quinta-feira, 16 de maio de 2013

Jatos acelerados de buraco negro supermassivo

A imagem abaixo composta de uma galáxia ilustra como a intensa gravidade de um buraco negro supermassivo pode ser aproveitada para gerar uma imensa potência.

imagem composta de galáxia com buraco negro

© NASA (imagem composta de galáxia com buraco negro)

A imagem acima contém dados de raios X do observatório de raios X  Chandra da NASA (azul), a luz óptica obtida pelo telescópio espacial Hubble (dourado) e ondas de rádio do Very Large Array do NSF (rosa). Essa imagem em múltiplos comprimentos de onda mostra a 4C+29.30, uma galáxia localizada a aproximadamente 850 milhões de anos-luz da Terra. As emissões de rádio são provenientes de dois jatos de partículas que estão aceleradas a milhões de milhas por hora para longe de um buraco negro supermassivo localizado no centro da galáxia. A massa estimada do buraco negro é de aproximadamente 100 milhões de vezes a massa do Sol. A parte terminal dos jatos mostra áreas maiores das emissões de rádio localizadas fora da galáxia. Os dados de raios X mostram diferentes aspectos dessa galáxia, traçando o local onde está o gás quente. Os raios X brilhantes no centro da imagem marcam um reservatório de gás com temperatura na ordem de milhões de graus, ao redor do buraco negro. Parte desse material pode eventualmente ser consumida pelo buraco negro, e o gás magnetizado e em movimento de rotação perto do buraco negro poderia por sua vez, disparar mais emissões de jatos de rádio. A maior parte dos raios X de baixa energia da vizinhança do buraco negro é absorvida pelo gás e pela poeira, provavelmente na forma de uma gigantesco toróide (formato de rosca) ao redor do buraco negro. Esse toróide bloqueia toda a luz óptica produzida perto do buraco negro, assim os astrônomos se referem a esse tipo de fonte como um buraco negro escondido. A luz óptica vista na imagem vem das estrelas na galáxia.

Fonte: NASA

Flares de classe X no Sol

O Sol produziu a primeira flare do ano no dia 13 de maio.

regiões ativas do Sol em ultravioleta

© SDO (regiões ativas do Sol em ultravioleta)

Oscilando ao redor do limbo leste do Sol desde a segunda-feira, um grupo de manchas solares chamado de região ativa AR1748 tem produzido as primeiras quatro flares de classe X do ano de 2013 em menos de 48 horas.

quatro flares de classe X

© SDO (quatro flares de classe X)

Na sequência temporal acima, no sentido horário desde a parte superior esquerda, temos as quatro flares capturadas na luz ultravioleta do satélite Solar Dynamis Observatory (SDO). Ranqueadas de acordo com o seu pico de brilho em raios X, as flares de classe X são as mais poderosas e são frequentemente acompanhadas pelas chamadas ejeções de massa coronal, ou CMEs, massivas nuvens de plasma de alta energia lançadas ao espaço. Mas as CMEs das três primeiras flares não estavam direcionadas para a Terra, enquanto que aquela associada com a quarta flare pode mandar um pouco de sua energia em direção ao campo magnético da Terra, que deve chegar em 18 de maio de 2013. Causando perdas temporárias de sinal de rádio, a região AR1748 provavelmente não acabou. Novas flares podem ser produzidas gerando interferências eletromagnéticas, se a região ativa em rotação ficar do lado visível do Sol apontada diretamente para a Terra.

Fonte: NASA

quarta-feira, 15 de maio de 2013

A flamejante fita escondida de Órion

Uma nova imagem das nuvens cósmicas na constelação de Órion revela o que parece ser uma fita flamejante no céu.

formação estelar na Nebulosa de Órion

© ESO/APEX (formação estelar na Nebulosa de Órion)

O brilho laranja representa a radiação tênue emitida pelos grãos de poeira fria interestelar, em comprimentos de onda longos demais para poderem ser vistos com o olho humano. Esta imagem foi obtida pelo Atacama Pathfinder Experiment (APEX), operado pelo ESO no Chile.

As nuvens de gás e poeira interestelar são a matéria prima a partir da qual as estrelas se formam. No entanto, estes minúsculos grãos de poeira bloqueiam a nossa visão, não nos permitindo observar além das nuvens - pelo menos nos comprimentos de onda ópticos - o que dificulta a observação dos processos de formação estelar.
Esta é a razão pela qual os astrônomos usam instrumentos que são capazes de “ver” em outros comprimentos de onda. Na região do submilímetro, em vez de bloquear a radiação, os grãos de poeira brilham devido às suas  temperaturas de algumas dezenas de graus acima do zero absoluto. Objetos mais quentes emitem a maior parte da sua radiação em comprimentos de onda mais curtos e objetos mais frios emitem a comprimentos de onda mais longos. Como exemplo, estrelas muito quentes (com temperaturas da ordem dos 20.000 graus Kelvin) aparecem azuis e estrelas mais frias (com temperaturas de cerca de 3.000 graus Kelvin) aparecem vermelhas. Uma nuvem de poeira com uma temperatura de apenas dez Kelvin tem o seu pico de emissão a comprimentos de onda muito mais longos - a cerca de 0,3 milímetros - na zona do espectro electromagnético para a qual o APEX é muito sensível. O telescópio APEX com a sua câmera LABOCA, trabalhando nos comprimentos de onda do submilímetro, situado a uma altitude de 5.000 metros acima do nível do mar, no planalto do Chajnantor, nos Andes chilenos, é a ferramenta ideal para este tipo de observação.
Esta imagem espetacular mostra apenas uma parte do complexo maior conhecido como a Nuvem Molecular de Órion, na constelação de Órion. Esta região, que apresenta uma mistura de nebulosas brilhantes, estrelas quentes jovens e nuvens de poeira fria, tem uma dimensão de centenas de anos-luz e situa-se a cerca de 1.350 anos-luz de distância da Terra. O brilho emitido pelas nuvens de poeira fria nos comprimentos de onda do submilímetro está marcado em laranja na imagem e encontra-se sobreposto a uma imagem da região obtida na luz visível mais familiar.
A enorme nuvem brilhante que se vê na imagem, em cima e à direita, é a bem conhecida Nebulosa de Órion, também chamada Messier 42. Pode ser vista a olho nu, aparecendo como a ligeiramente tremida “estrela” do meio na espada de Órion. A Nebulosa de Órion é a região mais brilhante de uma enorme maternidade estelar onde novas estrelas estão se formando, sendo também o local mais perto da Terra onde se formam estrelas de grande massa.
As nuvens de poeira formam bonitos filamentos, lençóis e bolhas, como resultado de processos que incluem colapso gravitacional e efeitos de ventos estelares. Estes ventos são correntes de gás ejetado pelas atmosferas estelares, e são suficientemente poderosos para esculpir as nuvens circundantes nas formas convolutas que aqui se podem observar.
Os astrônomos utilizaram estes e outros dados do APEX, assim como imagens do Observatório Espacial Herschel da ESA, para procurar protoestrelas na região de Órion - uma fase inicial da formação estelar. Até agora conseguiram identificar 15 objetos que são muito mais brilhantes nos comprimentos de onda longos do que nos curtos. Estes raros objetos recém descobertos estão provavelmente entre as protoestrelas mais jovens encontradas até agora, o que ajuda os astrônomos a aproximarem-se mais do momento em que uma estrela começa a se formar.

