nosso alcance em futuras observações.

Fonte: ESO

sábado, 14 de julho de 2012

Ilhas na fotosfera solar

Navegando num mar de plasma e ancoradas nos campos magnéticos, as manchas solares são ilhas escuras de tamanhos planetários localizadas na fotosfera solar, a superfície brilhante do Sol.

ilustração da ejeção de massa coronal

© NASA (ilustração da ejeção de massa coronal)

Elas são escuras pois elas são levemente mais frias do que a superfície ao redor. A imagem acima mostra em detalhe um grupo de manchas solares registrado em 11 de Julho de 2012. O campo de visão da imagem acima se espalha por aproximadamente 160.000 quilômetros. Esse grupo de manchas está localizado no centro da chamada região ativa AR1520, que atualmente cruza a face visível do Sol.

região AR 1520

© Alan Friedman (região AR 1520)

De fato, uma flare solar de classe X 1.4 e uma ejeção de massa coronal entraram em erupção na AR1520 no dia 12 de Julho de 2012 lançando ao espaço parte da energia armazenada nos campos magnéticos dessa região. Como foi lançada em direção a Terra, espera-se que essa ejeção de massa coronal chegue hoje na Terra disparando tempestades geomagnéticas. Como resultado dessa interação auroras podem ocorrer durante o final de semana em alguns pontos da Terra e esse fenômeno pode-se juntar à conjunção de brilhantes planetas e da Lua crescente, que irá acontecer também durante o fim de semana.

Lua-Júpiter-Vênus-Aldebaran

© Cosmonovas (Lua, Júpiter, Vênus e Aldebaran)

Fonte: NASA

sexta-feira, 13 de julho de 2012

Galáxia M101 no século 21

Uma das últimas entradas do famoso catálogo de Charles Messier, a grande e bonita galáxia espiral M101 definitivamente não é uma das menos importantes.

galáxia M101

© NASA/ESA (galáxia M101)

Com aproximadamente 170.000 anos-luz de diâmetro, essa galáxia é enorme, quase com o dobro do tamanho da Via Láctea. A M101 foi também uma das nebulosas espirais originais observadas por Lord Rosse através do grande telescópio do século 19, o Leviatã de Parsontown. Em contraste com o que foi observado no século 19, a imagem acima é a mais moderna já feita da galáxia M101. Essa é uma imagem feita com múltiplos comprimentos de onda obtidos pelos telescópios espaciais do século 21. Para compor a imagem foram usados os comprimentos de onda desde os raios X (alta energia) até o infravermelho (baixa energia). Podemos então observar na imagem acima em roxo os dados obtidos pelo observatório de raios X Chandra, em azul os dados capturados pelo GALEX (Galaxy Evolution Explorer), em amarelo os dados obtidos pelo telescópio espacial Hubble e em vermelho os dados obtidos pelo telescópio espacial Spitzer. Enquanto que os dados de raios X traçam a localização do gás aquecido a milhões de graus ao redor das estrelas explosivas, estrelas de nêutrons e sistemas binários de buracos negros da M101, os dados de energia mais baixa identificam as estrelas e a poeira que define os grandes braços espirais da M101. Também conhecida como a Galáxia do Cata-Vento, a M101 localiza-se na borda da constelação Ursa Maior, a aproximadamente 25 milhões de anos-luz de distância da Terra.

Fonte: NASA

Morte estelar provocada por buraco negro

A imagem abaixo é uma simulação que mostra o gás de uma estrela que está sendo arrancado por forças de maré à medida que ele cai em direção ao buraco negro.

gás da estrela sendo arrancado pelo buraco negro

© NASA (gás da estrela sendo arrancado pelo buraco negro)

Uma parte desse gás está sendo ejetado a altas velocidades no espaço.

Usando observações feitas com telescópios no espaço e em Terra, os astrônomos reuniram a evidência mais direta até o momento desse violento processo, ou seja, um buraco negro supermassivo corrompendo uma estrela localizada bem próxima. O projeto orbital Galaxy Evolution Explorer (GALEX) e o telescópio Pan-STARRS1 montado no cume do monte Haleakala no Havaí foram usados para ajudar a identificar o resquício estelar.

