terça-feira, 10 de setembro de 2013

Caçando buracos negros

A sonda da NASA caçadora de buracos negros, conhecida como Nuclear Spectroscopic Telescope Array (NuSTAR) completou o registro de seus 10 primeiros buracos negros supermassivos.

imagem em raios X e óptico de buracos negros

© NuSTAR (imagem em raios X e óptico de buracos negros)

A missão é o primeiro telescópio capaz de focar a luz de raios X de mais alta energia em imagens detalhadas.

Os novos buracos negros descobertos são os primeiros de centenas desses objetos que são esperados que sejam descobertos pela missão nos próximos dois anos. Essas monstruosas estruturas, buracos negros circundados por espessos discos de gás, localizam-se nos núcleos de galáxias distantes entre 0,3 e 11,4 bilhões de anos-luz da Terra.

“Nós descobrimos os buracos negros por acaso”, explica David Alexander, um membro da equipe do NuSTAR baseado no Departamento de Física da Universidade de Durham na Inglaterra e principal autor deste novo estudo. “Nós ficamos olhando para alvos conhecidos e registramos os buracos negros no segundo plano das imagens”.

Achados fortuitos adicionais como esses são esperados pela missão. Juntamente com as pesquisas de alvos da missão de regiões selecionadas do céu, a equipe do NuSTAR planeja combinar centenas de imagens feitas pelo telescópio, com o objetivo de descobrir buracos negros no segundo plano das imagens.

Uma vez que os 10 buracos negros foram identificados, os pesquisadores foram pesquisar os dados anteriores obtidos pelo Observatório de raios X Chandra da NASA e pelo satélite XMM-Newton da ESA, dois telescópios espaciais complementares que observam a luz de raios X de alta energia. Os cientistas descobriram que os objetos tinham sido detectados antes. Porém só com o NuSTAR foi possível observar com um detalhe excepcional esses objetos.

Combinando as observações feitas por todo o espectro de raios X, os astrônomos esperam resolver mistérios sobre os buracos negros. Por exemplo, como muitos deles populam o Universo?

“Nós estamos cada vez mais perto de resolver um mistério que começou em 1962”, disse Alexander. “Nessa época, os astrônomos haviam notado um brilho difuso de raios X no plano de fundo do céu, mas não sabiam ao certo sua origem. Agora, nós sabemos que os buracos negros supermassivos distantes são fontes desse tipo de luz, mas nós precisamos do NuSTAR para ajudar a detectar e entender a população dos buracos negros”.

O brilho de raios X, chamado de raio X cósmico de fundo, tem o pico nas frequências de alta energia que o NuSTAR foi designado para observar, assim a missão é fundamental para identificar o que está produzindo a luz. O NuSTAR também pode encontrar os buracos negros supermassivos mais escondidos, enterrados em espessas paredes de gás.

“Os raios X de mais alta energia podem passar direto até mesmo pelas mais significantes quantidades de poeira e gás que circundam os buracos negros supermassivos ativos”, disse Fiona Harrison, uma co-autora do estudo e principal pesquisadora da missão, no Instituto de Tecnologia da Califórnia em Pasadena.

Os dados do Wide-field Infrared Survey Explorer (WISE) e do Spitzer também fornecem pedaços faltantes no quebra-cabeça dos buracos negros pesando a massa das galáxias que os hospedam.

“Nossos primeiros resultados mostram que os buracos negros supermassivos mais distantes estão encapsulados nas maiores galáxias”, disse Daniel Stern, um co-autor do estudo e um cientista de projeto para o NuSTAR no Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia. “Isso era o esperado. Se voltarmos quando o Universo era mais jovem, existia muita ação com galáxias maiores, colidindo, se fundindo e crescendo.

Observações futuras revelarão mais sobre os acontecimentos incríveis dos buracos negros próximos e distantes. Além de caçar buracos negros remotos, o NuSTAR está também pesquisando por outros objetos exóticos dentro da Via Láctea.

Este estudo aparece na edição de agosto da revista especializada The Astrophysical Journal.

Fonte: NASA

As anãs marrons mais frias já descobertas

Em 2011, os astrônomos na caça pelos corpos celestes parecidos com estrelas mais frioa que existem descobriram uma nova classe desses objetos usando o telescópio espacial Wide-field Infrared Survey Explorer (WISE) da NASA.

localização das anãs marrons frias descobertas

© NASA/JPL (localização das anãs marrons frias descobertas)

Mas até agora ninguém sabia exatamente quão fria as superfícies dos corpos realmente eram.

Um novo estudo usando o telescópio espacial Spitzer da NASA mostra que enquanto essas anãs marrons são de fato os corpos celestes livres mais frios conhecidos, eles são mais quentes do que se pensava anteriormente, com temperaturas superficiais variando de 125 a 175 graus Celsius. Por comparação, o Sol tem uma temperatura superficial da ordem de 5,730 graus Celsius.

Para alcançar essas temperaturas superficiais depois de esfriarem por bilhões de anos, esses objetos teriam massas de somente 5 a 20 vezes a massa do planeta Júpiter. Diferente do Sol, a única fonte de energia dessas anãs marrons mais frias, vem da sua contração gravitacional, que depende diretamente de sua massa. O Sol tem sua energia produzida pela conversão de hidrogênio em hélio, essas anãs marrons não têm calor suficiente para que esse tipo de reação nuclear ocorra.

As descobertas ajudam os pesquisadores a entenderem como os planetas e as estrelas se formam.