Fonte: ESO

Novo método para encontrar exoplanetas

Uma equipe de astrofísicos da Universidade de Tel Aviv e do Harvard-Smithsonian Center for Astrophysics (CfA) anunciou a descoberta de um exoplaneta através da detecção do efeito de “beaming”, previsto pela teoria da relatividade restrita de Einstein.

ilustração do sistema Kepler-76

© CfA (ilustração do sistema Kepler-76)

Uma estrela em repouso emite radiação para todas as direções do espaço com igual intensidade. No entanto, segundo a teoria da relatividade restrita de Einstein, uma estrela movendo-se a grande velocidade no espaço emite ligeiramente mais radiação no sentido em que se move. Este efeito é tanto maior quanto maior for a velocidade da estrela relativamente à velocidade da luz. Para um observador alinhado com a direção do movimento da estrela esta parecerá mais (menos) luminosa, se estiver se aproximando (afastando), do que se fosse observada em repouso.

Em 2003, os astrofísicos Avi Loeb (CfA) e Scott Gaudi (atualmente na Ohio State University) proposeram um método de detecção de exoplanetas baseado neste efeito. A ideia era simples: uma estrela com um exoplaneta suficientemente maciço e próximo poderia atingir uma velocidade orbital tão elevada, em torno do eixo de gravidade comum estrela-planeta, que o efeito de “beaming” poderia ser detectado. Se imaginarmos a curva de luz da estrela, brilho vs. tempo, a estrela pareceria ficar ligeiramente mais brilhante, periodicamente, correspondendo aos instantes em que a sua velocidade orbital teria a sua maior componente na nossa direção. O efeito simétrico também seria visível. Com a mesma periodicidade a estrela pareceria diminuir de brilho sempre que afastava de nós com velocidade orbital máxima. Este efeito é muito sútil e só detectável em estrelas para as quais temos curvas de luz com precisão excepcional, como é o caso das obtidas pelo telescópio Kepler, que atingem uma precisão de algumas partes por milhão.

Para detectar este efeito em estrelas na base de dados do Kepler, os astrofísicos Tsevi Mazeh e Simchon Faigler, da Universidade de Tel Aviv, desenvolveram um algoritmo designado de BEER (“relativistic BEaming, Ellipsoidal, and Reflection/emission modulations”). O BEER analisa cada uma das curvas de luz na base de dados e detecta automaticamente casos que exibam sinais de “beaming” e também de outros dois efeitos: variações de brilho na estrela devido ao fato de assumir a forma de um elipsóide, devido ao “puxão gravitacional” do planeta, e; variações de brilho provocadas por luz refletida pelo próprio planeta. Trata-se de uma análise computacionalmente muito complexa.

Munidos desta ferramenta, os cientistas israelitas identificaram uma estrela na base de dados do Kepler que parecia exibir este efeito. Para confirmar a existência do planeta, duas equipas, uma do CfA e outra da Universidade de Tel Aviv, utilizaram os espectrógrafos TRES (no Observatório Whipple, no Arizona) e SOPHIE (no Observatório de Haute-Provence, na França), para medir potenciais variações na velocidade radial da estrela hospedeira. As observações confirmaram a presença de um planeta maciço e uma análise posterior mais detalhada da curva de luz do Kepler permitiu detectar trânsitos do planeta quase tangenciais à estrela, que tinham passado despercebidos inicialmente, e que permitiram caracterizar melhor o sistema.

trânsito tangencial do Kepler-76b

© CfA (trânsito tangencial do Kepler-76b)

O sistema, agora designado de Kepler-76 é formado por uma estrela anã de tipo espectral F (um pouco maior, mais luminosa e mais quente do que o Sol), situada a 2 mil anos-luz na direção da constelação do Cisne, e um Júpiter Quente 25% maior do que Júpiter e 2 vezes mais maciço. O planeta orbita a estrela hospedeira em apenas 1,5 dias. A proximidade do planeta à estrela faz com que este apresente sempre a mesma face para ela, tal como a Lua apresenta sempre a mesma face para a Terra. A temperatura de equilíbrio do planeta, como seria de esperar, é de 2.000 graus Celsius. As observações permitiram ainda apurar que o planeta tem ventos mais poderosos. Realmente, o ponto mais quente na atmosfera do planeta não é o mais próximo da estrela mas antes um ponto desviado em longitude cerca de 16 mil quilômetros. Isto só é possível se houver ventos fortíssimos nas camadas superiores da atmosfera do planeta que transportam de forma eficiente a radiação da estrela absorvida pela atmosfera. Um efeito semelhante foi observado apenas para um outro exoplaneta, o HD 189733b, mas utilizando observações no infravermelho realizadas com o telescópio espacial Spitzer.

Esta descoberta valida a detecção do efeito de “beaming” como mais uma técnica de descoberta de exoplanetas. Outras técnicas conhecidas são:a medição da velocidade radial e a observação de trânsitos, por exemplo.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 12 de maio de 2013

Estrelas poluídas com detritos planetários

O telescópio espacial Hubble encontrou sinais de planetas parecidos com a Terra em um lugar improvável: a atmosfera de um par de estrelas que estão morrendo num aglomerado estelar próximo.

região do aglomerado estelar Hyades

© STScI (região do aglomerado estelar Hyades)

As estrelas são anãs brancas que estão poluídas por detritos de objetos parecidos com asteroides que estão caindo em direção a elas. Essa descoberta sugere que planetas rochosos se formam em aglomerados, dizem os pesquisadores.