Uma flare na luz ultravioleta e na luz óptica revelou que o gás caindo no buraco negro é rico em hélio que foi expelido pelo sistema. Quando a estrela esta se partindo, parte do material colapsa em direção ao buraco negro enquanto o resto é ejetado em alta velocidade. A flare e as propriedades fornecem uma assinatura desse cenário e nos dá detalhes sem precedentes sobre essa verdadeira vítima estelar.

Para definir completamente a possibilidade de que um núcleo ativo está iluminando a galáxia, ao invés de ser uma estrela sendo corrompida, a equipe de pesquisadores usou o observatório de raios X Chandra da NASA para estudar o gás quente. O Chandra mostrou que as características do gás não se ajustam  a um núcleo ativo de galáxias.

A galáxia onde o buraco negro supermassivo está corrompendo a estrela é conhecida como PS1-10jh e está localizada a aproximadamente 2,7 bilhões de anos-luz da Terra. Os astrônomos estimam que o buraco negro supermassivo da galáxia PS1-10jh tenha uma massa de alguns milhões de sóis, tamanho esse comparável ao buraco negro supermassivo da nossa Via Láctea.

Fonte: NASA

Buraco negro ilumina galáxia!

Um buraco negro supermassivo é o principal suspeito por trás da aparência brilhante da galáxia 3C 305, localizada a cerca de 600 milhões de anos-luz de distância, na constelação Draco (Dragão).

galáxia 3C 305

© NASA (galáxia 3C 305)

Dados compostos do observatório de raios X Chandra e outros telescópios sugerem que o buraco negro pode estar interagindo com o gás interestelar e emitindo raios X. Ou, a radiação luminosa de regiões próximas ao buraco negro pode infundir energia para o gás que o faz brilhar.

As estruturas em vermelho e azul claro são imagens em raio X e no óptico do observatório Chandra e do telescópio espacial Hubble, respectivamente. Os dados de emissão óptica é apenas oxigênio e, portanto, toda a extensão da galáxia não é vista. Os dados em rádio são mostrados em azul mais escuro e são do Very Large Array do National Radio Astronomy Observatory (NRAO) no Novo México, bem como Multi-Element Radio-Linked Interferometer Network no Reino Unido.
Uma característica inesperada desta imagem em múltiplos comprimentos de onda da 3C 305 é que a emissão de rádio, produzida por um jato do buraco negro central, não se sobrepõem com os dados de raios X. A emissão de raios X, no entanto, parece estar associada com a emissão óptica.

Utilizando esta informação, astrônomos acreditam que a emissão de raios X pode ser causada por qualquer um de dois efeitos diferentes. Uma opção é que os jatos do buraco negro supermassivo (não visível nesta imagem) estão interagindo com o gás interestelar da galáxia e aquecendo-o o suficiente para que emitem raios X. Neste cenário, o gás aquecido por choques estaria à frente dos jatos. A outra possibilidade é que a radiação luminosa de regiões próximas ao buraco negro infunde energia suficiente ao gás interestelar para fazê-lo brilhar.

Fonte: NASA

quinta-feira, 12 de julho de 2012

Água da Terra veio do Cinturão de Asteroides

A ciência afirma que a água que veio parar na Terra foi formada nos confins do Sistema Solar, além de Netuno.

nebulosa planetária

© NASA (nebulosa planetária)

Contudo, um estudo indica que a substância veio de uma região muito mais próxima, o Cinturão de Asteroides (entre Marte e Júpiter), através de meteoritos e asteroides o que contradiz algumas das principais teorias sobre a evolução do Sistema Solar.

Muitos cientistas acreditam que nosso planeta era quente demais nos seus primórdios para ter água e, portanto, a substância deve ter vindo de fora. Uma das hipóteses afirma que ela se formou na região transneptuniana (que fica além de Netuno, o último planeta conhecido do Sistema Solar) e depois se moveu para mais perto do Sol junto com cometas, meteoritos e asteroides. Contudo, é possível saber a distância em que as moléculas de água se formaram em relação ao Sol ao analisar os isótopos de hidrogênio presentes. Quanto mais longe da estrela, haverá menos radiação e, portanto, mais deutério.

O novo estudo comparou a presença de deutério no gelo trazido por condritos (um tipo de meteorito) e indicou que ela foi formada muito mais próxima de nós, no Cinturão de Asteroides. Esses meteoritos não contêm mais água, mas a substância fica registrada através de um tipo de mineral chamado de silicato hidratado, e é o hidrogênio presente nele que é investigado. Além disso, comparando com os isótopos de cometas, a pesquisa indica que esses corpos se formaram em regiões diferentes dos asteroides e meteoritos e, portanto, não atuaram na origem da água no nosso planeta.