“Se um desses objetos fosse encontrado orbitando uma estrela, existiria uma boa chance dele ser chamado de planeta”, disse Trent Dupuy, do Harvard-Smithsonian Center for Astrophysics e coautor do estudo. Mas pelo fato deles provavelmente se formarem por si só e não num disco de formação de planetas orbitando uma estrela mais massiva, os astrônomos ainda chamam esses objetos de anãs marrons mesmo se suas massas sejam de tamanho planetário.

Caracterizar essas frias anãs marrons é desafiante, pois elas emitem a maior parte da sua luz no comprimento de onda do infravermelho e são muito apagadas devido ao seu pequeno tamanho e a sua baixa temperatura.

Para registrar as temperaturas com precisão, os astrônomos precisam saber as distâncias até esses objetos. “Nós queremos descobrir se eles foram mais frios, mais apagados e mais próximos, ou se eles eram mais quentes, mais brilhantes e mais distantes”, explica Dupuy.

Usando o Spitzer, a equipe determinou que as anãs marrons em questão estão localizadas a distâncias entre 20 a 50 anos-luz.

Para determinar as distâncias até esses objetos, a equipe mediu suas paralaxes, ou seja, a mudança aparente na posição contra um fundo de estrelas com o passar do tempo. À medida que o Spitzer orbita o Sol, sua perspectiva muda e os objetos próximos parecem ficar indo e vindo. O mesmo efeito ocorre se você fechar um olho e estender a mão para observar o seu dedo, você verá que alterando o olho o dedo parece mudar de posição, quando observado contra um fundo distante.

Mas até mesmo para essas anãs marrons relativamente próximas, o movimento de paralaxe é pequeno. “Para ser capaz de determinar as distâncias com precisão, nossas medidas precisam ter a mesma precisão, é como saber a posição de um inseto de 2,5 centímetros a 320 quilômetros de distância”, explica Adam Kraus, professor na Universidade do Texas em Austin e outro coautor do estudo.

Os novos dados também apresentam um novo desafio aos astrônomos que estudam as atmosferas de objetos frios parecidos com planetas. Diferente das anãs marrons mais quentes e das estrelas, as propriedades observadas desses objetos não parece se correlacionar fortemente com a temperatura.

Esse estudo examinou amostras iniciais das anãs marrons mais frias descobertas nos dados de pesquisa do WISE. Objetos adicionais descobertos nos últimos dois anos ainda devem ser estudados, e os cientistas esperam que eles iluminem essas questões ainda permanentes.

Um artigo sobre o assunto foi publicado no jornal Science Express.

Fonte: NASA

A pulsante RS Puppis

Essa é uma das estrelas mais importantes no céu. Isso ocorre parcialmente, pois, por coincidência, ela é circundada por uma nebulosa de reflexão.

a estrela cefeida RS Puppis

© Hubble/Stephen Byrne (a estrela cefeida RS Puppis)

A pulsante RS Puppis, a estrela mais brilhante no centro da imagem, é cerca de dez vezes mais massiva que o nosso Sol e na média 15.000 vezes mais luminosa. De fato, a RS Pup, é uma estrela variável do tipo Cefeidas, uma classe de estrelas cujo brilho é usado para estimar as distâncias de galáxias próximas como um dos primeiros passos para se estabelecer a escala da distância cósmica. Como a RS Pup pulsa num período de aproximadamente 40 dias, suas mudanças de brilho regulares são também vistas juntamente com um tempo de atraso causado pela nebulosa, efetivamente, um eco de luz. Usando as medidas do atraso de tempo e do tamanho angular da nebulosa, a conhecida velocidade da luz, permite que os astrônomos possam geometricamente determinar a distância até a RS Pup, que é de 6.500 anos-luz, com um erro mínimo de aproximadamente 90 anos-luz. Considerada uma das realizações impressionantes da astronomia estelar, as medidas de distância do eco de luz também é considerada uma maneira mais precisa de se estabelecer o brilho verdadeiro da RS Pup, e por extensão de outras estrelas Cefeidas, melhorando assim o conhecimento das distâncias das galáxias além da Via Láctea.

Fonte: NASA

sábado, 7 de setembro de 2013

Desaparecimento de estrela explica supernova

De vez em quando algo espetacular ocorre em um dos poucos lugares que os seres humanos gostam de observar: a vastidão do cosmos.

galáxia do Redemoinho e a supernova 2011dh

© Bill Snyder (galáxia do Redemoinho e a supernova 2011dh)