As estrelas residem a 150 anos-luz de distância da Terra no aglomerado estelar das Hyades, na constelação de Taurus, o Touro. O aglomerado é relativamente jovem, com somente 625 milhões de anos de existência.

Os astrônomos acreditam que todas as estrelas se formaram em aglomerados. Contudo a busca por planetas nesses aglomerados não trouxe resultado esperado; dos aproximadamente 800 exoplanetas conhecidos somente quatro são conhecidos orbitando estrelas em aglomerados. Essa escassez pode ser devido à natureza dos aglomerados de estrelas, que são jovens e ativos, produzindo labaredas estelares e outras explosões que podem tornar difícil o estudo delas em detalhe.

Um novo estudo liderado por Jay Farihi da Universidade de Cambridge, no Reino Unido, observou por sua vez estrelas moribundas em aglomerados atrás de planetas em formação.

As observações espectroscópicas do Hubble identificaram silício na atmosfera de duas anãs brancas, o silício é um dos principais ingredientes que constituem os planetas rochosos como a Terra e outros planetas terrestres no Sistema Solar. Esse silício pode ter vindo de asteroides que foram atraídos pela gravidade das anãs brancas quando eles passaram bem perto das estrelas. Os detritos rochosos provavelmente formaram um anel ao redor das estrelas mortas, colapsando o material em direção a elas.

Os detritos detectados circulando as anãs brancas sugerem que os planetas terrestres se formaram quando essas estrelas nasceram. Depois das estrelas terem se colapsado para formar anãs brancas, o gás restante de planetas gigantes pode ter unido gravitacionalmente os membros restantes de qualquer asteroide deixado para trás e colocado numa órbita ao redor da estrela.

“Nós identificamos evidências químicas dos blocos fundamentais dos planetas rochosos”, disse Farihi. “Quando essas estrelas nasceram, elas geraram planetas , e existe uma boa chance que elas atualmente retenham alguns deles. Os sinais dos detritos rochosos que nós estamos vendo são evidências disso, isso é no mínimo tão rochoso quanto os corpos terrestres primitivos no nosso Sistema Solar”.

Além de encontrar silício nas atmosfera das estrelas das Hyades, o Hubble também detectou baixos níveis de carbono. Esse é outro sinal da natureza rochosa dos detritos, já que os astrônomos sabem que os níveis de carbono devem ser bem baixo em material rochoso como a Terra. Encontrar essa assinatura química apagada necessitou o uso do poderoso Cosmic Origins Spectrograph (COS) do Hubble, já que as marcas do carbono podem se detetadas somente na luz ultravioleta, que não pode ser observada pelos telescópios baseados na Terra.

Por intermédio da razão silício-carbono identificada em exoplanetas é possível inferir que esse material é basicamente semelhante ao material da Terra

Esse novo estudo sugere que asteroides com menos de 160 quilômetros de diâmetro foram gravitacionalmente partidos pela intensa força de maré das anãs brancas, antes eventualmente de caírem em direção às estrelas mortas.

A equipe planeja analisar mais estrelas anãs brancas usando a mesma técnica para identificar não somente composição rochosa, mas também para analisar os corpos gerados. Com o poderoso espectrógrafo ultravioleta COS do Hubble e com os telescópios terrestres que estão para surgir com 30 e 40 metros de diâmetro, será possível obter mais dados desta história.

Fonte: ESA

quarta-feira, 8 de maio de 2013

Impressionante explosão de raios gama

Os raios gama registrados da explosão de uma estrela moribunda numa galáxia distante tem impressionado os astrônomos ao redor do mundo.

emissão de raios gama

© Fermi (emissão de raios gama)

A erupção que é classificada como uma explosão de raios gama (GRB), que foi designada como GRB 130427A, produziu a luz de mais alta energia já detectada de um evento como esses.

“Nós esperamos por muito tempo por uma explosão de raios gama chocante e que pudesse literalmente brilhar a olhos vivos”, disse Julie McEnery, cientista do projeto para o Fermi Gamma Ray Space Telescope no Goddard Space Flught Center da NASA. “A GRB durou tanto tempo que um número recorde de telescópios em terra foram capazes de registrar a explosão enquanto as observações com telescópios espaciais ainda estavam em curso”.

Na madrugada do dia 27 de abril de 2013, o Gamma-ray Burst Monitor (GBM) do Fermi disparou em uma erupção de luz de alta energia na constelação de Leo, o Leão. A explosão ocorreu enquanto o satélite Swift da NASA estava passando entre alguns alvos o que atrasou a detecção do Burst Alert Telescope por menos de um minuto.

O Large Area Telescope do Fermi, ou LAT, registrou uma explosão de raios gama com uma energia de no mínimo 94 GeV (bilhões de elétrons volts), ou algo em torno de 35 bilhões de vezes mais energético que a luz visível, e em torno de três vezes maior do que o registro anterior feito pelo LAT. A emissão da explosão durou horas e permaneceu detectável pelo LAT por boa parte do dia, registrando assim um novo recorde como a emissão de raios gama mais longa já observada de uma GRB.

A explosão foi subsequentemente detectada em comprimentos de onda óptico, infravermelho e de rádio por observações feitas em terra, com base na posição rápida e precisa do Swift. Os astrônomos rapidamente perceberam que a GRB estava localizada a aproximadamente 3,6 bilhões de anos-luz de distância da Terra, o que é algo relativamente próximo para fenômenos desse tipo.

As explosões de raios gama são as explosões mais luminosas do Universo. Os astrônomos acreditam que a maioria delas ocorrem quando estrelas massivas esgotam seu combustível nuclear e colapsam devido ao seu próprio peso. Enquanto que o núcleo colapsa num buraco negro, jatos de material são atirados para fora em velocidades próximas à da luz.

Os jatos vagam por todo o caminho através da estrela em colapso e continuam no espaço onde eles interagem com o gás previamente derramado pela estrela gerando brilhos intensos que desaparecem com o tempo.

Se uma GRB é próxima o suficiente, os astrônomos normalmente descobrem uma supernova no mesmo local uma semana depois, aproximadamente.