"Dois modelos dinâmicos têm os cometas e os meteoritos condritos se formando na mesma região, e alguns destes objetos devem ter sido injetados na região em que a Terra se formava. Contudo, a composição da água de cometa é inconsistente com nossos dados de meteoritos condritos. O que realmente deixa apenas os asteroides como fonte da água na Terra", disse Conel Alexander, do Instituto Carnegie, líder do estudo.

Em 2011, a hipótese de que os cometas tiveram pouca importância na origem da água na Terra já estava com pouca força. Mas um estudo divulgado na revista Nature usou o telescópio Herschel, da ESA, para descobrir que a composição do cometa Hartley 2 tem uma quantidade de deutérios similar à encontrada no oceano. Foi o primeiro cometa com essa composição, já que outros seis analisados anteriormente tinham uma quantidade de deutério muito diferente dos mares da Terra.

Contudo, o novo estudo também refuta essa possibilidade. Segundo os pesquisadores, o cometa não traz apenas água, mas também outras substâncias (inclusive orgânicas) que contêm hidrogênio. E a quantidade de deutério presente nos cometas ainda fica acima daquela observada no nosso planeta, o que impede que esses corpos sejam considerados como uma importante fonte de água.

"A recente medição do cometa Hartley 2 tem uma composição isotópica de hidrogênio parecida com à da Terra, mas nós argumentamos que todo o cometa, incluindo a matéria orgânica, é provavelmente rica demais em deutério para ser uma fonte da água da Terra", diz Alexander.

Sobram duas possíveis fontes, que devem ter atuado juntas: rochas do Cinturão de Asteroides e gases (hidrogênio e o oxigênio) que existiam na nebulosa na qual o Sistema Solar se formou. O estudo foi conduzido por pesquisadores do Instituto Carnegie (EUA), Universidade da Cidade de Nova York, Museu de História Natural de Londres e da Universidade de Alberta, no Canadá.

Fonte: Science

quarta-feira, 11 de julho de 2012

Descoberta a quinta lua de Plutão

As agências espaciais europeia (ESA) e americana (NASA) divulgaram nesta quarta-feira a descoberta de uma nova lua em Plutão feita com o uso do telescópio Hubble.

Plutão e suas 5 luas

© Hubble(Plutão e suas 5 luas)

A imagem feita pelo Hubble mostra a recém-descoberta lua P5, ao lado das já conhecidas Nix, Hidra (Hydra), Caronte (Charon) e P4, que orbitam o planeta anão Plutão (Pluto).

Segundo as agências, estima-se que ela tenha entre 10 e 25 km, formato irregular e uma órbita de aproximadamente de 95 mil km ao redor do planeta anão.

A maior lua de Plutão, Caronte, foi descoberta em 1978. Somente em 2006, o Hubble foi achar mais dois corpos ao redor do planeta anão, as luas Nix e Hidra. Em 2011, foi encontrado o quarto satélite natural, chamado por enquanto de P4. A nova lua é designada temporariamente como "S/2012 (134340) 1", ou apenas P5.

Mas por que Plutão, um corpo tão pequeno que nem é considerado planeta, tem tantos satélites naturais? Uma teoria afirma que isso seria resultado de um choque com outro objeto transneptuniano (aqueles que ficam além de Netuno, o último planeta do Sistema Solar). Os escombros dessa colisão teriam dado origem a P5 e suas "irmãs".

O time de astrônomos, liderados pelo Instituto SETI (Search for Extra-Terrestrial Intelligence), utilizou nove conjuntos de imagens registrados pelo telescópio entre 26 de junho e 9 de julho deste ano.

A sonda New Horizons está a caminho de Plutão e deve fazer o primeiro sobrevoo em 2015; o resultado, espera a NASA, serão as primeiras imagens detalhadas já feitas do planeta anão e suas luas, que estão tão distantes que até mesmo o Hubble tem dificuldade em registrá-los.