Como uma ave rara que pousa para dar um mergulho na Fontana di Trevi, em Roma, uma descoberta tão feliz, exótica e inesperada produz uma abundância de testemunhas e farta documentação fotográfica.
Foi o que aconteceu com uma recente supernova na galáxia espiral M51, mais conhecida pelos observadores ocasionais como a galáxia do Redemoinho (Whirlpool galaxy, em inglês), um turbilhão fotogênico a cerca de 25 milhões de anos-luz de distância.
Pouco depois que a luz de uma estrela que explodiu ali alcançou a Terra, no final de maio de 2011, relatos amadores do cataclismo começaram a se avolumar no Bureau Central para Telegramas Astronômicos (CBAT, na sigla em inglês), um organismo internacional, oficial, responsável pela catalogação e identificação de novos dados telescópicos. Não demorou e a explosão ganhou a designação oficial de supernova 2011dh.
Como a galáxia do Redemoinho tem muitos admiradores, um ponto novo e brilhante na extremidade da espiral certamente chamaria a atenção de muitos observadores. “Essa é uma das galáxias mais próximas (da Terra), além de ser muito bonita e famosa”, afirma o astrônomo Schuyler Van Dyk, do Instituto de Tecnologia da Califórnia (Caltech).
Melhor ainda: a bem documentada supernova revelou ser uma categoria rara conhecida como supernova tipo IIb.
Essas explosões resultam do colapso de uma estrela massiva que perdeu a maior parte de seu invólucro exterior de hidrogênio, possivelmente devido à força gravitacional de uma companheira estelar binária.
De todas as estrelas que chegam ao fim de suas vidas em um colapso catastrófico, que é uma das duas possibilidades que originam uma supernova, apenas uma em cada 10 aproximadamente produz um tipo IIb.
Os astrônomos têm algumas explicações gerais para essas explosões, mas determinar a sequência exata dos eventos que produzem esses corpos celestes é uma tarefa difícil. Como os cientistas nunca sabem quando uma estrela está prestes a se transformar em uma supernova até que já tenha explodido, normalmente é impossível determinar com precisão qual estrela teve um fim violento.
São raros os casos em que os astrônomos podem reunir imagens suficientemente detalhadas da região em questão, antes da explosão, para identificar a origem.
Em 2011, no entanto, a fama da galáxia do Redemoinho foi conveniente mais uma vez. “Poucos dias após a descoberta da supernova fomos ao arquivo de dados do telescópio espacial Hubble e descobrimos que um dos ex-diretores do HST havia composto um lindo mosaico da M51, uma imagem gloriosa e multicolorida”, conta Van Dyk.
As imagens do Hubble revelaram que, em 2005, no exato local onde a supernova apareceu sem aviso prévio em 2011, existia uma estrela supergigante amarela.
No entanto, muitos pesquisadores consideraram que o perfil da explosão não se encaixava no que seria de se esperar do colapso de uma supergigante. Em vez disso, seus dados para a 2011dh apontavam para a explosão de uma estrela mais “encolhida”, talvez uma companheira binária da supergigante amarela que havia sido reduzida a quase somente o seu núcleo pela força gravitacional de sua vizinha.
“De início acreditamos que a progenitora era essencialmente essa estrela muito reduzida, muito azul, e por essa razão invisível” nas imagens de Hubble, explica Van Dyk. “A estrela amarela estava escondendo a estrela mais azul que de fato explodiu. Essa era a nossa conjectura”.
Uma equipe concorrente, porém, havia chegado a outra conclusão. Uma análise inicial feita por Justyn Maund, atualmente na Queen’s University de Belfast, na Irlanda do Norte, e colaboradores concluiram que a estrela gigante avistada pelo Hubble no local da explosão tinha, de fato, sido a progenitora. “Eles afirmaram que era a estrela amarela que explodiu”, diz Van Dyk. “Eles tinham outros dados mais consistentes com uma progenitora mais ‘extensa’. E foi isso”.
Em março deste ano, quase dois anos depois que a supernova apareceu originalmente na galáxia do Redemoinho, Van Dyk e seus colegas requisitaram o Hubble mais uma vez para dar outra olhada.
Para sua surpresa, a estrela supergigante amarela, que eles presumiam ser uma mera “espectadora” da explosão, tinha desaparecido. Outra equipe, que utilizou telescópios em terra, viu a mesma coisa. “Nós só queríamos ver como era a evolução da supernova”, diz Van Dyk. “Esperávamos, sem sombra de dúvida, que a supergigante amarela ainda estivesse lá nas imagens deste ano”.
No fim das contas, o desaparecimento da supergigante implicou a estrela como a fonte da supernova. “Na realidade, a outra equipe estava certa e nós lamentamos nesse sentido”, diz Van Dyk.
Mas a saga da supernova 2011dh não terminará aí.
À medida que sua brilhante mancha remanescente continuar a desvanecer, a galáxia do Redemoinho retomará a sua aparência anterior a 2011, menos uma estrela supergigante.
Mais no final do ano, em meados de novembro, o brilho da supernova terá desvanecido tanto que a parceira sobrevivente da supergigante amarela deverá se tornar visível, se é que a estrela, de fato, estava “presa” em um sistema binário como tem sido afirmado para explicar o raro evento tipo IIb. “Na realidade, você deve poder ver a estrela companheira no sistema binário”, observa Van Dyk, revelando que várias equipes já solicitaram tempo de estudo do telescópio Hubble para acompanhar a evolução da supernova 2011dh. “Se eles conseguirem ver a companheira binária, isso conferirá muita credibilidade ao caminho binário para esse tipo de supernova”, acrescenta. “E isso realmente seria muito importante”.

Van Dyk e seus colegas publicaram suas constatações, que validaram as conclusões de seus concorrentes, na edição de agosto da revista The Astrophysical Journal Letters.

Fonte: Scientific American Brasil

quinta-feira, 5 de setembro de 2013

Programa para detectar exoplanetas

A NASA lançou um programa para ajudar astrônomos amadores a detectar exoplanetas.

ilustração de um exoplaneta em trânsito

© NASA/ESA/G. Bacon (ilustração de um exoplaneta em trânsito)

O software pode ser acessado gratuitamente pela internet e promete "corrigir" distorções e mudanças no brilho de estrelas que venham a ser causadas pela atmosfera da Terra.
Denominado OSCAAR (Open Source differential photometry Code for Accelerating Amateur Research), o programa permite medir as mudanças de brilho de todas as estrelas no campo de visão do telescópio simultaneamente, o que facilita a busca por exoplanetas.
É necessário um telescópio equipado com um detector eletrônico de luz (do tipo CCD) e um computador. Também é preciso softwares que permitam transferir informações do telescópio para o computador, de preferência com sistema operacional Windows 7 ou superior, Mac OS X 10.6 ou superior, Ubuntu 12 ou superior e outra distribuição Linux.
"Não estamos dizendo que o OSCAAR vai permitir a você competir com a sonda espacial Kepler, a menos que você o adapte para isso", brincou Brett Morris, um dos pesquisadores da agência espacial responsáveis pelo programa.
"Mas as observações podem ser muito satisfatórias, já que vai ser possível saber se você está observando e descobrindo outros planetas", disse o cientista. Ele ressalta que para encontrar um "candidato" a exoplaneta, os cientistas da NASA observam o brilho de milhares de estrelas várias vezes.
Ele acredita que os astrônomos poderão fazer medições de no mínimo uma dúzia de estrelas com potencial para abrigar exoplanetas, mesmo em áreas urbanas, onde o céu é menos estrelado devido à poluição. Os amadores conseguirão detectar exoplanetas do tamanho de Júpiter, muito quentes, em geral orbitando próximos a estrelas.