“Essa GRB em questão está entre as cinco por cento das explosões mais próximas, ou seja, existe a grande possibilidade de se encontrar uma supernova emergindo dessa explosão, do mesmo modo que supernovas foram descobertas acompanhando explosões similares”, disse Neil Gehrels do Goddard e principal pesquisador do Swift.

Observações com telescópios terrestres estão monitorando a localização da GRB 130427A e esperam encontrar essa supernova em meados deste mês.

Fonte: NASA

Nuvem de gás quente ao redor de buraco negro

O observatório espacial Herschel da ESA fez as observações mais detalhadas até hoje de uma nuvem molecular de gás surpreendentemente quente que pode estar orbitando ou caindo em direção a um buraco negro supermassivo que se localiza no centro da Via Láctea.

ilustração do centro galáctico

© ESA (ilustração do centro galáctico)

Nosso buraco negro local está localizado na região conhecida como Sagittarius A* (Sgr A*) perto de uma fonte de rádio. Ele tem uma massa de aproximadamente quatro milhões de vezes a massa do Sol e localiza-se a aproximadamente 26.000 anos-luz de distância do Sistema Solar.

Mesmo a essa distância ele está algumas centenas de vezes mais perto de nós do que qualquer galáxia com um buraco negro ativo em seu centro, fazendo dele um laboratório ideal para se poder estudar o ambiente ao redor desses enigmáticos objetos.

Grandes quantidades de poeira localizam-se no plano da Via Láctea entre aqui e o centro, obscurecendo a nossa visão nos comprimentos de onda da luz visível. Mas nos comprimentos de onda do infravermelho distante, é possível espiar através da poeira, através do Herschel para estudar a turbulenta região interna da nossa galáxia em grande detalhe.

O Herschel detectou uma grande quantidade de moléculas simples no coração da Via Láctea, incluindo monóxido de carbono, vapor d’água e cianeto de hidrogênio. Analisando a assinatura dessas moléculas, os astrônomos foram capazes de pesquisar algumas das propriedades fundamentais do gás interestelar que circunda o buraco negro.

“O Herschel tem resolvido a emissão do infravermelho distante a uma distância de apenas 1 ano-luz do buraco negro, tornando possível pela primeira vez nesse comprimento de onda, separar a emissão devido à cavidade central daquela do disco molecular denso ao redor”, disse Javier Goicoechea, do Centro de Astrobiología, na Espanha, e principal autor do artigo que relata esses resultados.

A grande surpresa foi descobrir quão quente é o gás molecular localizado nas regiões mais internas da galáxia. No mínimo o gás tem uma temperatura por volta dos 1.000 graus Celsius, muito mais quente do que a temperatura das típicas nuvens interestelares que normalmente têm uma temperatura algumas dezenas de graus acima do zero absoluto, ou seja, acima dos -273 graus Celsius.

Enquanto que o calor é baixo para explicar a radiação ultravioleta emitida de um aglomerado de estrelas massivas que vivem muito perto do centro galáctico, ele não é suficiente para explicar por si só as altas temperaturas.

Em adição à radiação estelar, a equipe do Dr. Coicoechea formulou a hipótese que a emissão das fortes ondas de choque em um gás altamente magnetizado na região pode contribuir de forma significante para as altas temperaturas. Essas ondas de choque podem ser geradas nas colisões entre as nuvens de gás, ou no material fluindo às altas velocidades de estrelas e protoestrelas.

“As observações são também consistentes com os fluxos de gás quente acelerando em direção a Sgr A*, caindo em direção ao centro da Galáxia”, disse o Dr. Goicoechea. “O buraco negro da nossa galáxia pode estar cozinhando seu jantar bem em frente aos olhos do Herschel”.

Pouco antes do material cair no buraco negro, ele é aquecido e pode gerar raios X de alta energia, e explosões de raios gama. Enquanto que a SGR A* atualmente mostra pouco sinal dessa atividade isso poderia mudar em breve.

Usando observações do infravermelho próximo, outros astrônomos têm detectado uma nuvem de gás compacta e separada com apenas poucas vezes a massa da Terra espiralando em direção ao buraco negro. Localizada muito mais perto do buraco negro do que o reservatório de material estudado pelo Herschel em seu trabalho, ela pode finalmente ser engolida mais para o final desse ano.

Sondas incluindo o XMM-Newton da ESA e o Integral estarão esperando para registrar qualquer alta energia que possa ser emitida pelo buraco negro no momento em que ele estiver absorvendo a nuvem de gás.

“O centro da Via Láctea é um região complexa, mas com essas observações do Herschel, nós estamos dando um importante passo na direção de melhorar o nosso conhecimento sobre a vizinhança do buraco negro supermassivo, que ajudará e muito em melhorar a nossa imagem sobre a evolução da galáxia”, disse Göran Pilbratt, cientista de projeto do Herschel da ESA.

Fonte: ESA

domingo, 5 de maio de 2013

Colossal nuvem de gás em colisão de galáxias

Cientistas usaram o Chandra para fazer um estudo detalhado de uma enorme nuvem de gás quente que está envelopando duas grandes galáxias em colisão.

composiçao no óptico e raios X da galáxia NGC 6240

© NASA (composiçao no óptico e raios X da galáxia NGC 6240)

Esse reservatório de gás contém massa equivalente a 10 bilhões de Sóis, se espalha por 300.000 anos-luz e irradia numa temperatura de mais de 7 milhões de Kelvin.

Essa gigante nuvem de gás, chamada de halo está localizada na NGC 6240, uma galáxia elíptica localizada na direção da constelação de Ophiuchus. Os astrônomos conhecem a muito tempo a NGC 6240 como um local de fusão de duas grandes galáxias espirais parecidas com a Via Láctea. Cada galáxia contém um buraco negro supermassivo em seu centro. Os buracos negros estão espiralando um em direção ao outro e podem eventualmente se fundirem formando um buraco negro ainda maior.

Outra consequência da colisão entre as galáxias é que o gás contido em cada uma delas está sendo arrancado de forma violenta. Isso causa uma verdadeira explosão no surgimento de novas estrelas que tem durado no mínimo 200 milhões de anos. Durante essa explosão de nascimento estelar, algumas das estrelas mais massivas aceleraram sua evolução e explodiram relativamente rápidas em supernovas.