Fonte: ESA e NASA

Encontradas galáxias escuras no Universo primordial

Foram encontradas pela primeira vez galáxias escuras, uma fase inicial da formação de galáxias prevista teoricamente mas que até agora nunca tinha sido observada.

encontradas pela primeira vez galáxias escuras (anotada)

© ESO (encontradas pela primeira vez galáxias escuras)

Estes objetos são essencialmente galáxias ricas em gás mas sem estrelas. Utilizando o Very Large Telescope do ESO, uma equipe internacional detectou estes objetos evasivos observando-os brilhando ao serem iluminados por um quasar.

As galáxias escuras são galáxias pequenas ricas em gás do Universo primordial, muito pouco eficazes em formar estrelas. São previstas pelas teorias de formação de galáxias e pensa-se que são os blocos constituintes das atuais galáxias brilhantes ricas em estrelas. Os astrônomos pensam que estes objetos devem ter alimentado as galáxias maiores com o gás que posteriormente deu origem às estrelas que existem atualmente.

Uma vez que são essencialmente desprovidas de estrelas, estas galáxias escuras não emitem muita radiação, o que as torna muito difíceis de detectar. Durante anos, os astrônomos tentaram desenvolver novas técnicas para confirmar a existência destas galáxias. Pequenos decréscimos em absorção nos espectros de fontes luminosas de fundo apontavam para a sua existência. No entanto, este novo estudo marca a primeira vez que estes objetos foram vistos diretamente.

"A nossa abordagem do problema de detectar uma galáxia escura foi simplesmente iluminá-la com uma luz brilhante", explica Simon Lilly (ETH Zurich, Suíça), co-autor do artigo científico que descreve o resultado. "Procuramos o brilho fluorescente do gás em galáxias escuras quando estas são iluminadas pela radiação ultravioleta de um quasar próximo muito brilhante. A radiação do quasar ilumina as galáxias escuras num processo semelhante ao das lâmpadas ultravioletas que iluminam as roupas brancas numa discoteca". A fluorescência é a emissão de radiação por uma substância iluminada por uma fonte luminosa. Na maioria dos casos, a radiação emitida tem um comprimento de onda maior que a da fonte luminosa. Por exemplo, as lâmpadas fluorescentes transformam radiação ultravioleta - invisível para nós - em radiação visível. A fluorescência ocorre naturalmente em alguns compostos, como rochas ou minerais, mas pode ser também adicionada intencionalmente, como no caso de detergentes que contêm químicos fluorescentes, no intuito de fazer com que as roupas brancas pareçam mais brilhantes sob luz normal.

A equipe tirou partido da grande área coletora e sensibilidade do Very Large Telescope (VLT) e de uma série de exposições muito longas, para detectar o brilho fluorescente extremamente tênue das galáxias escuras. A equipe utilizou o instrumento FORS2 para mapear a região do céu em torno do quasar brilhante HE 0109-3518, à procura da radiação ultravioleta que é emitida pelo hidrogênio gasoso quando sujeito a radiação intensa. Os quasares são galáxias distantes e muito brilhantes. Acredita-se que sua energia provém de buracos negros de elevada massa situados nos seus centros. O seu brilho torna-os faróis poderosos que podem ajudar a iluminar a região circundante, dando-nos pistas sobre a época em que as primeiras estrelas e galáxias se formavam a partir do gás primordial.

Devido à expansão do Universo, esta radiação é, na realidade, observada com uma tonalidade de violeta quando chega ao VLT. Esta emissão de hidrogênio é conhecida por radiação de Lyman-alfa e é produzida quando os elétrons nos átomos de hidrogênio descem do segundo para o primeiro nível de energia. É um tipo de luz ultravioleta. Uma vez que o Universo se encontra em expansão, o comprimento de onda da radiação dos objetos aumenta à medida que atravessa o espaço. Quanto mais longe viajar a radiação, mais o comprimento de onda é aumentado. Como o vermelho é o maior comprimento de onda que os nossos olhos podem ver, este processo é literalmente um desvio em comprimento de onda em direção à ponta vermelha do espectro - daí o nome "desvio para o vermelho". O quasar HE 0109-3518 situa-se a um desvio para o vermelho de z = 2,4 e a radiação ultravioleta das galáxias escuras é desviada para a região visível do espectro. Um filtro de banda estreita foi especialmente concebido para isolar o comprimento de onda específico para o qual a emissão fluorescente é desviada. O filtro está centrado a cerca de 414,5 nanômetros, de maneira a capturar a emissão de Lyman-alfa desviada para o vermelho de z = 2,4 (corresponde a uma tonalidade de violeta) e tem uma largura de banda de apenas 4 nanômetros.