Para obter o software que está no host 'GitHub', um site para o desenvolvimento de código colaborativo, acesse o link do OSCAAR.

Fonte: G1 e NASA

quarta-feira, 4 de setembro de 2013

Alinhamento estranho de nebulosas planetárias

Astrônomos utilizaram o New Technology Telescope (NTT) do ESO e o telescópio espacial Hubble da NASA/ESA para explorar mais de 100 nebulosas planetárias situadas no bojo central da nossa galáxia.

nebulosa planetária bipolar NGC 6537

© Hubble/NTT (nebulosa planetária bipolar NGC 6537)

A exploração possibilitou a descoberta de que os membros em forma de borboleta desta família cósmica tendem a alinhar-se misteriosamente, um resultado surpreendente tendo em conta as suas histórias diferentes e propriedades variadas.

Uma estrela como o Sol nas últimas fases da sua vida lança as suas camadas exteriores para o espaço circundante, dando origem a objetos chamados nebulosas planetárias que apresentam uma variedade de formas bonitas e intrigantes. Um dos tipos destas nebulosas, conhecidas como nebulosas planetárias bipolares, formam ampulhetas ou borboletas fantasmagóricas em torno das suas estrelas progenitoras.
Todas estas nebulosas formaram-se em locais diferentes e apresentam diferentes características. E, nem as nebulosas individuais nem as estrelas que as formaram, interagiriam com outras nebulosas planetárias. No entanto, um novo estudo feito por astrônomos da Universidade de Manchester, Reino Unido, mostra semelhanças surpreendentes entre algumas destas nebulosas: muitas delas alinham-se no céu da mesma maneira.
“Esta é verdadeiramente uma descoberta surpreendente e, se for confirmada, uma descoberta muito importante,” explica Bryan Rees da Universidade de Manchester, um dos dois autores do artigo científico que apresenta estes resultados. “Muitas destas borboletas fantasmagóricas parecem ter os seus eixos maiores alinhados ao longo do plano da nossa Galáxia. Ao usar imagens tanto do Hubble como do NTT, pudemos ver muito bem estes objetos e por isso conseguimos estudá-los com grande detalhe.”
Os astrônomos observaram 130 nebulosas planetárias no bojo central da Via Láctea e identificaram três tipos diferentes destes objetos, estudando cuidadosamente as suas características e a sua aparência. As formas das imagens das nebulosas planetárias foram separadas em três tipos, segundo a seguinte classificação: elíptica, com ou sem uma estrutura interna alinhada e bipolar.
“Enquanto duas destas populações estavam alinhadas no céu de modo completamente aleatório, como o esperado, descobrimos que a terceira - as nebulosas bipolares - mostrava uma preferência surpreendente por um determinado alinhamento,” diz o segundo autor do artigo, Albert Zijlstra, também da Universidade de Manchester. “Apesar de qualquer alinhamento ser por si só uma surpresa, encontrá-lo na região central muito populada da Galáxia é ainda mais inesperado.”
Pensa-se que as nebulosas planetárias são esculpidas pela rotação do sistema estelar a partir do qual se formam, dependendo por isso das propriedades do sistema, por exemplo, se se tratar de uma estrela binária, ou se existirem um número de planetas em sua órbita, ambos os fatores são suscetíveis de influenciar a forma da bolha soprada. As formas das nebulosas bipolares são bastante extremas e são provavelmente causadas por jatos que lançam, a partir do sistema binário, matéria perpendicular à órbita.
“O alinhamento que estamos vendo destas nebulosas bipolares indicam que algo de estranho se passa nos sistemas estelares situados no seio do bojo central,” explica Rees. “Para que se alinhem do modo que vemos, os sistemas estelares que formam estas nebulosas teriam que estar rodando perpendicularmente às nuvens interestelares a partir das quais se formaram, o que é muito estranho.”

nebulosa planetária bipolar Hubble 12

© Hubble/NTT (nebulosa planetária bipolar Hubble 12)

Apesar das propriedades das suas estrelas progenitoras darem forma a estas nebulosas, esta nova descoberta aponta para outro fator ainda mais misterioso. Ao mesmo tempo que estas características estelares complexas temos também as da Via Láctea; o bojo central roda como um todo em torno do centro galáctico. Este bojo pode ter uma influência maior sobre toda a nossa Galáxia do que o suposto anteriormente, através dos campos magnéticos. Os astrônomos sugerem que o comportamento ordenado das nebulosas planetárias poderia ter sido causado pela presença de campos magnéticos fortes existentes no momento em que o bojo se formou.
Como as nebulosas mais perto de casa não se alinham do mesmo modo ordenado, estes campos teriam que ter sido muitas vezes mais fortes do que os que existem presentemente na nossa vizinhança.
“Podemos aprender muito com o estudo destes objetos,” conclui Zijlstra. “Se as nebulosas se comportam realmente deste modo inesperado, este fato terá consequências não apenas para o passado de estrelas individuais, mas também para o passado de toda a Galáxia.”