Os cientistas desenvolveram com esse estudo argumentos de que essa rápida explosão de supernovas dispersou uma quantidade relativamente alta de importantes elementos como o oxigênio, o neônio, o magnésio e o silício no gás quente das galáxias recentemente combinadas. De acordo com os pesquisadores, os dados sugerem que esse gás enriquecido tem se expandido e se misturado com o gás mais frio que já estava ali.

Durante a explosão de novas estrelas, curtas explosões de formação estelar ocorreram. Por exemplo, a mais recente explosão de formação de estrelas durou cerca de cinco milhões de anos e ocorreu a aproximadamente 20 milhões de anos atrás. Contudo, os autores não acham que o gás quente tenha sido produzido apenas por essa curta explosão.

O que esperar de futuras observações do sistema NGC 6240? Muito, provavelmente as duas galáxias espirais irão formar uma jovem galáxia elíptica no decorrer dos próximos milhões de anos. Não é claro ainda, contudo, quanto do gás quente pode ser retido por essa galáxia que será criada, e quanto será perdido para o espaço. Apesar disso, a colisão fornecerá a oportunidade de se testemunhar uma versão relativamente próxima de um evento que foi muito comum quando o Universo era mais jovem quando as galáxias eram muito mais próximas e se fundiam com muito maior frequência.

Nessa nova imagem composta do sistema NGC 6240, os raios-X obtidos pelo Chandra, que revelam a nuvem de gás quente são coloridos em roxo. Esses dados foram combinados com dados ópticos obtidos pelo telescópio espacial Hubble, que mostra longas caudas de maré das galáxias em fusão, se estendendo para a direita e para a parte inferior da imagem.

Um artigo descrevendo esses novos resultados para o sistema NGC 6240 está na edição de Março de 2013 do The Astrophysical Journal.

Fonte: NASA

Como as galáxias espirais formam seus braços

As galáxias espirais são algumas das mais belas e fotogênicas habitantes do Universo.

simulação da formação dos braços das galáxias espirais

© SCII (simulação da formação dos braços das galáxias espirais)

A nossa própria galáxia, a Via Láctea, é uma galáxia espiral. O nosso Sistema Solar e a Terra, logicamente, reside em algum lugar perto de um desses braços filamentares. Aproximadamente 70% das galáxias mais próximas da Via Láctea são espirais.

Mas apesar de sua forma comum, como essas galáxias se formam e mantêm seus braços característicos ainda é um mistério desafiador na astrofísica. Como os braços das galáxias espirais surgem? Eles mudam ou vem e vão com o decorrer do tempo?

As respostas para essas e outras questões estão agora no foco já que pesquisadores obtiveram novas simulações computacionais para seguir os movimentos de 100 milhões de partículas estelares, enquanto que a gravidade e outras forças astrofísicas as esculpiam formando as formas galácticas familiares. Uma equipe de pesquisadores da Universidade de Wisconsin-Madison e do Harvard-Smithsonian Center for Astrophysics relatou as simulações que parecem ter resolvidas questões de longo data sobre a origem e a história de vida dos braços espirais destas galáxias.

“Nós mostramos pela primeira vez que os braços espirais estelares não são formas transientes como se pensava por décadas”, disse Elena D’Onghia, astrofísica da UW-Madison, que liderou a nova pesquisa juntamente com seus colegas Mark Vogelsberger e Lars Hernquist. “Os braços espirais são perpétuos, persistentes e surpreendentemente de vida longa” adicionou Vogelsberger.

A origem e o destino dos emblemáticos braços espirais nas galáxias de discos tem sido debatido pelos astrofísicos por décadas, com duas teorias predominante. Uma delas afirma que os braços aparecem e desaparecem ao longo do tempo. Uma segunda e mais vastamente aceita, afirma que o material que forma os braços, ou seja, estrelas, gás e poeira, é afetada pelas diferenças na gravidade e se aglomeram sustentando os braços por longos períodos.

Os novos resultados criam uma nova teoria entre as duas já existentes e sugere que os braços nascem primeiro como o resultado da influência de gigantescas nuvens moleculares, ou seja, regiões de formação de estrelas ou berçários comuns em galáxias. Introduzidas nessa situação, as nuvens agem como perturbadores e são suficientes para não somente iniciar a formação dos braços espirais mas para sustentá-las indefinitivamente.

“Nós descobrimos que elas estão formando braços espirais”, explica D’Onghia. “As teorias passadas afirmavam que os braços poderiam ir e vir com as perturbações removidas, mas nós vimos que (uma vez elas formadas) os braços se perpetuam, mesmo quando as perturbações são removidas. Ela prova que uma vez que os braços são gerados, através dessas nuvens, elas podem existir através da gravidade, mesmo em condições extremas quando as perturbações não estão mais presentes”.

O novo estudo modelou galáxias de discos sozinhas, que não são influenciadas por outra galáxia próxima ou outro objeto. Alguns estudos recentes têm explorado a probabilidade que as galáxias espirais com uma vizinha próxima (uma galáxia anã próxima, por exemplo) ganharam seus braços à medida que a gravidade da galáxia satélite puxa o disco da sua vizinha.

De acordo com Vogelsberger e Hernquist, as novas simulações podem ser usadas para reinterpretar os dados observacionais, procurando tanto por nuvens moleculares de alta densidade bem como buracos gravitacionais induzidos no espaço à medida que os mecanismos que guiam a formação das características dos braços das galáxias espirais.

A pesquisa da equipe foi publicada na edição de Março de 2013 no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 2 de maio de 2013

Uma região de formação estelar anárquica

O telescópio dinamarquês situado no Observatório de La Silla do ESO, no Chile, captou uma imagem surpreendente da NGC 6559, um objeto que demonstra bem a anarquia que reina quando estrelas se formam dentro de uma nuvem interestelar.

região de formação estelar NGC 6559

© ESO (região de formação estelar NGC 6559)

A NGC 6559 é uma nuvem de gás e poeira situada a uma distância de cerca de 5.000 anos-luz da Terra, na constelação de Sagitário. Esta região brilhante é relativamente pequena, apenas com alguns anos-luz de dimensão, contrastando com os mais de cem anos-luz que é o tamanho da sua vizinha mais famosa, a Nebulosa da Lagoa (Messier 8).