"Depois de vários anos de tentativas para detectar a emissão fluorescente das galáxias escuras, os nossos resultados demonstram o potencial deste método para descobrir e estudar estes fascinantes objetos previamente invisíveis", diz Sebastiano Cantalupo (Universidade da Califórnia, Santa Cruz), autor principal do estudo.

A equipe detectou quase 100 objetos gasosos que se situam num raio de alguns milhões de anos-luz do quasar. Depois de uma análise detalhada com o intuito de excluir objetos nos quais a emissão possa ser oriunda de formação estelar interna nas galáxias, em vez da radiação do quasar, o número de objetos diminuiu para 12. São as identificações mais convincentes até hoje de galáxias escuras no Universo primordial.

Os astrônomos conseguiram determinar também algumas das propriedades das galáxias escuras. Estimam que a massa do gás nestes objetos seja de cerca de um bilhão de vezes a do Sol, típica de galáxias de pequena massa ricas em gás, existentes no Universo primordial. A equipe conseguiu também estimar que a eficiência da formação estelar é suprimida de um fator maior que 100 relativamente a galáxias típicas com formação estelar encontradas em fases semelhantes na história cósmica. A eficiência de formação estelar é calculada como a massa de estrelas recentemente formadas sobre a massa de gás disponível para formar estrelas. A equipe descobriu que estes objetos precisariam de mais de 100 bilhões de anos para converter todo o gás em estrelas. Este resultado está de acordo com estudos teóricos recentes que sugeriram que halos de pequena massa ricos em gás a elevados desvios para o vermelho podem ter uma eficiência de formação estelar muito baixa, como consequência do baixo conteúdo em metais.

"As nossas observações com o VLT mostram evidências da existência de nuvens escuras compactas e isoladas. Com este estudo demos um importante passo em frente no sentido de revelar e compreender as fases iniciais da formação de galáxias e de como as galáxias adquirem o seu gás", conclui Sebastiano Cantalupo.

O espectrógrafo de campo integral MUSE, que chegará ao VLT em 2013, será uma ferramenta extremamente poderosa no estudo destes objetos.

Este trabalho foi descrito no artigo científico "Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z=2.4", por Cantalupo et al. que será publicado na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

terça-feira, 10 de julho de 2012

Casulo cósmico ao redor de uma supernova

Usando observações feitas com o observatório de raios X Chandra da NASA, os pesquisadores obtiveram a primeira evidência em raios X da onda de choque de uma supernova passando através de um casulo de gás ao redor de uma estrela que explodiu.

galáxia UGC 5189A

© Chandra/Hubble (galáxia UGC 5189A)

Essa descoberta pode ajudar os astrônomos a entenderem por que algumas supernovas são tão mais poderosas do que outras.

No dia 3 de Novembro de 2010, uma supernova foi descoberta na galáxia UGC 5189A, localizada a aproximadamente 160 milhões de anos-luz de distância. Usando dados do telescópio All Sky Automated Survey no Havaí, os astrônomos determinaram que a supernova explodiu no começo do mês de Outubro de 2010.

A imagem acima é uma composição de imagens da UGC 5189A que mostra os raios X do Chandra em roxo e os dados ópticos obtidos pelo telescópio espacial Hubble em vermelho, verde e azul.  A chamada SN 2010jl é a fonte bem brilhante de raios X perto do topo da galáxia.

Uma equipe de pesquisadores usou o Chandra para observar essa supernova no mês de Dezembro de 2010 e novamente em Outubro de 2011. A supernova foi uma das mais luminosas que já foram detectadas em raios X.

Na primeira observação do Chandra da SN 2010jl, os raios X  da onda gerada na explosão eram fortemente absorvidos por um casulo de gás denso situado ao redor da supernova. Esse casulo era formado por gás que foi soprado para longe pela estrela massiva antes dela explodir.

Na segunda observação feita quase que um ano depois, existia muito menos absorção da emissão de raios X, indicando que a onda da explosão teria passado pelo casulo ao redor. Os dados do Chandra mostraram que o gás emitindo os raios X tinha uma temperatura bem alta, maior que 100 milhões de graus Kelvin, forte evidência de que havia sido aquecido pela onda de choque da supernova.