Fonte: ESO

terça-feira, 3 de setembro de 2013

A supernova na Messier 74

O rastreio PESSTO do ESO captou a imagem abaixo da Messier 74 (M74), uma magnífica galáxia em espiral com braços bem definidos.

supernova na Messier 74

© ESO (supernova na Messier 74)

No entanto, o verdadeiro interesse da imagem situa-se numa nova e brilhante adição à galáxia, que apareceu no final de julho de 2013: uma supernova do Tipo II chamada SN2013ej, que podemos ver como a estrela mais brilhante no canto inferior esquerdo.
Este tipo de supernova ocorre quando o núcleo de uma estrela de grande massa colapsa devido à sua própria gravidade, no final da sua vida. Este colapso resulta numa explosão enorme que ejeta matéria para o espaço. A detonação resultante pode ser mais brilhante que toda a galáxia que a alberga, estando visível durante semanas ou até meses.
O rastreio PESSTO (Public ESO Spectroscopic Survey for Transient Objects) foi concebido para estudar objetos que aparecem brevemente no céu noturno, tais como supernovas. O rastreio possui o auxílio de uma quantidade de instrumentos montados no NTT (New Technology Telescope), situado no observatório de La Silla do ESO, no Chile. Esta nova imagem da SN2013ej foi obtida com o NTT no decorrer deste rastreio.
A SN2013ej é a terceira supernova a ser observada na M74 desde o novo milênio, sendo as outras duas a SN2002ap e a SN2003gd. Foi assinalada pela primeira vez a 25 de julho de 2013 pela equipe do telescópio KAIT na Califórnia, e a primeira imagem de pré-recuperação foi tirada pela astrônoma amadora Christina Feliciano, que usou a Câmara Espacial SLOOH de acesso público para observar a região nos dias e horas que precederam a explosão.
A M74, está localizada na constelação dos Peixes, é um dos objetos de Messier mais difíceis de observar para os astrônomos amadores, devido ao seu tênue brilho de superfície, no entanto a SN2013ej ainda poderá ser vista por astrônomos amadores atentos durante as próximas semanas, visível como uma estrela débil e a desvanecer.

Fonte: ESO

domingo, 1 de setembro de 2013

Hubble observa lagarta cósmica

O nó de gás e poeira interestelar visto a seguir tem um ano-luz de comprimento e lembra uma lagarta caminhando para seu banquete.

IRAS 20324 4057

© Hubble/IPHAS (IRAS 20324+4057)

Mas o principal dessa história não é somente o que essa lagarta cósmica está comendo, mas também o que está comendo ela. Violentos ventos de estrelas extremamente brilhantes estão gerando radiação ultravioleta nesse protótipo de estrela e esculpindo o gás e a poeira nessa longa forma.

As responsáveis por isso são 65 das mais quentes e mais brilhantes estrelas conhecidas, classificadas como estrelas do Tipo-O, localizadas a aproximadamente 15 anos-luz de distância do nó, na direção da borda direita da imagem. Essas estrelas, juntamente com 500 outras menos brilhantes, mas ainda altamente luminosas estrelas do Tipo-B geram o que é chamada da associação Cygnus OB2. Coletivamente, acredita-se que a associação tem uma massa cerca de 30.000 vezes maior que a do Sol.

O nó na forma de lagarta, chamado oficialmente de IRAS 20324+4057, é uma protoestrela no seu estágio evolucionário muito inicial. Ela ainda está no processo de coletar material de um envelope de gás ao seu redor. Contudo, esse envelope está sendo erodido pela radiação da Cygnus OB2. As protoestrelas nessa região devem eventualmente se tornarem estrelas jovens com massas finais de aproximadamente uma a dez vezes a massa do Sol, mas se a radiação de erosão emanada pelas brilhantes estrelas próximas destrói o envelope de gás antes das protoestrelas terminarem de coletar massa, suas massas finais podem ser reduzidas.

Observações espectroscópicas da estrela central dentro da IRAS 20324+4057 mostram que ela ainda está coletando material mais pesadamente de seu envelope externo, o que pode fazer a massa se elevar. Só o tempo poderá dizer se essa protoestrela se transformará numa estrela leve ou pesada com relação a massa.

Essa imagem da IRAS 20324+4057 é uma composição dos dados da Hubble Advanced Camera for Surveys feitas em verde e em infravermelho em 2006, e com dados de hidrogênio obtidos com o telescópio Isaac Newton localizado na Terra, em 2003, como parte da pesquisa IPHAS H-alpha. O objeto localiza-se a 4.500 anos-luz de distância na constelação de Cygnus.

Fonte: HubbleSite

Buraco negro da Via Láctea rejeita matéria

Astrônomos usando o observatório de raios X Chandra da NASA deram um grande passou para explicar por que o material ao redor do buraco negro gigante no centro da Via Láctea é extraordinariamente fraco em raios X.

região do buraco negro Sagittarius A*

© Chandra (região do buraco negro Sagittarius A*)

Essa descoberta tem implicações importantes para o entendimento dos buracos negros.

Novas imagens do Chandra feitas do Sagittarius A* (Sgr A*), que está localizado a aproximadamente 26.000 anos-luz de distância da Terra, indicam que menos de 1% do gás inicialmente dentro do campo gravitacional do Sgr A* atingiu o horizonte de eventos. Ao invés disso, boa parte do gás é ejetado antes de chegar perto do horizonte de eventos e tem assim a chance de brilhar, levando a emissão de frágeis raios X.

Esta descoberta fornece resultados de uma das mais longas campanhas de observação já realizadas pelo Chandra. A sonda coletou cinco semanas de dados do Sgr A* em 2012. Os pesquisadores usaram esse período de observação para captar imagens detalhadas e sensíveis aos raios X e a assinatura de energia do gás super aquecido que gira ao redor do Sgr A*, que tem uma massa aproximadamente 4 milhões de vezes maior que o Sol.