Nebulosa da Lagoa

© ESO (Nebulosa da Lagoa)

Embora seja muitas vezes negligenciada a favor da sua distinta companheira, é NGC 6559 que tem papel principal nesta nova imagem.
O gás presente nas nuvens da NGC 6559, principalmente hidrogênio, é a matéria prima da formação estelar. Quando a região no interior da nebulosa acumula matéria suficiente, acontece um colapso sob o efeito da sua própria gravidade. O centro da nuvem torna-se cada vez mais denso e quente, até que se inicia a fusão termonuclear e a estrela nasce. Os átomos de hidrogênio combinam-se para formar átomos de hélio, libertando energia neste processo e fazendo assim com que a estrela brilhe.
Estas estrelas brilhantes, jovens e quentes, que nascem a partir da nuvem, emitem radiação que é absorvida e re-emitida pelo hidrogênio gasoso que ainda se encontra presente na nebulosa circundando as estrelas recém nascidas. Estas estrelas jovens são geralmente do tipo espectral O e B, com temperaturas que variam entre os 10.000 e os 60.000 K, e que emitem enormes quantidades de radiação ultravioleta de alta energia, que ioniza os átomos de hidrogênio. E originando assim a região vermelha brilhante que podemos observar no centro da imagem. Este objeto é conhecido como uma nebulosa de emissão.
No entanto, a NGC 6559 não é apenas constituída por hidrogênio gasoso. Contém também partículas sólidas de poeira compostas por elementos pesados, tais como carbono, ferro ou silício. A mancha azulada próxima da nebulosa de emissão vermelha, mostra-nos a radiação emitida pelas estrelas recém formadas a ser dispersada, refletida em muitas direções diferentes, pelas partículas microscópicas presentes na nebulosa. Conhecida pelos astrônomos como uma nebulosa de reflexão, este tipo de objeto é muitas vezes azul, porque a dispersão é mais eficaz para os comprimentos de onda menores. A dispersão de Rayleigh, assim chamada em homenagem ao físico britânico Lord Rayleigh, acontece quando a radiação é dispersada por partículas de material que são muito menores do que o comprimento de onda da luz. É muito mais eficaz para os pequenos comprimentos de onda, ou seja, para os comprimentos de onda correspondentes à parte azul do espectro visível, o que resulta numa luz azul difusa. É exatamente o mesmo mecanismo que explica a cor azul do céu limpo durante o dia.
Em regiões muito densas, a poeira obscurece completamente a luz que está por trás, como é o caso das manchas e bandas sinuosas escuras e isoladas que se vêem na imagem em baixo, à esquerda e à direita. Para podermos ver o que se encontra por trás destas nuvens, é necessário observar a nebulosa em comprimentos de onda maiores, os quais não são absorvidos pela poeira.
A Via Láctea preenche o fundo da imagem com inúmeras estrelas amareladas, mais velhas. Algumas parecem tênues e avermelhadas devido à poeira existente na NGC 6559.
Esta imagem de formação estelar foi obtida pelo instrumento DFOSC (Danish Faint Object Spectrograph and Camera), montado no telescópio dinamarquês de 1,54 metros, em La Silla no Chile. Este telescópio opera em La Silla desde 1979. Tendo sido recentemente melhorado, é atualmente um telescópio de vanguarda operado remotamente.

Fonte: ESO

domingo, 28 de abril de 2013

A temperatura do núcleo da Terra

Novas medições sugerem que o centro da Terra é muito mais quente do que se pensava anteriormente e que teria uma temperatura de 6.000ºC, semelhante à da superfície do Sol.

ilustração da variação do calor no interior da Terra

© Flicker (ilustração da variação do calor no interior da Terra)

O núcleo sólido de ferro é cristalino e está rodeado pelo núcleo externo, líquido e em movimento.

Mas a temperatura na qual esse cristal pode ser formado vinha sendo objeto de um longo debate. Um novo experimento usou raios X para analisar pequenas amostras de ferro sob uma extraordinária pressão com o objetivo de examinar como esse material cristalino se forma e se funde.

A análise das ondas sísmicas geradas após os terremotos em todo o mundo pode proporcionar muita informação sobre a grossura e a densidade das camadas da Terra, mas não podem indicar sua temperatura. Isso deve ser calculado em um laboratório ou a partir de modelos informatizados que simulam o interior da Terra.

As medições feitas no início dos anos 1990 das "curvas de fundição", a partir das quais a temperatura do núcleo terrestre pode ser deduzida, sugeriam uma temperatura de cerca de 5.000ºC.

"Esse era só o início desse tipo de medição, então eles fizeram uma primeira estimativa para determinar a temperatura dentro da Terra. Outros pesquisadores fizeram outras medições e cálculos por computador e não se chegou a nenhum acordo. Não é bom para nosso campo de trabalho não conseguirmos concordar uns com os outros", afirmou Agnes Dewaele, da agência de pesquisas francesa CEA, coautora do novo estudo..

Determinar a temperatura do núcleo terrestre é crucial para uma série de disciplinas que estudam regiões do interior do planeta que nunca serão acessadas diretamente, guiando nosso entendimento sobre questões como terremotos ou o campo magnético da Terra.

"Temos que dar respostas aos geofísicos, aos sismólogos, aos pesquisadores de geodinâmica. Eles precisam de certos dados para alimentar os modelos informatizados", explica Dewaele.

Sua equipe de pesquisadores acaba de reconsiderar esses mais de 20 anos de medições utilizando as instalações do European Synchrotron Radiation Facility (ESRF), na França, laboratório mantido em conjunto por 19 países e que possui uma das mais intensas fontes de raios X do mundo. Para replicar a enorme pressão no limite do núcleo terrestre, mais de um milhão de vezes a pressão ao nível do mar, eles usaram um dispositivo que mantém uma minúscula amostra de ferro entre duas pontas de diamantes sintéticos.

Após submeter as amostras a altas pressões e altas temperaturas usando um laser, os cientistas usaram feixes de raios X para promover uma difração, ou seja, para rebater todos os raios X sobre o núcleo dos átomos de ferro e ver como mudava o padrão à medida em que o ferro mudava de sólido para líquido. Esses padrões de difração oferecem informações sobre os estados do ferro parcialmente fundido, que é o que os primeiros pesquisadores mediram nas experiências originais.

Eles sugerem agora uma temperatura de cerca de 6.000ºC, com uma margem de erro de 500ºC para mais ou para menos, aproximadamente a mesma temperatura estimada para a superfície do Sol. Mas o mais importante, segundo observa Dewaele, é que "agora todo mundo concorda" com as estimativas.