Num raro exemplo de uma coincidência cósmica, a análise dos raios X de uma supernova mostrou que existia uma segunda fonte não correlacionada quase que na mesma localização da supernova. Essas duas fontes, se sobrepõem de maneira  marcante como é observado hoje. Essa segunda fonte provavelmente é uma fonte de raios X ultraluminosa, possivelmente contendo um buraco negro de massa estelar ou um buraco negro de massa intermediária.

Fonte: NASA

segunda-feira, 9 de julho de 2012

Uma bela imagem da Nebulosa Pata de Gato

O Observatório Europeu do Sul (ESO) divulgou nova imagem da Nebulosa Pata de Gato, ou NGC 6334.

Nebulosa Pata de Gato

© ESO (Nebulosa Pata de Gato)

A imagem foi obtida da combinação de observações do telescópio de 2,2 metros MPG/ESO com 60 horas de exposição em um telescópio amador, capturadas pelos astrônomos Robert Gendler e Ryan M. Hannahoe.

A forma distintiva da Nebulosa é revelada entre nuvens avermelhadas de gás brilhante no contraste com um céu escuro coberto de estrelas. A resolução existente das observações do telescópio MPG/ESO foi combinada com as informações de cor das observações dos astrônomos, tendo como resultado uma bela combinação de telescópios amadores e profissionais.

Localizada na direção do centro da Via Láctea, a 5.500 anos-luz da Terra, na constelação do Escorpião, a Nebulosa Pata de Gato estende-se ao longo de 50 anos-luz e é uma enorme maternidade estelar, local de nascimento de centenas de estrelas de grande massa.

Fonte: ESO

sábado, 7 de julho de 2012

Buraco negro descontrolado na Via Láctea

A imagem abaixo mostra uma vista oblíqua da nossa galáxia, a Via Láctea.

buraco negro arremessado através do plano da Via Láctea

© ESA (buraco negro arremessado através do plano da Via Láctea)

O sistema que contém o buraco negro GRO J1655-40 está cruzando o espaço a uma taxa de 400.000 quilômetros por hora (111,11 km/s) - 4 vezes mais rápido que a velocidade média das estrelas na vizinhança galáctica. A estrela amarela é o nosso Sol. O buraco negro foi formado no disco a uma distância superior a 3 kpc (kiloparsec = 9,25 x1016 km) do centro galáctico e deve ter sido ejetado para uma órbita excêntrica pela explosão de supernova da estrela progenitora. O momento linear e a energia cinética descontrolados deste buraco negro binário são comparáveis ​​aos de estrelas de nêutrons solitárias e pulsares de milisegundos. O GRO J1655-40 é o primeiro buraco negro que há evidências de um movimento de fuga transmitida por um impulso em uma explosão de supernova.

Para efeito de comparação, o Sol e outras estrelas próximas têm velocidades típicas da ordem de 20 km/s em relação à velocidade média de estrelas se movendo com a rotação do disco galáctico, que apoia a ideia de que o buraco negro se frmou a partir do colapso do núcleo de uma estrela massiva. Como o núcleo entrou em colapso, as suas camadas exteriores explodiu como uma supernova deixando o sistema remanescente movendo-se através da galáxia com uma velocidade anormalmente elevada.

Fonte: ESA

sexta-feira, 6 de julho de 2012

Estranha união de estrelas vermelhas binárias

Uma equipe de astrônomos usou o telescópio infravermelho United Kingdom Infrared Telescope (UKIRT) no Havaí para descobrir quatro pares de estrelas que orbitam um ao outro em menos de 4 horas.

estrelas vermelhas binárias

© J. Pinfield (estrelas vermelhas binárias)

Até agora pensava-se que este ínfimo período reduzido em estrelas binárias não poderia existir. As novas descobertas vêm da Wide Field Camera (WFCAM) Transit Survey do telescópio, e aparece no periódico Monthly Notices of the Royal Astronomical Society.