“Nós achamos que a maior parte das grandes galáxias possuem buracos negros supermassivos em seu centro, mas elas estão muito longe para serem estudadas em detalhes e para sabermos como a matéria chega perto do buraco negro. O Sgr A* é dos poucos buracos negros próximos o suficiente para que possamos testemunhar esse processo”, disse Q. Daniel Wang da Universidade de Massachussetts em Amherst, que liderou o estudo.

Os pesquisadores descobriram que os dados do Chandra do Sgr A* não suportam os modelos teóricos onde os raios X são emitidos de uma concentração de estrelas de baixa massa ao redor do buraco negro. Ao invés disso, os dados de raios X mostram o gás perto do buraco negro provavelmente originado de ventos produzidos pela distribuição em forma de disco das jovens estrelas massivas.

“Nós estamos vendo o Sgr A* capturar gás quente ejetado pelas estrelas próximas, e afunilá-lo em direção ao horizonte de eventos”, disse o coautor Sera Markoff, da Universidade de Amsterdan na Holanda.

Para mergulhar no horizonte de eventos, o material capturado pelo buraco negro precisa perder calor e momento. A ejeção de matéria permite que isso ocorra.

“A maior parte do gás precisa ser expelido para fora, assim, uma pequena quantidade alcança o buraco negro”, disse o coautor Feng Yuan, do Observatório Astronômico de Shangai, na China. “Ao contrário do que algumas pessoas pensam, os buracos negros na verdade não devoram tudo que é puxado em sua direção. O Sgr A* está aparentemente encontrando boa parte do seu alimento difícil de engolir”.

O gás disponível para o Sgr A* é muito difuso e super quente, assim é difícil para o buraco negro capturar esse gás e o engolir. Os buracos negros que energizam quasares e produzem enormes quantidades de radiação possuem um reservatório de gás mais frio e mais denso do que o do Sgr A*.

O horizonte de eventos do Sgr A* gera uma sombra contra a matéria brilhante ao redor do buraco negro. Essa pesquisa poderia ganhar esforços usando radiotelescópios para observar e entender a sombra. Isso também seria útil para entender o efeito de estrelas orbitando e de nuvens de gás na matéria que flui em direção e para fora do buraco negro.

O estudo foi publicado na revista Science.

Fonte: NASA

sábado, 31 de agosto de 2013

O ponto sob o ponto de interrogação cósmico

A galáxia anã NGC 5195 é mais bem conhecida como a companheira menor da galáxia espiral M51, a Galáxia do Redemoinho.

NGC 5195

© J. J. Priego (NGC 5195)

Vistas juntas elas parecem traçar a curva e o ponto de um ponto de interrogação cósmico, registrado nos desenhos do Lord Rosse no século 19 como uma das mais originais nebulosas espirais.

M51

© Hubble (M51)

Anã se comparada com a enorme M51 (também conhecida como NGC 5194), a NGC 5195 se espalha por cerca de 2.000 anos-luz. Um encontro com a M51 provavelmente iniciou o processo de formação de estrelas e realçou os braços espirais da galáxia. Processada a partir de dados de imagem disponível o Hubble Legacy Archive, essa impressionante imagem detalhada da NGC 5195 deixa claro que a galáxia anã, agora se localiza além da M51. Uma ponte de maré de nuvens de poeira escura e de jovens e azuis aglomerados de estrelas se estica dos subúrbios da M51 na parte direita da imagem, e aparecem com sua silhueta destacada contra o brilho amarelado da galáxia anã. O famoso par de galáxias em interação localiza-se a aproximadamente 30 milhões de anos-luz de distância da Terra, na direção do cabo da Grande Colher, e na constelação dos Cães de Caça.

Fonte: NASA

O trio de Sagitário

Essas três nebulosas brilhantes normalmente aparecem nas turnês telescópicas que os observadores fazem pela constelação de Sagittarius e pelo campo repleto de estrelas da parte central da Via Láctea.

Trio de Sagitário

© Tony Hallas (Trio de Sagitário)

De fato, no século 18, o turista cósmico Charles Messier catalogou duas delas, a M8, a grande nebulosa à esquerda do centro, e a colorida M20 à direita. A terceira, a NGC 6559, está acima da M8, separada da nebulosa maior por uma linha de poeira escura. Todas as três são verdadeiros berçários estelares localizados à aproximadamente cinco mil anos-luz de distância da Terra. A expansiva M8, com mais de cem anos-luz de diâmetro, é também conhecida como a Nebulosa da Lagoa. O apelido popular da M20, é a Trífida. O gás hidrogênio brilhante cria a cor vermelha dominante das nebulosas de emissão, com tonalidades azuis contrastantes, mais evidentes na Trífida, devido à luz das estrelas refletidas na poeira. A paisagem celeste colorida acima, registrada com um telescópio e com uma câmera digital também inclui um dos aglomerados estelares abertos de estrelas de Messier, o M21, logo acima da Trífida.

Fonte: NASA

sexta-feira, 30 de agosto de 2013

Projeto inicia exploração da energia escura

Começa hoje à noite no observatório de Cerro Tololo, no Chile, o levantamento astronômico mais abrangente feito até agora para explorar o maior enigma da cosmologia: a energia escura.