Os resultados foram publicados na revista especializada Science.

Fonte: BBC Brasil

sexta-feira, 26 de abril de 2013

Einstein ainda está certo

Astrônomos usaram o Very Large Telescope (VLT) do ESO e radiotelescópios de todo o mundo para encontrar e estudar um par estelar bizarro, constituído pela estrela de nêutrons de maior massa conhecida até hoje e uma estrela anã branca.

ilustração de um pulsar e uma anã branca

© ESO/L. Calçada (ilustração de um pulsar e uma anã branca)

Este estranho sistema binário permite testar a teoria da gravitação de Einstein, a relatividade geral, de maneiras que não tinham sido possíveis até hoje. Até agora, as novas observações estão exatamente de acordo com as previsões da relatividade geral e são inconsistentes com algumas teorias alternativas.

Uma equipe internacional descobriu um sistema binário exótico, constituído por uma estrela de nêutrons, pequena mas excepcionalmente pesada, que gira em torno de seu próprio eixo 25 vezes por segundo, e por uma estrela anã branca que a orbita a cada duas horas e meia. A estrela de nêutrons é um pulsar que emite ondas de rádio, que podem ser observadas a partir da Terra com radiotelescópios. Além de ser muito interessante por si só, este par incomum é também um laboratório único para testar os limites das teorias físicas.
O pulsar chamado PSR J0348+0432 é o que resta da explosão de uma supernova. Ele tem duas vezes mais massa que o Sol, mas tem um diâmetro de apenas 20 quilômetros. A gravidade em sua superfície é mais de 300 bilhões de vezes mais intensa que a sentida na Terra, e em seu centro cada pedaço do tamanho de um cubo de açúcar tem mais de um bilhão de toneladas de matéria comprimidas. A sua companheira anã branca é apenas um pouco menos exótica: trata-se de um resto brilhante de uma estrela muito mais leve, que perdeu a sua atmosfera e que lentamente vai se apagando.
“Observei este sistema com o VLT do ESO, procurando variações na radiação emitida pela anã branca, causadas pelo seu movimento em torno do pulsar”, diz John Antoniadis, um estudante de doutorado no Instituto Max Planck de Rádio Astronomia (MPIfR) em Bonn, e autor principal do artigo científico que descreve estes resultados. “Uma análise rápida fez-me perceber que o pulsar é um verdadeiro peso pesado. Tem duas vezes a massa do Sol, o que o torna  a estrela de nêutrons de maior massa conhecida até hoje e é também um excelente laboratório para a física fundamental”.
A teoria da relatividade geral de Einstein, que explica a gravidade como uma consequência da curvatura do espaço-tempo criada pela presença de matéria e energia, tem resistido a todos os testes desde o primeiro momento da sua publicação, há quase um século atrás. Mas ela não pode ser a explicação derradeira e deverá, em última instância, perder a sua validade. A relatividade geral não é consistente com outra grande teoria física do século XX, a mecânica quântica. Ela também prevê singularidades para certas circunstâncias, quando algumas quantidades tendem para o infinito, tal como no centro de um buraco negro.
Os físicos construíram outras teorias de gravidade que levam a previsões diferentes das da relatividade geral. Para algumas destas alternativas, as diferenças são percebidas apenas para campos gravitacionais extremamente fortes, os quais não podem ser encontrados no Sistema Solar. Em termos de gravidade, o PSR J0348+0432 é de fato um objeto extremo, mesmo quando comparado com outros pulsares que foram usados em testes de alta precisão da relatividade geral de Einstein. O primeiro pulsar binário, PSR B1913+16, foi descoberto por Joseph Hooton Jr. e Russell Hulse, que ganharam por isso o Prêmio Nobel da Física em 1993. Os cientistas mediram de forma exata as variações nas propriedades deste objeto, mostrando que eram precisamente consistentes com as perdas de energia de radiação gravitacional previstas pela relatividade geral.

Em campos gravitacionais tão fortes, pequenos aumentos na massa podem levar a grandes variações no espaço-tempo em torno destes objetos. Até agora, os astrônomos não tinham ideia do que podia acontecer na presença de uma estrela de nêutrons de massa tão elevada como a PSR J0348+0432. Este objeto oferece a oportunidade única de levar estes testes a território desconhecido.
A equipe combinou as observações da anã branca, obtidas pelo VLT, com o sinal muito preciso do pulsar obtido pelos radiotelescópios. Este trabalho utilizou dados dos radiotelescópios de Effelsberg, Arecibo e Green Bank, além dos telescópios ópticos Very Large Telescope e William Herschel Telescope.

Um sistema binário tão próximo emite ondas gravitacionais e perde energia, o que faz com que o período orbital varie de uma pequena quantidade, sendo que as previsões para esta variação feitas pela relatividade geral e pelas outras teorias são diferentes.
“As nossas observações em rádio foram tão precisas, que já conseguimos medir a variação do período orbital com valores da ordem de 8 milionésimos de segundo por ano, exatamente como previsto pela teoria de Einstein”, diz Paulo Freire, outro integrante da equipe.
Este é apenas o começo dos estudos detalhados sobre este objeto único, e os astrônomos irão utilizá-lo para testar a relatividade geral com cada vez mais precisão, à medida que o tempo passa.

Os resultados deste estudo foram publicados hoje na revista Science.

Fonte: ESO

quinta-feira, 25 de abril de 2013

Calor do nascimento de estrelas afeta galáxias

Astrônomos utilizando o telescópio espacial Hubble mostraram pela primeira vez que a explosão resultante da formação de estrelas tem um impacto muito maior do que os limites da galáxia onde elas se encontram.

starburst na galáxia M82

© NASA/ESA (starburst na galáxia M82)

Esses eventos de energia podem after o gás galáctico em distâncias até 20 vezes maiores do que o tamanho visível da galáxia, alterando a forma como a galáxia evolui, e como a matéria e a energia se espalham pelo Universo.

Quando as galáxias formam novas estrelas, por vezes ocorrem episódios de atividade intensa conhecidos como starbursts (explosão de estrelas). Esses eventos ocorriam com frequência nos primórdios do Universo, mas são mais raras em galáxias próximas. Durante essas explosões, centenas de milhões de estrelas nascem, e seu efeito combinado pode formar um poderoso vento que viaja para além da galáxia.