Cerca de metade das estrelas na Via Láctea são, ao contrário do nosso Sol, parte de um sistema binário em que duas estrelas orbitam uma à outra. Muito provavelmente, as estrelas nestes sistemas se formaram juntas e orbitam em torno de si a partir de seus nascimentos. Sempre se pensou que se as estrelas binárias forem formadas muito próximas umas das outras, elas rapidamente se fundem em uma estrela única e maior. Isto estava em consonância com muitas observações colhidas ao longo das últimas três décadas que mostram a população abundante de binários estelares, mas nenhuma com períodos orbitais menores do que 5 horas.
Pela primeira vez, a equipe investigou binários de anãs vermelhas, estrelas até dez vezes menores e mil vezes menos luminosas que o Sol. Embora constituam o tipo mais comum de estrelas na Via Láctea, as anãs vermelhas apresentam obscuridade na luz visível.

Nos últimos cinco anos, o UKIRT tem acompanhado o brilho de centenas de milhares de estrelas, incluindo milhares de anãs vermelhas, em luz infravermelha, utilizando a câmera de campo amplo.

"Para nossa surpresa, encontramos várias anãs vermelhas binárias, com períodos orbitais significativamente menor que o de 5 horas para estrelas semelhantes ao Sol, algo que se pensava ser impossível", disse Bas Nefs do Observatório Leiden, na Holanda.

Como as estrelas diminuem de tamanho no início de sua vida, o fato de que esses binários muito apertados existam significa que suas órbitas também deve ter encolhido desde o seu nascimento, caso contrário, as estrelas teriam estado em contato logo no início e se fundiriam. No entanto, não está claro como essas órbitas poderiam ter diminuído acentuadamente. Uma possível resposta para esse enigma é que estrelas frias em sistemas binários são muito mais ativas e violentas do que se pensava anteriormente.

É possível que as linhas do campo magnético que saem das estrelas companheiras frias ficam distorcidas, gerando a atividade extra através do vento estelar, protuberâncias e manchas estelares. A atividade magnética poderosa poderia freiar estas estrelas que giram, fazendo com que elas se aproximem.

A natureza ativa dessas estrelas e seus aparentemente poderosos campos magnéticos tem profundas implicações para os ambientes em torno de anãs vermelhas em toda a nossa galáxia.

Fonte: Royal Astronomical Society

A cauda de maré de uma galáxia

A grande galáxia espiral NGC 3628 (na parte central esquerda), localizada a 30 milhões de anos-luz de distância, compartilha sua vizinhança no Universo local com duas outras galáxias espirais, num impressionante grupo conhecido como Tripleto de Leão.

Tripleto de Leão

© Thomas Davis (Tripleto de Leão)

Além da NGC 3628, fazem parte também da trinca de galáxias a M65 perto da borda central direita da imagem com a M66 um pouco acima e a esquerda. Mas talvez, o mais intrigante nessa região seja a espetacular cauda que se estica para cima e para a esquerda por aproximadamente 300.000 anos-luz desde o disco da NGC 3628. Conhecida como cauda de maré, a estrutura tem sido gerada pelas marés gravitacionais ocorridas durante um breve e violento encontro dessa galáxia com suas vizinhas. Quase nunca registrada com muito detalhe, a cauda é composta por jovens aglomerados estelares azulados e por regiões de formação de estrelas.

Fonte: NASA

quinta-feira, 5 de julho de 2012

Vários microblazares são observados

Astrônomos encontraram evidências de centenas de buracos negros em uma galáxia a milhões de anos-luz de distância.

galáxia ARP 220

© NRAO (galáxia ARP 220)

A descoberta, feita com uma rede mundial de radiotelescópios, dá aos cientistas uma nova maneira de descobrir como os buracos negros são criados. Esses objetos, conhecidos pelos astrônomos como microblazares, foram teoricamente previstos mais de uma década atrás.

Os astrônomos acreditam que os microblazares são versões reduzidas dos faróis cósmicos conhecidos como blazares. Em um blazar, um buraco negro supermassivo abastecendo-se do gás denso no centro de uma galáxia cria jatos potentes que podem ser observados da Terra, se forem dirigidos para nós.
Uma equipe liderada por astrônomos na Chalmers University of Technology e Onsala Space Observatory tem acompanhado os sinais de rádio a partir do núcleo da galáxia ARP 220, que está 250 milhões de anos-luz da Terra. Além de um número de supernovas, eles também descobriram algumas fontes que estavam à primeira vista difícil de entender.

Os cientistas acompanharam as três fontes de rádio peculiares por vários anos. Agora eles pensam que sabem o que está por trás dos sinais de rádio: jatos criados por buracos negros. Isto pode ser a emissão de rádio a partir de sistemas estelares binários em que uma estrela já explodiu e deixou para trás um buraco negro. O buraco negro absorve o gás de sua companheira, produzindo poderosos jatos que emitem ondas de rádio.