DECam montada no telescópio

© Fermilab (DECam montada no telescópio)

O projeto Dark Energy Survey (DES), que levou uma década inteira de planejamento e construção, colocará o telescópio Blanco, de quatro metros de largura, para varrer uma área de um oitavo do céu, cem noites por ano.

telescópio Blanco

© DES (telescópio Blanco)

Um dos principais objetivos é descobrir galáxias distantes onde estejam ocorrendo supernovas, ou seja, explosões estelares, que podem ser usadas para medir distâncias no Cosmo. Sabendo as distâncias das galáxias até nós, astrônomos podem analisar seu espectro luminoso de cores para saber com que velocidade elas se afastam.

Foi com essas duas informações que cientistas descobriram em 1998 que a 13,8 bilhões de anos após o Big Bang, o Universo está se expandindo aceleradamente, e não o contrário, tal qual se esperava em razão da gravidade. Esse fenômeno ganhou o nome de energia escura e ainda não tem explicação, apesar de várias teorias competirem para tal.

"Os dados ainda não são suficientes para discriminar, entre as possíveis candidatas, qual seria a melhor", diz Márcio Maia, astrônomo do Observatório Nacional, do Rio de Janeiro, que participa do DES. "Uma das coisas que o projeto vai fazer é produzir melhores resultados, e isso vai permitir descartar os modelos teóricos que não se encaixam nas observações."

A expectativa é que o projeto consiga captar pelo menos 3.000 supernovas do tipo Ia, as mais úteis nesse tipo de pesquisa, durante cinco anos de monitoramento.

O DES é uma colaboração internacional de US$ 40 milhões capitaneada pelo Fermilab, de Illinois (EUA). O Brasil entra no projeto com apenas US$ 300 mil, mas oferece mão de obra com valor estimado em US$ 1,2 milhão. O país montou para tal um consórcio que reúne Observatório Nacional, CBPF (Centro Brasileiro de Pesquisas Físicas), USP, LNCC (Laboratório Nacional de Computação Científica) e outros centros.

O principal papel do país será o de fornecer infraestrutura computacional e um sistema que monitora a qualidade das imagens do telescópio.

O processamento de dados foi um dos maiores desafios do projeto, que vai gerar um banco de dados de imagens produzido com a câmera digital mais potente do mundo, com 570 megapixels.

O DES também vai observar fenômenos e estruturas no Cosmo capazes de revelar outros aspectos da energia escura. Uma de suas missões importantes será a de mapear aglomerados de galáxias.

Na escala de distância dessas estrutura é que a gravidade começa a contrabalançar com a energia escura. Uma compreensão melhor desse “cabo de guerra” deve trazer uma compreensão melhor do Universo, que é 69% composto de energia escura (27% de tudo o que existe é matéria escura, invisível, e apenas 5% é a matéria comum que vemos).

O DES também investigará a distribuição tridimensional de massa no Cosmo, analisando como a matéria escura torce a trajetória da luz. Um outro tipo de fenômeno a ser observado pelo DES é a "oscilação acústica de bárions", que revela a taxa com que o Universo vem se expandindo ao longo de sua história.

Fonte: Folha de São Paulo e Fermilab

Descoberto asteroide troiano de Urano

Astrônomos utilizando o telescópio Canada-France-Hawaii (CFHT) anunciaram a descoberta do primeiro asteroide troiano de Urano.

asteroide troiano de Urano

© UBC (asteroide troiano de Urano)

O 2011 QF99 pode fazer parte de uma população de objetos maiores e que está presa pela gravidade dos planetas gigantes do Sistema Solar.

Asteroides troianos são aqueles que dividem a órbita de um planeta. A Terra, inclusive, possui o seu asteroide troiano. Astrônomos consideravam que era improvável a presença de um desses objetos na órbita de Urano, já que a gravidade de seus planetas vizinhos deveria desestabilizar e expelir o objeto para os confins do Sistema Solar.

movimento do asteroide troiano de Urano

© UBC (movimento do asteroide troiano de Urano)

Nesta representação vê-se o movimento do asteroide 2011 QF99 ao longo dos próximos 59 mil anos, e girando no mesmo ritmo que o planeta Urano que permanece parado à direita. O asteroide troiano de Urano oscila para a frente e para trás, mantendo sempre à frente do planeta.

Antes de descobrir o asteroide, os pesquisadores criaram uma simulação computadorizada do Sistema Solar com os objetos que orbitam a estrela, inclusive os troianos. "Surpreendentemente, nosso modelo prevê que, em qualquer tempo dado, 3% dos objetos dispersos entre Júpiter e Netuno devem coorbitar ou Urano, ou Netuno", diz Mike Alexandersen, líder do estudo.

Segundo os pesquisadores, o 2011 QF99 foi preso pela órbita do planeta há poucas centenas de milhares de anos e deve escapar em cerca de 1 milhão de anos. "Isto nos conta algo sobre a evolução do Sistema Solar", diz Alexandersen. "Ao estudar o processo pelo qual os troianos são capturados temporariamente, podemos entender melhor como objetos migram pela região planetária do Sistema Solar."

O estudo foi conduzido pela Universidade da Columbia Britânica (Canadá), Conselho Nacional de Pesquisa do Canadá e o Observatório de Besancon (França).

Fonte: Science

quinta-feira, 29 de agosto de 2013

A estrela gêmea mais velha do Sol

Uma equipe internacional liderada por astrônomos no Brasil utilizou o Very Large Telescope (VLT) do ESO para identificar e estudar a estrela gêmea do Sol mais velha conhecida até agora.

o ciclo de vida de uma estrela parecida com o Sol

© ESO (o ciclo de vida de uma estrela parecida com o Sol)

Situada a 250 anos-luz de distância da Terra, a estrela HIP 102152 é mais parecida com o Sol do que qualquer outra do mesmo tipo, tirando o fato de ser cerca de quatro bilhões de anos mais velha. Esta, mais velha mas quase idêntica, gêmea do Sol dá-nos a possibilidade de ver como será a nossa estrela quando envelhecer. As novas observações fornecem também uma primeira ligação clara entre a idade de uma estrela e o seu conteúdo em lítio, e adicionalmente sugerem que a HIP 102152 possui planetas rochosos do tipo terrestre na sua órbita.