Até então, se sabia que esses ventos afetavam a galáxia progenitora, mas o novo estudo desenvolvido por pesquisadores das agências espaciais americana (NASA) e europeia (ESA) mostra que o efeito é muito mais intenso do que se imaginava. A equipe internacional de astrônomos responsável pelo estudo observou 20 galáxias próximas, algumas das quais passavam por uma starburst. Eles descobriram que os ventos que acompanhavam o processo de formação das estrelas eram capazes de ionizar gases a até 650 mil anos-luz do centro da galáxia, distância cerca de 20 vezes superior ao seu tamanho visível.

Essa é a primeira evidência direta da observação de explosões estelares locais impactando grande quantidade de gás ao redor da galáxia que habitam, e tem consequências significativas sobre como a galáxia continua a evoluir e formar galáxias.

Os resultados serão publicados na edição de maio na revista The Astrophysical Journal.

Fonte: NASA e ESA

O aglomerado globular Palomar 2

Aglomerados globulares são relativamente comuns no nosso céu e geralmente são parecidos. Contudo, essa imagem, feita com o telescópio espacial Hubble mostra um único exemplo de um aglomerado desse tipo, o Palomar 2.

aglomerado globular Palomar 2

© Hubble (aglomerado globular Palomar 2)

O Palomar 2 é parte de um grupo de 15 aglomerados globulares conhecidos como os Aglomerados de Palomar. Esses aglomerados, como o nome sugere, foram descobertos nas chapas fotográficas feitas pelo Palomar Observatory Sky Survey nos anos de 1950, um projeto que envolveu alguns dos astrônomos mais conhecidos na época, entre eles, Edwin Hubble. Eles foram descobertos bem tarde pois eles eram muito apagados, além de extremamente remotos, e bem escondidos por trás da cobertura de poeira, ou por possuírem um pequeno número de estrelas remanescentes.

Esse aglomerado em particular, é único por mais de uma razão. Uma delas, ele é o único aglomerado globular que nós podemos observar nessa parte do céu, ou seja, na parte norte da constelação de Auriga (O Cocheiro). Aglomerados globulares orbitam o centro das galáxias como a Via Láctea da mesma maneira que satélites orbitam a Terra. Isso significa que eles são normalmente localizados próximos do centro galáctico, e quase sempre são vistos na mesma região do céu. Porém o Palomar 2, é uma exceção a essa regra, já que ele está cinco vezes mais distante do centro da Via Láctea do que os outros aglomerados. Ele também se localiza na direção oposta, e assim é chamado de um aglomerado globular de halo externo.

Ele também é incomum devido ao seu brilho. O aglomerado é coberto por uma máscara de poeira, fazendo com que seu brilho aparente diminua fazendo com que ele pareça na verdade como uma apagada explosão de estrelas. A imagem espetacular feita pelo Telescópio Espacial Hubble, registra o Palomar 2 de uma maneira que jamais poderia ser feita por telescópios pequenos na Terra, alguns astrônomos amadores com grandes telescópios tentam observar todos os obscuros e escondidos membros do Palomar como um desafio para ver quantos eles podem registrar num céu estrelado.

Fonte: ESA

terça-feira, 23 de abril de 2013

Os segredos da supernova 1987A

Uma equipe de astrônomos liderados pelo International Centre for Radio Astronomy Research (ICRAR) tiveram sucesso em observar os restos mortais de uma estrela gigante com detalhes sem precedentes.

imagem de emissão em rádio da SN 1987A

© ICRAR (imagem de emissão em rádio da SN 1987A)

Imagem acima mostra a emissão na região do rádio da remanescente de SN 1987A produzido a partir de observações realizadas com a Austrália Telescope Array Compact (ATCA).

Em Fevereiro de 1987, os astrônomos observaram a Grande Nuvem de Magalhães, uma galáxia anã próxima da Via Láctea, e notaram a repentina aparência do que parecia ser uma nova estrela. De fato eles não estavam observando o início de uma estrela, mas sim o fim de uma, e a supernova mais brilhante vista da Terra em quatro séculos, desde que o telescópio foi inventado. Na manhã seguinte da descoberta as notícias da descoberta se espalharam e os observadores do hemisfério Sul da Terra começaram a observar as consequências dessa enorme explosão estelar, conhecida como supernova.

Em duas décadas e meia depois da descoberta, a remanescente de supernova, conhecida como SN 1987A, continua sendo o foco para muita pesquisa ao redor do mundo, fornecendo uma vasta informação sobre um dos eventos mais extremos do Universo.

Em pesquisa publicada no The Astrophysical Journal, uma equipe de astrônomos na Austrália e Hong Kong tiveram sucesso ao usar o Australia Telescope Compact Array, o rádio telescópio do CSIRO, localizado na parte norte de New Suth Wales, para fazer a rádio imagem de mais alta resolução da expansão da remanescente da supernova em comprimentos de onda milimétricos.

Diferente dos telescópio ópticos, um radiotelescópio pode operar durante o dia e pode espiar através do gás e da poeira permitindo que os astrônomos possam ver atividades internas de objetos como a parte remanescente de uma supernova, de radiogaláxias e de buracos negros.

“As partes remanescentes de supernovas são como aceleradores naturais de partículas, a emissão de rádio que nós observamos vem de elétrons que estão espiralando ao longo das linhas de campo magnético e emitindo fótons toda vez que eles completam uma volta. Quanto maior a resolução das imagens, mais nós podemos aprender sobre a estrutura desse objeto”, disse o Professor Lister Staveley-Smith, Vice Diretor do ICRAR e do CAASTRO (Centre for All-Sky Astrophysics).

Os cientistas estudam a evolução das supernovas nas remanescentes de supernovas para poder ter uma ideia sobre a dinâmica dessas explosões massivas e a interação da onda de choque com o meio ao redor

“Não somente nós tivemos a capacidade de analisar a morfologia da SN 1987A através da nossa imagem de alta resolução, nós também pudemos comparar essa imagem com dados ópticos e de raios X com o objetivo de modelar sua provável história”, disse o Professor Bryan Gaenslaer, Diretor do CAASTRO, na Universidade de Sidney.

A equipe suspeita de uma fonte compacta localizada no centro da emissão de rádio, implicando que a explosão de supernova não transformou o colapso estelar em um buraco negro. Eles agora tentarão observar cada vez mais fundo em direção ao núcleo e ver o que está ali.

Fonte: International Centre for Radio Astronomy Research