Os jatos de buracos negros são visíveis a esta distância, se forem apontando diretamente em nossa direção. Provavelmente existem muitos outros sistemas como este nesta galáxia, mas seus jatos apontam em outras direções.

A galáxia ARP 220 já é famoso por criar novas estrelas a um ritmo furioso. Uma pesquisa anterior pela mesma equipe também demonstrou que existem muitas explosões de supernovas na galáxia, até 250 vezes mais do que na Via Láctea. Os astrônomos acreditam que os buracos negros são criados quando estrelas com massas mais do que cerca de 20 vezes a do o Sol explodem.

Esta descoberta na ARP 220 colocará em breve essa idéia à prova. Apenas uma dúzia de buracos negros deste tipo são conhecidos na Via Láctea, e apenas alguns são conhecidos em outras galáxias.

A descoberta foi feita com uma rede de radiotelescópios ao redor do mundo, ligados entre si para criar imagens muito nítidas, usando a técnica de VLBI (Very Long Baseline Interferometry). Os radiotelescópios podem acompanhar os acontecimentos nos centros densos de galáxias que estão por trás de grossas camadas de poeira, invisíveis a outros telescópios. A fim de descobrir quais são as fontes de rádio na ARP 220 a equipe fez medições em comprimentos de onda de rádio diferentes durante um período de 17 anos.

"Este resultado só surgiu depois de muitos anos de observações cuidadosas e melhorias nas técnicas de VLBI", diz Philip Diamond, membro da equipe e chefe do CSIRO Astronomy and Space Science, na Austrália.

Fonte: Astronomy & Astrophysics

Uma família de nebulosas na Via Láctea

O telescópio WISE da NASA flagrou um ângulo diferente de uma família de nebulosas localizada na constelação de Órion, a mais visível do Hemisfério Norte nas noites de inverno.
nebulosa da Chama
© WISE (nebulosa da Chama)
Na imagem, a enorme nuvem espacial ganha uma versão atualizada a partir de dados infravermelhos coletados pelo WISE. Os objetos mais frios, como a poeira das nebulosas, aparecem nas cores verde e vermelha.
Os astrônomos estavam interessados em estudar as áreas mais brilhantes dessa região sem tanto brilho. Vista pela nova perspectiva, o campo espacial contém uma vasta nuvem de gás e poeira onde as estrelas nascem. No centro, podem ser vistas três nebulosas: da Chama, Cabeça de Cavalo e NGC 2023.
A Nebulosa da Chama é a mais brilhante da imagem, pois recebe em seu interior a iluminação de uma estrela que tem 20 vezes a massa do Sol e que só não é tão brilhante por causa da poeira ao redor, que a faz parecer 4 bilhões de vezes menor do que realmente é.
A NGC 2023 é o círculo brilhante menor, logo abaixo da Nebulosa da Chama. A terceira delas, Cabeça de Cavalo, fica fora da borda da nuvem, à direita da NGC 2023. Ela não aparece direito por causa da poeira e dos raios infravermelhos usados pelo WISE, mas em luz visível vira uma nuvem escura sobre gases brilhantes.
Duas estrelas do cinturão de Órion também podem ser vistas na foto: Alnitak ou Zeta Orionis, um astro triplo que fica a 736 anos-luz da Terra – aparece bem brilhante, de cor azul, à direita – e Alnilam ou Epsilon Orionis, uma supergigante azul que fica a 1.980 anos-luz daqui. Apesar de ela ter um raio duas vezes maior e uma luminosidade 275 mil vezes maior que o Sol, aparece com um brilho de pouca intensidade no canto à direita.
Outro objeto que chama a atenção na imagem é o arco vermelho. Ele rodeia a estrela Sigma Orionis, uma anã-azul logo abaixo de Aniltak, situada na "espada" que sai da cintura do caçador Órion, a 1.070 anos-luz de distância da Terra.
Esse arco se move a uma velocidade de 2.400 quilômetros por segundo. Os ventos criados pelo movimento colidem contra o gás e a poeira e produzem uma onda de choque, cuja energia aquece a região e a faz brilhar em luz infravermelha.
Fonte: NASA