Os astrônomos apenas observam o Sol com o auxílio de telescópios desde há 400 anos, uma pequeníssima fração da idade do Sol, o qual tem mais de bilhões de anos. É muito difícil estudar a história e a evolução futura da nossa estrela, mas uma maneira de o conseguir consiste em procurar estrelas raras que sejam quase exatamente iguais à nossa, mas que estejam em diferentes fases da sua vida.

Jorge Melendez (Universidade de São Paulo, Brasil), o líder da equipe e co-autor do novo artigo científico que descreve os resultados explica: “Há décadas que os astrônomos procuram estrelas gêmeas do Sol, de modo a conhecer melhor a nossa própria estrela, que é responsável por toda a vida em nosso planeta. No entanto, têm sido encontradas muito poucas, desde que a primeira foi descoberta em 1997. Mas agora obtivemos espectros de soberba qualidade com o VLT e pudemos assim examinar detalhadamente gêmeas solares com extrema precisão, e saber se o Sol é especial.”
A equipe estudou duas gêmeas solares, uma que se pensou ser mais jovem que o Sol (18 Scorpii) e outra que se esperava que fosse mais velha (HIP 102152). A equipe utilizou o espectrógrafo UVES, montado no VLT instalado no observatório do Paranal do ESO, para separar a radiação nas suas componentes de cor, de modo a poder estudar em detalhe a composição química e outras propriedades destas estrelas.
Descobriu-se que a HIP 102152, situada na constelação do Capricórnio, é a gêmea solar mais velha conhecida até agora. Estima-se que tenha 8,2 bilhões de anos de idade, comparada com os 4,6 bilhões de anos do nosso Sol. Por outro lado confirmou-se que a 18 Scorpii é mais nova que o Sol, tem cerca de 2,9 bilhões de anos de idade.
Estudar HIP 102152, a estrela gêmea velha do Sol, permite aos cientistas prever o que pode acontecer ao nosso próprio Sol quando chegar a essa idade. A equipe fez já uma descoberta importante. “Uma das coisas que queríamos saber era se o Sol terá uma composição química típica”, diz Melendez. “E, mais importante ainda, porque é que tem uma quantidade de lítio tão estranhamente baixa”.
O lítio, o terceiro elemento da tabela periódica, foi criado durante o Big Bang, ao mesmo tempo que o hidrogênio e o hélio. Os astrônomos ponderam há anos porque é que algumas estrelas têm menos lítio que outras. Com as novas observações da HIP 102152, deu-se um grande passo em direção à resolução deste mistério ao descobrir-se uma forte correlação entre a idade de uma estrela como o Sol e o seu conteúdo em lítio.
O nosso Sol tem atualmente apenas 1% do conteúdo em lítio que estava presente na matéria a partir da qual se formou. A investigação de estrelas gêmeas do Sol mais novas, apontava para o fato destas irmãs mais jovens terem uma quantidade significativamente maior de lítio, mas até agora os cientistas não tinham conseguido demonstrar a existência de uma correlação clara entre a idade e o conteúdo em lítio. Estudos anteriores indicaram que o conteúdo em lítio de uma estrela poderia ser igualmente afetado se a estrela possuísse planetas gigantes na sua órbita (Nature), embora estes resultados tenham sido contestados
TalaWanda Monroe (Universidade de São Paulo), autora principal do novo artigo conclui: “Descobrimos que a HIP 102152 tem níveis muito baixos de lítio, o que demonstra claramente, e pela primeira vez, que as gêmeas solares mais velhas têm efetivamente menos lítio do que o nosso Sol ou estrelas gêmeas solares mais novas. Podemos agora ter a certeza que as estrelas à medida que envelhecem, destroem de algum modo o seu lítio”.
O último ponto desta história é que a HIP 102152 tem um padrão de composição química sutilmente diferente da maioria das outras gêmeas solares, mas semelhante ao Sol. Ambas mostram uma deficiência dos elementos que são abundantes em meteoritos e na Terra, o que é uma evidência forte no sentido da HIP 102152 poder albergar planetas rochosos do tipo terrestre.

Fonte: ESO

terça-feira, 27 de agosto de 2013

A brilhante nebulosa planetária NGC 7027

A imagem a seguir mostra uma das mais brilhantes nebulosas planetárias no céu. Qual nome ela deveria ter?

NGC 7027

© Hubble (NGC 7027)

Descoberta pela primeira vez em 1878, a nebulosa NGC 7027 pode ser vista na direção da constelação do Cisne (Cygnus) com um telescópio padrão. Em parte pois ela aparece somente como um ponto indistinto, ela raramente é referida com um apelido. Quando foi imageada pela primeira vez com o telescópio espacial Hubble, contudo, grandes detalhes foram revelados. Estudando as imagens do Hubble da NGC 7027, os astrônomos puderam entender que ela é uma nebulosa planetária que começou a se expandir a aproximadamente 600 anos atrás, e que a nuvem de gás e poeira é incomumente massiva já que parece conter aproximadamente três vezes a massa do Sol. A foto acima, nas cores atribuídas, resolve algumas características, as camadas e as feições empoeiradas da NGC 7027 podendo lembrar os entusiastas do céu de algum ícone familiar que poderia ser usado para dar um nome informal para a nebulosa.

Por favor, sinta-se livre para fazer sugestões, algumas delas estão sendo registradas, por exemplo, em um fórum de discussão on-line APOD.

Fonte: NASA